Impact of methodological choices in comparative effectiveness studies: application in natalizumab versus fingolimod comparison among patients with multiple sclerosis

M Lefort # 1 2S Sharmin # 3 4J B Andersen # 5S Vukusic 6 7 8R Casey 6 7 8 9M Debouverie 10G Edan 11J Ciron 12A Ruet 13J De Sèze 14E Maillart 15H Zephir 16P Labauge 17G Defer 18C Lebrun-Frenay 19T Moreau 20E Berger 21P Clavelou 22J Pelletier 23B Stankoff 24O Gout 25E Thouvenot 26O Heinzlef 27A Al-Khedr 28B Bourre 29O Casez 30P Cabre 31A Montcuquet 32A Wahab 33J P Camdessanché 34A Maurousset 35H Ben Nasr 36K Hankiewicz 37C Pottier 38N Maubeuge 39D Dimitri-Boulos 40C Nifle 41D A Laplaud 42 43D Horakova 44E K Havrdova 44R Alroughani 45G Izquierdo 46S Eichau 46S Ozakbas 47F Patti 48 49M Onofrj 50A Lugaresi 51 52M Terzi 53P Grammond 54F Grand'Maison 55B Yamout 56A Prat 57 58M Girard 57 58P Duquette 57 58C Boz 59M Trojano 60P McCombe 61 62M Slee 63J Lechner-Scott 64 65R Turkoglu 66P Sola 67D Ferraro 67F Granella 68 69V Shaygannejad 70J Prevost 71D Maimone 72O Skibina 73K Buzzard 73A Van der Walt 73R Karabudak 74B Van Wijmeersch 75T Csepany 76D Spitaleri 77S Vucic 78N Koch-Henriksen 79F Sellebjerg 80P S Soerensen 80C C Hilt Christensen 81P V Rasmussen 82M B Jensen 83J L Frederiksen 84S Bramow 80H K Mathiesen 85K I Schreiber 80H Butzkueven 86 87 88M Magyari # 4 80T Kalincik # 89E Leray # 90 91

Affiliations


Abstract

Background: Natalizumab and fingolimod are used as high-efficacy treatments in relapsing-remitting multiple sclerosis. Several observational studies comparing these two drugs have shown variable results, using different methods to control treatment indication bias and manage censoring. The objective of this empirical study was to elucidate the impact of methods of causal inference on the results of comparative effectiveness studies.

Methods: Data from three observational multiple sclerosis registries (MSBase, the Danish MS Registry and French OFSEP registry) were combined. Four clinical outcomes were studied. Propensity scores were used to match or weigh the compared groups, allowing for estimating average treatment effect for treated or average treatment effect for the entire population. Analyses were conducted both in intention-to-treat and per-protocol frameworks. The impact of the positivity assumption was also assessed.

Results: Overall, 5,148 relapsing-remitting multiple sclerosis patients were included. In this well-powered sample, the 95% confidence intervals of the estimates overlapped widely. Propensity scores weighting and propensity scores matching procedures led to consistent results. Some differences were observed between average treatment effect for the entire population and average treatment effect for treated estimates. Intention-to-treat analyses were more conservative than per-protocol analyses. The most pronounced irregularities in outcomes and propensity scores were introduced by violation of the positivity assumption.

Conclusions: This applied study elucidates the influence of methodological decisions on the results of comparative effectiveness studies of treatments for multiple sclerosis. According to our results, there are no material differences between conclusions obtained with propensity scores matching or propensity scores weighting given that a study is sufficiently powered, models are correctly specified and positivity assumption is fulfilled.

Keywords: Causal contrasts; Censoring; Effectiveness; Indication bias; Multiple sclerosis; Positivity assumption; Propensity score.

© 2022. The Author(s).

