Pharmacokinetic Characterisation and Comparison of Bioavailability of Intranasal Fentanyl, Transmucosal, and Intravenous Administration through a Three-Way Crossover Study in 24 Healthy Volunteers

Affiliations


Abstract

Background: For more than 60 years, the synthetic opioid fentanyl has been widely used in anaesthesia and analgesia. While the intravenous formulation is primarily used for general anaesthesia and intensive care settings, the drug's high lipophilic properties also allow various noninvasive routes of administration. Published data suggest that intranasal administration is also attractive for use as intranasal patient-controlled analgesia (PCA). A newly developed intranasal fentanyl formulation containing 47 μg fentanyl, intravenous fentanyl, and oral transmucosal fentanyl citrate were characterised, and bioavailability was compared to assess the suitability of the intranasal formulation for an intranasal PCA product.

Methods: 27 healthy volunteers were enrolled in a single-centre, open-label, randomised (order of treatments), single-dose study in a three-period crossover design. The pharmacokinetics of one intranasal puff of fentanyl formulation (47 μg, 140 mL per puff), one short intravenous infusion of 50 μg fentanyl, and one lozenge with an integrated applicator (200 μg fentanyl) were studied, and bioavailability was calculated. Blood samples were collected over 12 hours, and plasma concentrations of fentanyl were determined by HPLC with MS/MS detection.

Results: 24 volunteers completed the study. The geometric mean of AUC0-tlast was the highest with oral transmucosal administration (1106 h pg/ml, CV% = 32.86), followed by intravenous (672 h pg/ml, CV% = 32.18) and intranasal administration (515 h pg/ml, CV% = 30.10). C max was 886 pg/ml (CV% = 59.38) for intravenous, 338 pg/ml (CV% = 45.61) for intranasal, and 310 pg/ml (CV% = 29.58) for oral transmucosal administration. t max was shortest for intravenous administration (0.06 h, SD = 0.056), followed by intranasal (0.21 h, SD = 0.078) and oral transmucosal administration (1.20 h, SD = 0.763). Dose-adjusted absolute bioavailability was determined to be 74.70% for the intranasal formulation and 41.25% for the oral transmucosal product. In total, 38 adverse events (AEs) occurred. Fourteen AEs were potentially related to the investigational items. No serious AE occurred.

Conclusion: Pharmacokinetic parameters and bioavailability of the investigated intranasal fentanyl indicated suitability for its intended use as an intranasal PCA option.

Conflict of interest statement

SNH and LE are co-inventors of the aforementioned intranasal PCA device under development. The other co-authors do not have anything to declare.


Figures


Similar articles

Relative bioavailability of the fentanyl effervescent buccal tablet (FEBT) 1,080 pg versus oral transmucosal fentanyl citrate 1,600 pg and dose proportionality of FEBT 270 to 1,300 microg: a single-dose, randomized, open-label, three-period study in healthy adult volunteers.

Darwish M, Tempero K, Kirby M, Thompson J.Clin Ther. 2006 May;28(5):715-24. doi: 10.1016/j.clinthera.2006.05.016.PMID: 16861093 Clinical Trial.

Single-dose pharmacokinetics of fentanyl sublingual spray and oral transmucosal fentanyl citrate in healthy volunteers: a randomized crossover study.

Parikh N, Goskonda V, Chavan A, Dillaha L.Clin Ther. 2013 Mar;35(3):236-43. doi: 10.1016/j.clinthera.2013.02.017.PMID: 23497761 Clinical Trial.

Faster absorption and higher systemic bioavailability of intranasal fentanyl spray compared to oral transmucosal fentanyl citrate in healthy subjects.

Nave R, Schmitt H, Popper L.Drug Deliv. 2013 Jun-Jul;20(5):216-23. doi: 10.3109/10717544.2012.762435. Epub 2013 May 8.PMID: 23650968 Clinical Trial.

Opioids for the management of breakthrough pain in cancer patients.

Zeppetella G, Davies AN.Cochrane Database Syst Rev. 2013 Oct 21;(10):CD004311. doi: 10.1002/14651858.CD004311.pub3.PMID: 24142465 Updated. Review.

Pharmacokinetics of non-intravenous formulations of fentanyl.

Lötsch J, Walter C, Parnham MJ, Oertel BG, Geisslinger G.Clin Pharmacokinet. 2013 Jan;52(1):23-36. doi: 10.1007/s40262-012-0016-7.PMID: 23100195 Review.


