Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population

Dorota Monies 1Mohammed Abouelhoda 1Mirna Assoum 2Nabil Moghrabi 1Rafiullah Rafiullah 2Naif Almontashiri 3Mohammed Alowain 4Hamad Alzaidan 4Moeen Alsayed 4Shazia Subhani 1Edward Cupler 5Maha Faden 6Amal Alhashem 7Alya Qari 4Aziza Chedrawi 8Hisham Aldhalaan 8Wesam Kurdi 9Sameena Khan 8Zuhair Rahbeeni 4Maha Alotaibi 6Ewa Goljan 1Hadeel Elbardisy 2Mohamed ElKalioby 10Zeeshan Shah 1Hibah Alruwaili 1Amal Jaafar 1Ranad Albar 11Asma Akilan 2Hamsa Tayeb 1Asma Tahir 1Mohammed Fawzy 1Mohammed Nasr 1Shaza Makki 2Abdullah Alfaifi 12Hanna Akleh 13Suad Yamani 8Dalal Bubshait 14Mohammed Mahnashi 15Talal Basha 16Afaf Alsagheir 17Musad Abu Khaled 8Khalid Alsaleem 17Maisoon Almugbel 9Manal Badawi 8Fahad Bashiri 18Saeed Bohlega 8Raashida Sulaiman 4Ehab Tous 8Syed Ahmed 19Talal Algoufi 19Hamoud Al-Mousa 20Emadia Alaki 20Susan Alhumaidi 21Hadeel Alghamdi 16Malak Alghamdi 21Ahmed Sahly 17Shapar Nahrir 21Ali Al-Ahmari 22Hisham Alkuraya 23Ali Almehaidib 24Mohammed Abanemai 24Fahad Alsohaibaini 24Bandar Alsaud 20Rand Arnaout 20Ghada M H Abdel-Salam 25Hasan Aldhekri 17Suzan AlKhater 26Khalid Alqadi 8Essam Alsabban 17Turki Alshareef 27Khalid Awartani 9Hanaa Banjar 28Nada Alsahan 9Ibraheem Abosoudah 29Abdullah Alashwal 30Wajeeh Aldekhail 24Sami Alhajjar 31Sulaiman Al-Mayouf 17Abdulaziz Alsemari 8Walaa Alshuaibi 32Saeed Altala 33Abdulhadi Altalhi 34Salah Baz 8Muddathir Hamad 32Tariq Abalkhail 8Badi Alenazi 35Alya Alkaff 9Fahad Almohareb 36Fuad Al Mutairi 37Mona Alsaleh 19Abdullah Alsonbul 38Somaya Alzelaye 39Shakir Bahzad 40Abdulaziz Bin Manee 17Ola Jarrad 17Neama Meriki 41Bassem Albeirouti 42Amal Alqasmi 21Mohammed AlBalwi 43Nawal Makhseed 44Saeed Hassan 32Isam Salih 45Mustafa A Salih 18Marwan Shaheen 46Saadeh Sermin 27Shamsad Shahrukh 5Shahrukh Hashmi 46Ayman Shawli 47Ameen Tajuddin 48Abdullah Tamim 49Ahmed Alnahari 50Ibrahim Ghemlas 19Maged Hussein 51Sami Wali 7Hatem Murad 8Brian F Meyer 1Fowzan S Alkuraya 52

Affiliations


Abstract

We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.

Keywords: autozygome; candidate genes; clinical genomics; dual diagnosis; exome; expanded carrier screening; fetal malformation; first-tier; genomics-first; gonadal mosaicism; hybrid phenotype; knockout; multilocus phenotypes; phenotypic expansion; prenatal.


Figures


Similar articles

Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation.

Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, Sulaiman RA, Faqeih E, Goljan E, Ibrahim N, Abdulwahab F, Hashem M, Abouelhoda M, Shaheen R, Arold ST, Alkuraya FS.Genet Med. 2017 Oct;19(10):1144-1150. doi: 10.1038/gim.2017.22. Epub 2017 Apr 6.PMID: 28383543

Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders.

Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, Uebe S, Ekici AB, Krumbiegel M, Zweier C, Hoyer J, Eberlein K, Bauer J, Scheller U, Strom TM, Hoffjan S, Abdelraouf ER, Meguid NA, Abboud A, Al Khateeb MA, Fakher M, Hamdan S, Ismael A, Muhammad S, Abdallah E, Sticht H, Wieczorek D, Reis A, Abou Jamra R.JAMA Psychiatry. 2017 Mar 1;74(3):293-299. doi: 10.1001/jamapsychiatry.2016.3798.PMID: 28097321

Lethal variants in humans: lessons learned from a large molecular autopsy cohort.

Shamseldin HE, AlAbdi L, Maddirevula S, Alsaif HS, Alzahrani F, Ewida N, Hashem M, Abdulwahab F, Abuyousef O, Kuwahara H, Gao X; Molecular Autopsy Consortium; Alkuraya FS.Genome Med. 2021 Oct 13;13(1):161. doi: 10.1186/s13073-021-00973-0.PMID: 34645488 Free PMC article.

Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia.

Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P.Acta Ophthalmol. 2021 Sep;99(6):581-591. doi: 10.1111/aos.14693. Epub 2020 Dec 26.PMID: 33369259 Review.

Refining the phenotype of the THG1L (p.Val55Ala mutation)-related mitochondrial autosomal recessive congenital cerebellar ataxia.

Walker MA, Lerman-Sagie T, Swoboda K, Lev D, Blumkin L.Am J Med Genet A. 2019 Aug;179(8):1575-1579. doi: 10.1002/ajmg.a.61196. Epub 2019 Jun 5.PMID: 31168944 Free PMC article. Review.


Cited by

The clinical utility of rapid exome sequencing in a consanguineous population.

Monies D, Goljan E; Rapid Exome Consortium; Assoum M, Albreacan M, Binhumaid F, Subhani S, Boureggah A, Hashem M, Abdulwahab F, Abuyousef O, Temsah MH, Alsohime F, Kelaher J, Abouelhoda M, Meyer BF, Alkuraya FS.Genome Med. 2023 Jun 21;15(1):44. doi: 10.1186/s13073-023-01192-5.PMID: 37344829 Free PMC article.

A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders.

Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B.PLoS One. 2023 Jun 15;18(6):e0287131. doi: 10.1371/journal.pone.0287131. eCollection 2023.PMID: 37319303 Free PMC article.

Heterogeneity in biomarkers, mitogenome and genetic disorders of the Arab population with special emphasis on large-scale whole-exome sequencing.

Borgio JF.Arch Med Sci. 2021 Dec 27;19(3):765-783. doi: 10.5114/aoms/145370. eCollection 2023.PMID: 37313193 Free PMC article.

Diagnostic Yield of Exome Sequencing in a Diverse Pediatric and Prenatal Population is not Associated with Genetic Ancestry.

Mavura Y, Sahin-Hodoglugil N, Hodoglugil U, Kvale M, Martin PM, Van Ziffle J, Devine WP, Ackerman SL, Koenig BA, Kwok PY, Norton ME, Slavotinek A, Risch N.medRxiv. 2023 May 24:2023.05.19.23290066. doi: 10.1101/2023.05.19.23290066. Preprint.PMID: 37293051 Free PMC article.

The Palestinian primary ciliary dyskinesia population: first results of the diagnostic and genetic spectrum.

Rumman N, Fassad MR, Driessens C, Goggin P, Abdelrahman N, Adwan A, Albakri M, Chopra J, Doherty R, Fashho B, Freke GM, Hasaballah A, Jackson CL, Mohamed MA, Abu Nema R, Patel MP, Pengelly RJ, Qaaqour A, Rubbo B, Thomas NS, Thompson J, Walker WT, Wheway G, Mitchison HM, Lucas JS.ERJ Open Res. 2023 Apr 17;9(2):00714-2022. doi: 10.1183/23120541.00714-2022. eCollection 2023 Mar.PMID: 37077557 Free PMC article.


KMEL References