Conflict of interest statement

OFSEP: The authors report the following relationships: speaker honoraria, advisory board or steering committee fees, independent data monitoring committees fee, consultancy and lecturing fees, principal investigator in clinical trials, research support, unconditional PhD donation and/or conference travel support from Actelion (PC, ET), Ad Scientiam (EM), Akcea (JPC), Alnylam (JPC), Almirall (OH), Bayer (GE, HZ, OH), Biogen (GE, JC, AR, JDS, EM, HZ, PL, GD, TM, EB, PC, JP, BS, ET, OH, BB, OC, AMo, JPC, AMa, IP, NM, DAL, SV, WA), Celgene (JC, ET, DAL), CSL-Behring (JPC), FHU Imminent (HZ), Geneuro (SV), Genzyme-Sanofi (GE, JC, AR, JDS, EM, HZ, PL, GD, CLF, TM, EB, PC, JP, BS, ET, OH, BB, OC, AMo, JPC, AMa, IP, NM, DAL, SV), Grifols (JPC), Laboratoire Français des Biotechnologies (JPC), LFB (GE), LFSEP (HZ), Merck / EMD (GE, JC, AR, EM, HZ, PL, GD, PC, JP, BS, ET, OH, BB, OC, AMo, JPC, AMa, NM, DAL, SV), Medday (EL, AR, TM, PC, JP, DAL, SV), Natus (JPC), Novartis (EL, GE, JC, AR, JDS, EM, HZ, PL, GD, CLF, TM, EB, PC, JP, BS, ET, OH, BB, OC, AMo, JPC, AMa, IP, NM, DAL, SV), Pfizer (JPC), Pharmalliance (JPC), Roche (ML, EL, GE, JC, AR, JDS, EM, HZ, PL, GD, CLF, EB, PC, JP, BS, ET, OH, BB, OC, AMa, NM, DAL, SV, WA), SNF-Floerger (JPC), Teva (GE, JC, AR, JDS, EM, HZ, PL, GD, EB, PC, JP, ET, OH, BB, AMo, JPC, AMa, SV), Académie de Médecine (HZ), Agence Nationale de la Recherche (DAL), French National Security Agency of Medicines and Health Products (EL), the EDMUS Foundation (EL), the ARSEP foundation (GE, HZ, ET, DAL,ML), PHRC Foundation (ET), Rennes University Hospital (GE). MSBase: The authors report the following relationships: speaker honoraria, advisory board or steering committee fees, research support and/or conference travel support from Actelion (EKH), Almirall (GI, FP, MT), Bayer (RA, FP, AL, MT, CB, MT, MS, JLS, BVW, TC, DS), BioCSL (KB, TK), Biogen (DH, EKH, RA, GI, FP, AL, PG, FGM, MG, PD, CB, MT, MS, JLS, PS, DF, FG, JP, BVW, TC, HB, TK), Canadian Multiple sclerosis society (PG, PD), Canadian Institutes of Health Research (MG, PD), Celgene (EKH, FP, TK), Czech Minsitry of Education (DH, EKH), Fondazione Italiana Sclerosi Multipla (FP, AL), Grifols (KB), Genzyme-Sanofi (DH, EKH, RA, GI, FP, AL, MT, PG, FGM, MG, PD, CB, MT, MS, JLS, PS, DF, FG, JP, BVW, TC, DS, HB, TK), GSK (RA), Merck / EMD (DH, EKH, RA, GI, FP, AL, MT, PG, MG, PD, CB, MT, MS, JLS, PS, DF, FG, KB, BVW, TC, DS, HB, TK), Mitsubishi (FGM), Ministero Italiano della Universit e della Ricerca Scientifica (FP), Mylan (FP, AL), Novartis (DH, EKH, RA, GI, FP, AL, MT, PG, FGM, MG, PD, CB, MT, MS, JLS, PS, DF, FG, JP, KB, BVW, TC, DS, HB, TK), ONO Pharmaceuticals (FGM), Roche (DH, EKH, RA, GI, FP, AL, MT, CB, FG, KB, BVW, TC, TK), Teva (DH, EKH, GI, FP, AL, MT, PG, FGM, MG, PD, CB, MT, JLS, PS, DF, JP, KB, BVW, TC, DS, TK), WebMD Global (TK). DMSR: The authors report the following relationships: speaker honoraria, advisory board or steering committee fees, independent data monitoring committees fee, consultancy fee, research support and/or conference travel support from Almirall (JF), Alexion (PVR), Bayer (HKM), Biogen (NKH, FS, CH, PVR, MBJ, JF, SB, HKM, KIS, MM), Bristol Myers Squibb (PVR), Celgene (PSS), Genzyme-Sanofi (FS, PSS, CH, PVR, MBJ, JF, SB, HKM, KIS, MM), GSK (PSS), Medday (PSS), Merck / EMD (JBA, NKH, FS, PSS, CH, PVR, MBJ, JF, SB, HKM, KIS, MM), Novartis (NKH, FS, PSS, CH, PVR, MBJ, JF, KIS, MM), Roche (FS, CH, PVR, MBJ, JF, SB, KIS, MM), Teva (NKH, FS, PSS, PVR, MBJ, JF, HKM, KIS, MM).


