Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells

Affiliations


Abstract

Several cereal grains contain a mycotoxin food contaminant called deoxynivalenol (DON), which presents a significant health risk as it is one of the most commonly found mycotoxins. The current paper examines the ameliorative effect of mangiferin (MAN) in vascular endothelial cells induced through activating the Nrf2 signalling pathway on dietary DON-induced oxidative changes. The study infers that the intercellular reactive oxygen species (ROS) levels and malondialdehyde decrease due to MAN. Other effects include in human umbilical vein endothelial cells (HUVECs), the oxidative stress-induced cell damage is reduced due to protective effects and superoxide dismutase (SOD), and catalase (CAT) activities also reveal an improvement. In HUVECs, the Nrf2-regulated antioxidant enzyme genes' expression is activated by Nrf2 nuclear translocation induction and this activity suppresses the oxidative stress damage. The genes in HUVECs include HO-1 and NQO1. Moreover, in HUVECs, the nucleus translocation of Nrf2 reduces the Nrf2, HO-1, whereas NQO1 expression decreases the cytoprotective effects against oxidative stress reduce with the rejection of Nrf2 with siRNA. This paper pioneers in inferring that oxidative stress-induced HUVECs' cell injury is suppressed by MAN through Nrf2, signalling pathway activation.

Keywords: antioxidants; deoxynivalenol; mangiferin; mycotoxin; oxidative stress.


Similar articles

Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

Zhu Y, Zhang YJ, Liu WW, Shi AW, Gu N.Molecules. 2016 Aug 9;21(8):1033. doi: 10.3390/molecules21081033.PMID: 27517893 Free PMC article.

Zedoarondiol Attenuates Endothelial Cells Injury Induced by Oxidized Low-Density Lipoprotein via Nrf2 Activation.

Mao H, Tao T, Wang X, Liu M, Song D, Liu X, Shi D.Cell Physiol Biochem. 2018;48(4):1468-1479. doi: 10.1159/000492257. Epub 2018 Jul 31.PMID: 30064139

Xanthoangelol Prevents Ox-LDL-Induced Endothelial Cell Injury by Activating Nrf2/ARE Signaling.

Yan R, Yan J, Chen X, Yu Y, Sun T.J Cardiovasc Pharmacol. 2019 Aug;74(2):162-171. doi: 10.1097/FJC.0000000000000699.PMID: 31356547

Role of NRF2 in Ovarian Cancer.

Tossetta G, Fantone S, Montanari E, Marzioni D, Goteri G.Antioxidants (Basel). 2022 Mar 30;11(4):663. doi: 10.3390/antiox11040663.PMID: 35453348 Free PMC article. Review.

Nrf2: A Main Responsive Element of the Toxicity Effect Caused by Trichothecene (T-2) Mycotoxin.

Wang Y, Liu Y, Huang T, Chen Y, Song W, Chen F, Jiang Y, Zhang C, Yang X.Toxics. 2023 Apr 21;11(4):393. doi: 10.3390/toxics11040393.PMID: 37112621 Free PMC article. Review.


Cited by

Mangiferin Affects Melanin Synthesis by an Influence on Tyrosinase: Inhibition, Mechanism of Action and Molecular Docking Studies.

Hering A, Stefanowicz-Hajduk J, Dziomba S, Halasa R, Krzemieniecki R, Sappati S, Baginski M, Ochocka JR.Antioxidants (Basel). 2023 Apr 28;12(5):1016. doi: 10.3390/antiox12051016.PMID: 37237882 Free PMC article.

Asiaticoside Increases Caspase-9 Activity in MCF-7 Cells and Inhibits TNF-α and IL-6 Expression in Nude Mouse Xenografts via the NF-κB Pathway.

Al-Saeedi FJ.Molecules. 2023 Feb 23;28(5):2101. doi: 10.3390/molecules28052101.PMID: 36903346 Free PMC article.