Cited by

Effect of Intranasal Dexamethasone on the Incidence of Nausea and Vomiting After Adult Strabismus Surgery.

Shetabi H, Koohi H.Anesth Pain Med. 2022 Nov 8;12(4):e130452. doi: 10.5812/aapm-130452. eCollection 2022 Aug.PMID: 36937086 Free PMC article.

Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method.

Mangoni AA, Ceruti T, Frapolli R, Russo M, Fichera S, Zucchetti M, Tommasi S.Molecules. 2022 Feb 2;27(3):1017. doi: 10.3390/molecules27031017.PMID: 35164277 Free PMC article.


KMEL References


References

  1.  
    1. Stanley T. H. The history and development of the fentanyl series. Journal of Pain and Symptom Management . 1992;7(3):S3–S7. doi: 10.1016/0885-3924(92)90047-l. - DOI - PubMed
  2.  
    1. Mather L. E. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clinical Pharmacokinetics . 1983;8(5):422–446. doi: 10.2165/00003088-198308050-00004. - DOI - PubMed
  3.  
    1. Tateishi T., Krivoruk Y., Ueng Y.-F., Wood A. J. J., Guengerich F. P., Wood M. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesthesia & Analgesia . 1996;82(1):167–172. doi: 10.1213/00000539-199601000-00031. - DOI - PubMed
  4.  
    1. Labroo R. B., Paine M. F., Thummel K. E., Kharasch E. D. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metabolism and Disposition: The Biological Fate of Chemicals . 1997;25:1072–1080. - PubMed
  5.  
    1. Goromaru T., Matsuura H., Yoshimura N., et al. Identification and quantitative determination of fentanyl metabolites in patients by gas chromatography-mass spectrometry. Anesthesiology . 1984;61(1):73–77. doi: 10.1097/00000542-198407000-00013. - DOI - PubMed
  6.  
    1. Smith H. S. Opioid metabolism. Mayo Clinic Proceedings . 2009;84(7):613–624. doi: 10.4065/84.7.613. - DOI - PMC - PubMed
  7.  
    1. Ziesenitz V. C., König S. K., Mahlke N. S., Skopp G., Haefeli W. E., Mikus G. Pharmacokinetic interaction of intravenous fentanyl with ketoconazole. The Journal of Clinical Pharmacology . 2015;55(6):708–717. doi: 10.1002/jcph.469. - DOI - PubMed
  8.  
    1. Armenian P., Vo K. T., Barr-Walker J., Lynch K. L. Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology . 2018;134:121–132. doi: 10.1016/j.neuropharm.2017.10.016. - DOI - PubMed
  9.  
    1. Panagiotou I., Mystakidou K. Intranasal fentanyl: from pharmacokinetics and bioavailability to current treatment applications. Expert Review of Anticancer Therapy . 2010;10(7):1009–1021. doi: 10.1586/era.10.77. - DOI - PubMed
  10.  
    1. Viscusi E. R., Reynolds L., Tait S., Melson T., Atkinson L. E. An iontophoretic fentanyl patient-activated analgesic delivery system for postoperative pain: a double-blind, placebo-controlled trial. Anesthesia & Analgesia . 2006;102(1):188–194. doi: 10.1213/01.ane.0000183649.58483.77. - DOI - PubMed
  11.  
    1. Jeal W., Benfield P. Transdermal fentanyl. Drugs . 1997;53(1):109–138. doi: 10.2165/00003495-199753010-00011. - DOI - PubMed
  12.  
    1. Elsner F., Zeppetella G., Porta-Sales J., Tagarro I. Newer generation fentanyl transmucosal products for breakthrough pain in opioid-tolerant cancer patients. Clinical Drug Investigation . 2011;31(9):605–618. doi: 10.2165/11592910-000000000-00000. - DOI - PubMed
  13.  
    1. Lim S. C., Paech M. J., Sunderland V. B., Roberts M. J., Banks S. L., Rucklidge M. W. Pharmacokinetics of nasal fentanyl. Journal of Pharmacy Practice and Research . 2003;33(1):59–64. doi: 10.1002/jppr200333159. - DOI
  14.  
    1. Watts P., Smith A., Perelman M. Nasal delivery of fentanyl. Drug Delivery and Translational Research . 2013;3(1):75–83. doi: 10.1007/s13346-012-0078-y. - DOI - PubMed
  15.  