Similar articles

Comparative effectiveness in multiple sclerosis: A methodological comparison.

Roos I, Diouf I, Sharmin S, Horakova D, Havrdova EK, Patti F, Shaygannejad V, Ozakbas S, Izquierdo G, Eichau S, Onofrj M, Lugaresi A, Alroughani R, Prat A, Girard M, Duquette P, Terzi M, Boz C, Grand'Maison F, Sola P, Ferraro D, Grammond P, Turkoglu R, Buzzard K, Skibina O, Yamou B, Altintas A, Gerlach O, van Pesch V, Blanco Y, Maimone D, Lechner-Scott J, Bergamaschi R, Karabudak R, McGuigan C, Cartechini E, Barnett M, Hughes S, Sa MJ, Solaro C, Ramo-Tello C, Hodgkinson S, Spitaleri D, Soysal A, Petersen T, Granella F, de Gans K, McCombe P, Ampapa R, Van Wijmeersch B, van der Walt A, Butzkueven H, Prevost J, Sanchez-Menoyo JL, Laureys G, Gouider R, Castillo-Triviño T, Gray O, Aguera-Morales E, Al-Asmi A, Shaw C, Deri N, Al-Harbi T, Fragoso Y, Csepany T, Sempere AP, Trevino-Frenk I, Schepel J, Moore F, Malpas C, Kalincik T.Mult Scler. 2023 Mar;29(3):326-332. doi: 10.1177/13524585231151394. Epub 2023 Feb 19.PMID: 36800908

The comparative effectiveness of fingolimod, natalizumab, and ocrelizumab in relapsing-remitting multiple sclerosis.

Boz C, Ozakbas S, Terzi M, Karabudak R, Sevim S, Turkoglu R, Soysal A, Balcı BP, Efendi H, Turan ÖF, Yüceyar N, Yetkin MF, Karahan SZ, Demirkıran M, Guler S, Agan K, Kıylıoğlu N, Baba C, Tuncer A, Köseoğlu M.Neurol Sci. 2023 Jun;44(6):2121-2129. doi: 10.1007/s10072-023-06608-z. Epub 2023 Jan 23.PMID: 36689010

Comparative Effectiveness and Cost-Effectiveness of Natalizumab and Fingolimod in Patients with Inadequate Response to Disease-Modifying Therapies in Relapsing-Remitting Multiple Sclerosis in the United Kingdom.

Spelman T, Herring WL, Zhang Y, Tempest M, Pearson I, Freudensprung U, Acosta C, Dort T, Hyde R, Havrdova E, Horakova D, Trojano M, De Luca G, Lugaresi A, Izquierdo G, Grammond P, Duquette P, Alroughani R, Pucci E, Granella F, Lechner-Scott J, Sola P, Ferraro D, Grand'Maison F, Terzi M, Rozsa C, Boz C, Hupperts R, Van Pesch V, Oreja-Guevara C, van der Walt A, Jokubaitis VG, Kalincik T, Butzkueven H; MSBase Investigators.Pharmacoeconomics. 2022 Mar;40(3):323-339. doi: 10.1007/s40273-021-01106-6. Epub 2021 Dec 18.PMID: 34921350 Free PMC article.

Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis.

Huisman E, Papadimitropoulou K, Jarrett J, Bending M, Firth Z, Allen F, Adlard N.BMJ Open. 2017 Mar 10;7(3):e013430. doi: 10.1136/bmjopen-2016-013430.PMID: 28283486 Free PMC article. Review.

Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis.

Tramacere I, Del Giovane C, Salanti G, D'Amico R, Filippini G.Cochrane Database Syst Rev. 2015 Sep 18;2015(9):CD011381. doi: 10.1002/14651858.CD011381.pub2.PMID: 26384035 Free PMC article. Review.