Ruscogenin Protects Against Deoxynivalenol-Induced Hepatic Injury by Inhibiting Oxidative Stress, Inflammation, and Apoptosis Through the Nrf2 Signaling Pathway: An In vitro Study.

Elsawy H, Rajendran P, Sedky AM, Alfwuaires M.Saudi J Med Med Sci. 2022 Sep-Dec;10(3):207-215. doi: 10.4103/sjmms.sjmms_725_21. Epub 2022 Aug 22.PMID: 36247053 Free PMC article.

Anti-Inflammatory Activity of Three Triterpene from Hippophae rhamnoides L. in Lipopolysaccharide-Stimulated RAW264.7 Cells.

Han Y, Yuan C, Zhou X, Han Y, He Y, Ouyang J, Zhou W, Wang Z, Wang H, Li G.Int J Mol Sci. 2021 Nov 5;22(21):12009. doi: 10.3390/ijms222112009.PMID: 34769438 Free PMC article.


KMEL References


References

  1.  
    1. Krishnaswamy R, Devaraj SN, Padma VV. Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: Prevention of NF-κB nuclear localization and down regulation of NF-κB and Cyclo-Oxygenase-2 expression. Free Radic Biol Med. 2010;49:50-60.
  2.  
    1. Yang Y, Yu S, Jia B, Liu N, Wu A. Metabolomic profiling reveals similar cytotoxic effects and protective functions of quercetin during deoxynivalenol-and 15-acetyl deoxynivalenol-induced cell apoptosis. Toxicol In Vitro. 2020;66:104838.
  3.  
    1. Mikami O, Yamamoto S, Yamanaka N, Nakajima Y. Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol. Toxicology. 2004;204:241-249.
  4.  
    1. Sun L-H, Lei M-Y, Zhang N-Y, et al. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. Toxicon. 2015;95:6-12.
  5.  
    1. Islam Z, Gray JS, Pestka JJ. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicol Appl Pharmacol. 2006;213:235-244.
  6.  
    1. Wong S-S, Zhou H-R, Pestka JJ. Effects of vomitoxin (deoxynivalenol) on the binding of transcription factors AP-1, NF-κB, and NF-IL6 in RAW 264.7 macrophage cells. J Toxicol Environ Health Part A. 2002;65:1161-1180.
  7.  
    1. Ma Y, Zhang A, Shi Z, et al. A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicol In Vitro. 2012;26:414-420.
  8.  
    1. Pestka JJ, Zhou H-R, Moon Y, Chung Y. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett. 2004;153:61-73.
  9.  
    1. Mishra S, Dwivedi PD, Pandey HP, Das M. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol. 2014;72:20-29.
  10.  
    1. Li D, Ye Y, Lin S, et al. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis. Environ Toxicol Pharmacol. 2014;37:141-149.
  11.  
    1. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057.
  12.  
    1. Rajendran P, Ekambaram G, Sakthisekaran D. Effect of mangiferin on benzo (a) pyrene induced lung carcinogenesis in experimental Swiss albino mice. Nat Prod Res. 2008;22:672-680.
  13.  
    1. Du S, Liu H, Lei T, et al. Mangiferin: an effective therapeutic agent against several disorders. Mol Med Rep. 2018;18:4775-4786.
  14.  
    1. Rajendran P, Rengarajan T, Nandakumar N, Divya H, Nishigaki I. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J Recept Signal Transduction. 2015;35:76-84.
  15.  
    1. Saha S, Sadhukhan P, Sil PC. Mangiferin: a xanthonoid with multipotent anti-inflammatory potential. BioFactors. 2016;42:459-474.
  16.  
    1. Alberdi E, Sánchez-Gómez MV, Ruiz A, et al. Mangiferin and morin attenuate oxidative stress, mitochondrial dysfunction, and neurocytotoxicity, induced by amyloid beta oligomers. Oxid Med Cell Longev. 2018;2018:1-13.
  17.  
    1. Ding L-Z, Teng X, Zhang Z-B, Zheng C-J, Chen S-H. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells. Int J Mol Med. 2018;41:2517-2526.
  18.  