    1. Foster D., Upton R., Christrup L., Popper L. Pharmacokinetics and pharmacodynamics of intranasal versus intravenous fentanyl in patients with pain after oral surgery. The Annals of Pharmacotherapy . 2008;42(10):1380–1387. doi: 10.1345/aph.1l168. - DOI - PubMed
  16.  
    1. Striebel H. W., Krämer J., Luhmann I., Rohierse-Hohler I., Rieger A. Pharmakokinetische Studie zur intranasalen Gabe von Fentanyl. Schmerz, Der . 1993;7(2):122–125. doi: 10.1007/bf02527870. - DOI - PubMed
  17.  
    1. Fisher A., Watling M., Smith A., Knight A. Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100-800 µg in healthy volunteers. International Journal of Clinical Pharmacology and Therapeutics . 2010;48(12):860–867. doi: 10.5414/cpp48860. - DOI - PubMed
  18.  
    1. Lötsch J., Walter C., Parnham M. J., Oertel B. G., Geisslinger G. Pharmacokinetics of non-intravenous formulations of fentanyl. Clinical Pharmacokinetics . 2013;52:23–36. doi: 10.1007/s40262-012-0016-7. - DOI - PubMed
  19.  
    1. McNicol E. D., Ferguson M. C., Hudcova J. The Cochrane Collaboration . Chichester, UK: John Wiley & Sons, Ltd; 2015. Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain. - DOI - PMC - PubMed
  20.  
    1. Nardi-Hiebl S., Meuser T., Geldner G., Schneider J., Koch T., Chappell Eberhart L. H. Quo vadis OPS 8-919? Eine Analyse der Kodierungen und die Bedeutung für den klinischen Alltag. Pain Therapy . 2021;62:146–156. doi: 10.19224/ai2021.146. - DOI
  21.  
    1. Eberhart L., Nardi-Hiebl S., Kubitz N., Koch T., Grond S., Schreder H. Prozesskostenanalyse in der postoperativen Schmerztherapie—vergleich der iv PCA mit einem nicht-invasiven, iontophoretischen, patientenaktivierten, transdermalen System (iPATS) Anästhesiologie & Intensivmedizin . 2009;50:p. 677.
  22.  
    1. Thomas Meuser M. D., Stefan Nardi-Hiebl Ms, Leopold Eberhart M. D., Matthias Paul M. D., Böttger R., Jörg Reutershan M. D. Staff time requirements for postoperative pain management: comparison of sufentanil sublingual tablet system and intravenous patient-controlled analgesia. Journal of Opioid Management . 2020;16:33–39. - PubMed
  23.  
    1. Jove M., Griffin D. W., Minkowitz H. S., Ben-David B., Evashenk M. A., Palmer P. P. Sufentanil sublingual tablet system for the management of postoperative pain after knee or hip arthroplasty. Anesthesiology . 2015;123(2):434–443. doi: 10.1097/aln.0000000000000746. - DOI - PubMed
  24.  
    1. Striebel H. W., Olmann T., Spies C., Brummer G. Patient-controlled intranasal analgesia (PCINA) for the management of postoperative pain: a pilot study. Journal of Clinical Anesthesia . 1996;8(1):4–8. doi: 10.1016/0952-8180(95)00167-0. - DOI - PubMed
  25.  
    1. Toussaint S., Maidl J., Schwagmeier R., Striebel H. W. Patient-controlled intranasal analgesia: effective alternative to intravenous PCA for postoperative pain relief. Canadian Journal of Anesthesia/Journal canadien d’anesthésie . 2000;47(4):299–302. doi: 10.1007/bf03020941. - DOI - PubMed
  26.  
    1. Schwagmeier R., Oelmann T., Dannappel T., Striebel H. W. Patientenakzeptanz gegenber der patientenkontrollierten intranasalen Analgesie (PCINA) Anaesthesist, Der . 1996;45(3):231–234. doi: 10.1007/s001010050257. - DOI - PubMed
  27.  
    1. Eberhart L., Jackl I., Nardi-Hiebl S. Nasal Applicator . 2015. US9033939B2.
  28.  
    1. State Chamber of Physicians of Thuringia. Germany. Reference ZIE/1045/06/111. Protocol registration number 05ct148fe n.d.
  29.  
    1. European Union Drug Regulating Authorities Clinical Trials Database. Nr. 003034-17 n.d.
  30.  
    1. Streisand J. B., Busch M. A., Egan T. D., Smith B. G., Gay M., Pace N. L. Dose proportionality and pharmacokinetics of oral transmucosal fentanyl citrate. Anesthesiology . 1998;88(2):305–309. doi: 10.1097/00000542-199802000-00006. - DOI - PubMed