KMEL References


References

  1.  
    1. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue E-W, et al. Natalizumab plus Interferon Beta-1a for Relapsing Multiple Sclerosis. N Engl J Med. 2006;354(9):911–23. - PubMed
  2.  
    1. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A Randomized, Placebo-Controlled Trial of Natalizumab for Relapsing Multiple Sclerosis. J new Engl Med. 2006;354(9):899–910. - PubMed
  3.  
    1. Kappos L , Radue EW, O’Connor P , Polman C, Hohfeld R, Calabresi PA, et al. A Placebo-Controlled Trial of Oral Fingolimod in Relapsing Multiple Sclerosis Ludwig. New Engl J. 2010;362(5):387–401. - PubMed
  4.  
    1. Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral Fingolimod or Intramuscular Interferon for Relapsing Multiple Sclerosis. N Engl J Med. 2010;362(5):402–15. - PubMed
  5.  
    1. Barbin L, Rousseau C, Jousset N, Casey R, Debouverie M, Vukusic S, et al. Comparative efficacy of fingolimod vs natalizumab A French multicenter observational study. Neurology. 2016;86(18):771–778. - PMC - PubMed
  6.  
    1. Kalincik T, Horakova D, Spelman T, Jokubaitis V, Trojano M, Lugaresi A, et al. Switch to natalizumab versus fingolimod in active relapsing-remitting multiple sclerosis. Ann Neurol. 2015;77(3):425–435. - PubMed
  7.  
    1. Koch-Henriksen N, Magyari M, Sellebjerg F, Soelberg SP. A comparison of multiple sclerosis clinical disease activity between patients treated with natalizumab and fingolimod. Mult Scler J. 2017;23(2):234–241. - PubMed
  8.  
    1. Lorscheider J, Benkert P, Lienert C, Hänni P, Derfuss T, Kuhle J, et al. Comparative analysis of natalizumab versus fingolimod as second-line treatment in relapsing–remitting multiple sclerosis. Mult Scler J. 2018;24(6):777–785. - PubMed
  9.  
    1. Prosperini L, Saccà F, Cordioli C, Cortese A, Buttari F, Pontecorvo S, et al. Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naïve patients with multiple sclerosis. J Neurol. 2017;264(2):284–294. - PubMed
  10.  
    1. Sharmin S, Lefort M, Andersen JB, Leray E, Horakova D, Havrdova EK, et al. Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs [Internet]. 2021;35(11):1217–32. - PubMed
  11.  
    1. Andersen JB, Sharmin S, Lefort M, Koch-Henriksen N, Sellebjerg F, Sørensen PS, et al. The effectiveness of natalizumab vs fingolimod–A comparison of international registry studies. Mult Scler Relat Disord. 2021;53. - PubMed
  12.  
    1. Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol. 2016;183(8):758–764. - PMC - PubMed
  13.  
    1. Austin PC. A tutorial and case study in propensity score analysis: An application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behav Res. 2011;46(1):119–151. - PMC - PubMed
  14.  
    1. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424. - PMC - PubMed
  15.  
    1. Sedgwick P. Intention to treat analysis versus per protocol analysis of trial data. BMJ [Internet]. 2015;350(February):1–2. - PubMed
  16.  
    1. Kalincik T, Jokubaitis V, Izquierdo G, Duquette P, Girard M, Grammond P, et al. Comparative effectiveness of glatiramer acetate and interferon beta formulations in relapsing–remitting multiple sclerosis. Mult Scler J. 2015;21(9):1159–1171. - PubMed
  17.  
    1. Sharmin S, Lefort M, Andersen JB, Leray E, Horakova D, Havrdova EK, et al. Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs. 2021;35(11):1217–32. - PubMed
  18.  
    1. Kalincik T, Butzkueven H. The MSBase registry: Informing clinical practice. Mult Scler J. 2019;25(14):1828–1834. - PubMed
  19.  
    1. Butzkueven H, Chapman J, Cristiano E , Grand’Maison F, Hoffmann M, Izquierdo G, et al. MSBase: An international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler. 2006;12(6):769––74. - PubMed
  20.  
    1. Magyari M, Joensen H, Laursen B, Koch-Henriksen N. The Danish Multiple Sclerosis Registry. Brain Behav. 2021;11(1):1–10. - PMC - PubMed
  21.  
    1. Magyari M, Koch-Henriksen N, Sørensen PS. The Danish multiple sclerosis treatment register. Clin Epidemiol. 2016;8:549–552. - PMC - PubMed
  22.  
    1. Vukusic S, Casey R, Rollot F, Brochet B, Pelletier J, Laplaud DA, et al. Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in France. Mult Scler J. 2018;1–5. - PubMed
  23.  
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11):1444–1452. - PubMed
  24.  
    1. Foo EC, Russell M, Lily O, Ford HL. Mitoxantrone in relapsing-remitting and rapidly progressive multiple sclerosis: Ten-year clinical outcomes post-treatment with mitoxantrone. Mult Scler Relat Disord. 2020;44:102330. - PubMed