    1. Zhang B-P, Zhao J, Li S-S, et al. Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro. Acta Pharmacol Sin. 2014;35:257-266.
  19.  
    1. Huang J, Zheng L, Wang F, Su Y, Kong H, Xin H. Mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in mouse model of preeclampsia. Arch Pharm Res. 2020;43:233-241.
  20.  
    1. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8:72.
  21.  
    1. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54:287-293.
  22.  
    1. Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297-314.
  23.  
    1. Hseu Y-C, Vudhya Gowrisankar Y, Chen X-Z, Yang Y-C, Yang H-L. The antiaging activity of ergothioneine in UVA-irradiated human dermal fibroblasts via the inhibition of the AP-1 pathway and the activation of Nrf2-mediated antioxidant genes. Oxid Med Cell Longev. 2020;2020:1-13.
  24.  
    1. Lee J-Y, Lim W, Park S, Kim J, You S, Song G. Deoxynivalenol induces apoptosis and disrupts cellular homeostasis through MAPK signaling pathways in bovine mammary epithelial cells. Environ Pollut. 2019;252:879-887.
  25.  
    1. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19.
  26.  
    1. Zhu Y, Zhang Y-J, Liu W-W, Shi A-W, Gu N. Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules. 2016;21:1033.
  27.  
    1. Li W, Yu S, Liu T, et al. Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta. 2008;1783:1847-1856.
  28.  
    1. Lee S, Hu L. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Med Chem Res. 2020;29(5):846-867.
  29.  
    1. He M, Siow RC, Sugden D, Gao L, Cheng X, Mann GE. Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: a role for Nrf2 in vascular protection in diabetes. Nutr Metab Cardiovasc Dis. 2011;21:277-285.
  30.  
    1. Mann GE, Bonacasa B, Ishii T, Siow RC. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol. 2009;9:139-145.
  31.  
    1. Zhang Z, Wang Q, Ma J, et al. Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1α signaling in human epithelial ovarian cancer. Oncol Rep. 2013;29:1429-1434.
  32.  
    1. Rajendran P, Rengarajan T, Nishigaki Y, Palaniswami R, Nishigaki I. In vitro studies on mangiferin protection against cadmium-induced human renal endothelial damage and cell death via the MAP kinase and NF-κ B pathways. J Recept Signal Transduction. 2016;36:57-66.
  33.  
    1. Liu K, Wang F, Wang S, Li W-N, Ye Q. Mangiferin attenuates myocardial ischemia-reperfusion injury via MAPK/Nrf-2/HO-1/NF-κB In vitro and in vivo. Oxid Med Cell Longev. 2019;2019:7285434.
  34.  
    1. Jiang F, Zhang D-L, Jia M, Hao W-H, Li Y-J. Mangiferin inhibits high-fat diet induced vascular injury via regulation of PTEN/AKT/eNOS pathway. J Pharmacol Sci. 2018;137:265-273.
  35.  
    1. Yang H, Bai W, Gao L, et al. Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases. J Pharmacol Sci. 2018;137:154-161.
  36.  
    1. Pan C-W, Pan Z-Z, Hu J-J, et al. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur J Pharmacol. 2016;770:85-91.
  37.  
    1. Rajendran P, Ekambaram G, Sakthisekaran D. Cytoprotective effect of mangiferin on benzo (a) pyrene-induced lung carcinogenesis in Swiss Albino Mice. Basic Clin Pharmacol Toxicol. 2008;103:137-142.
  38.  
    1. Imran M, Arshad MS, Butt MS, Kwon J-H, Arshad MU, Sultan MT. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017;16:84.
  39.  
    1. Sellamuthu PS, Arulselvan P, Kamalraj S, Fakurazi S, Kandasamy M. Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats. Int Sch Res Notices. 2013;2013:1-10.
  40.  
    1. Zheng F, Yue C, Li G, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:1-17.