  31.  
    1. Veldhorst-Janssen N. M. L., Fiddelers A. A. A., van der Kuy P.-H. M., et al. Pharmacokinetics, analgesic effect, and tolerability of a single preprocedural dose of intranasal fentanyl in patients undergoing drain removal after breast reduction or augmentation surgery: a prospective, randomized, double-blind, placebo-controlled study. Clinical Therapeutics . 2010;32(7):1427–1436. doi: 10.1016/j.clinthera.2010.07.001. - DOI - PubMed
  32.  
    1. Kaasa S., Moksnes K., Nolte T., Lefebvre-Kuntz D., Popper L., Kress H. G. Pharmacokinetics of intranasal fentanyl spray in patients with cancer and breakthrough pain. Journal of opioid management . 2010;6:17–26. doi: 10.5055/jom.2010.0001. - DOI - PubMed
  33.  
    1. Moksnes K., Fredheim O. M., Klepstad P., et al. Early pharmacokinetics of nasal fentanyl: is there a significant arterio-venous difference? European Journal of Clinical Pharmacology . 2008;64(5):497–502. doi: 10.1007/s00228-007-0444-8. - DOI - PubMed
  34.  
    1. Duthie D. J. R., McLaren A. D., Nimmo W. S. Pharmacokinetics of fentanyl during constant rate I.V. infusion for the relief of pain after surgery. British Journal of Anaesthesia . 1986;58(9):950–956. doi: 10.1093/bja/58.9.950. - DOI - PubMed
  35.  
    1. McClain D. A., Hug C. C., Jr Intravenous fentanyl kinetics. Clinical Pharmacology & Therapeutics . 1980;28(1):106–114. doi: 10.1038/clpt.1980.138. - DOI - PubMed
  36.  
    1. Kuip E. J. M., Zandvliet M. L., Koolen S. L. W., Mathijssen R. H. J., van der Rijt C. C. D. A review of factors explaining variability in fentanyl pharmacokinetics; focus on implications for cancer patients. British Journal of Clinical Pharmacology . 2017;83(2):294–313. doi: 10.1111/bcp.13129. - DOI - PMC - PubMed
  37.  
    1. Mystakidou K., Katsouda E., Parpa E., Vlahos L., Tsiatas M. L. Oral transmucosal fentanyl citrate: overview of pharmacological and clinical characteristics. Drug Delivery . 2006;13(4):269–276. doi: 10.1080/10717540500394661. - DOI - PubMed
  38.  
    1. Janknegt R., van den Beuken M., Schiere S., et al. Rapid acting fentanyl formulations in breakthrough pain in cancer. Drug selection by means of the System of Objectified Judgement Analysis. The European Journal of Hospital Pharmacy: Science and Practice . 2018;25:p. e2. doi: 10.1136/ejhpharm-2016-001127. - DOI - PMC - PubMed
  39.  
    1. Paech M., Shelley K. The clinical applications of intranasal opioids. Current Drug Delivery . 2008;5(1):55–58. doi: 10.2174/156720108783330989. - DOI - PubMed
  40.  
    1. Dhuria S. V., Hanson L. R., Frey W. H. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. Journal of Pharmaceutical Sciences . 2010;99(4):1654–1673. doi: 10.1002/jps.21924. - DOI - PubMed
  41.  
    1. Vyas T., Shahiwala A., Marathe S., Misra A. Intranasal drug delivery for brain targeting. Current Drug Delivery . 2005;2(2):165–175. doi: 10.2174/1567201053586047. - DOI - PubMed
  42.  
    1. Minkowitz H. S. A review of sufentanil and the sufentanil sublingual tablet system for acute moderate to severe pain. Pain Management . 2015;5(4):237–250. doi: 10.2217/pmt.15.22. - DOI - PubMed
  43.  
    1. Striebel H. W., Koenigs D., Krämer J. Postoperative pain management by intranasal demand-adapted fentanyl titration. Anesthesiology . 1992;77(2):281–285. doi: 10.1097/00000542-199208000-00010. - DOI - PubMed
  44.  
    1. Striebel H. W., Pommerening J., Rieger A. Intranasal fentanyl titration for postoperative pain management in an unselected population. Anaesthesia . 1993;48(9):753–757. doi: 10.1111/j.1365-2044.1993.tb07583.x. - DOI - PubMed