  25.  
    1. Chartier N, Epstein J, Soudant M, Dahan C, Michaud M, Pittion-Vouyovitch S, et al. Clinical follow-up of 411 patients with relapsing and progressive multiple sclerosis 10 years after discontinuing mitoxantrone treatment: a real-life cohort study. Eur J Neurol. 2018;25(12):1439–1445. - PubMed
  26.  
    1. Le Page E, Leray E, Taurin G, Coustans M, Chaperon J, Morrissey SP, et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry. 2008;79(1):52–56. - PubMed
  27.  
    1. Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for Causal Effects Effects. Biometrika. 1983;70(1):41–55.
  28.  
    1. Hernán M, Robins J. Causal inference. Boca Raton. 2019.
  29.  
    1. Pirracchio R, Carone M, Rigon MR, Caruana E, Mebazaa A, Chevret S. Propensity score estimators for the average treatment effect and the average treatment effect on the treated may yield very different estimates. Stat Methods Med Res. 2013;25(5):1938–1954. - PubMed
  30.  
    1. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10(2):150–161. - PMC - PubMed
  31.  
    1. Vaughan AS, Kelley CF, Luisi N, Del Rio C, Sullivan PS, Rosenberg ES. An application of propensity score weighting to quantify the causal effect of rectal sexually transmitted infections on incident HIV among men who have sex with men Data analysis, statistics and modelling. BMC Med Res Methodol. 2015;15(1):1–9. - PMC - PubMed
  32.  
    1. Hirano K, Imbens GW, Geert R. Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score. Econometrica. 2003;71(4):1161–1189.
  33.  
    1. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34(28):3661–79. - PMC - PubMed
  34.  
    1. Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed. 2004;75:45–49. - PubMed
  35.  
    1. Kalincik T, Cutter G, Spelman T, Jokubaitis V, Havrdova E, Horakova D. Defining reliable disability outcomes in multiple sclerosis. Brain. 2015;138(11):3287–3298. - PubMed
  36.  
    1. Cohen M, Mondot L, Bucciarelli F, Pignolet B, Laplaud DA, Wiertlewski S, et al. BEST-MS: A prospective head-to-head comparative study of natalizumab and fingolimod in active relapsing MS. Mult Scler J. 2020;1–8. - PubMed
  37.  
    1. Austin PC. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Med Decis Mak. 2009;29(6):661–677. - PubMed
  38.  
    1. Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med. 2007;26:3078–3094. - PubMed
  39.  
    1. Austin PC. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med. 2010;29(20):2137–2148. - PMC - PubMed
  40.  
    1. Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32(16):2837–2849. - PMC - PubMed
  41.  
    1. Karim ME, Pellegrini F, Platt RW, Simoneau G, Rouette J, de Moor C. The use and quality of reporting of propensity score methods in multiple sclerosis literature: A review. Mult Scler J. 2020;1–7. - PubMed
  42.  
    1. Seeger JD, Bykov K, Bartels DB, Huybrechts K, Schneeweiss S. Propensity Score Weighting Compared to Matching in a Study of Dabigatran and Warfarin. Drug Saf. 2017;40(2):169–181. - PubMed
  43.  
    1. Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9(1):48–55. - PMC - PubMed
  44.  
    1. Sormani MP, Bruzzi P. Can we measure long-term treatment effects in multiple sclerosis? Nat Rev Neurol. 2014;11(3):176–182. - PubMed
  45.  
    1. Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28(1):54–59. - PMC - PubMed
  46.  
    1. Robins JM, Hernán MÁ, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–560. - PubMed
  47.  
    1. Karim ME, Gustafson P, Petkau J, Zhao Y, Shirani A, Kingwell E, et al. Marginal structural cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort. Am J Epidemiol. 2014;180(2):160–171. - PMC - PubMed
  48.  
    1. Kalincik T, Diouf I, Sharmin S, Malpas C, Spelman T, Horakova D, et al. Effect of Disease-Modifying Therapy on Disability in Relapsing-Remitting Multiple Sclerosis Over 15 Years. Neurology [Internet]. 2021 Feb 2;96(5):e783 LP-e797. Available from: http://n.neurology.org/content/96/5/e783.abstract - PMC - PubMed
  49.  
    1. Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(7):1863–1874. - PubMed
  50.  
    1. Bovis F, Signori A, Carmisciano L, Maietta I, Steinerman JR, Li T, et al. Expanded disability status scale progression assessment heterogeneity in multiple sclerosis according to geographical areas. Ann Neurol. 2018;84(4):621–625. - PubMed