Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia

Affiliations

01 June 2015

-

doi: 10.1084/jem.20141130


Abstract

Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient's fibroblasts stimulated by IL-1β or TNF. In contrast, the patient's monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient's B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells.


Figures


Similar articles

Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.

Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, Abhyankar A, Israël L, Trevejo-Nunez G, Bogunovic D, Cepika AM, MacDuff D, Chrabieh M, Hubeau M, Bajolle F, Debré M, Mazzolari E, Vairo D, Agou F, Virgin HW, Bossuyt X, Rambaud C, Facchetti F, Bonnet D, Quartier P, Fournet JC, Pascual V, Chaussabel D, Notarangelo LD, Puel A, Israël A, Casanova JL, Picard C.Nat Immunol. 2012 Dec;13(12):1178-86. doi: 10.1038/ni.2457. Epub 2012 Oct 28.PMID: 23104095 Free PMC article.

Second Case of HOIP Deficiency Expands Clinical Features and Defines Inflammatory Transcriptome Regulated by LUBAC.

Oda H, Beck DB, Kuehn HS, Sampaio Moura N, Hoffmann P, Ibarra M, Stoddard J, Tsai WL, Gutierrez-Cruz G, Gadina M, Rosenzweig SD, Kastner DL, Notarangelo LD, Aksentijevich I.Front Immunol. 2019 Mar 18;10:479. doi: 10.3389/fimmu.2019.00479. eCollection 2019.PMID: 30936877 Free PMC article.

Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation.

Bowman J, Rodgers MA, Shi M, Amatya R, Hostager B, Iwai K, Gao SJ, Jung JU.mBio. 2015 Nov 17;6(6):e01777-15. doi: 10.1128/mBio.01777-15.PMID: 26578682 Free PMC article.

An Update on Autoinflammatory Diseases: Relopathies.

Steiner A, Harapas CR, Masters SL, Davidson S.Curr Rheumatol Rep. 2018 May 30;20(7):39. doi: 10.1007/s11926-018-0749-x.PMID: 29846841 Review.

Linear ubiquitination-mediated NF-κB regulation and its related disorders.

Tokunaga F.J Biochem. 2013 Oct;154(4):313-23. doi: 10.1093/jb/mvt079. Epub 2013 Aug 21.PMID: 23969028 Review.


Cited by

RIPK1 in the inflammatory response and sepsis: Recent advances, drug discovery and beyond.

Liu X, Tang AL, Chen J, Gao N, Zhang G, Xiao C.Front Immunol. 2023 Apr 5;14:1114103. doi: 10.3389/fimmu.2023.1114103. eCollection 2023.PMID: 37090690 Free PMC article. Review.

RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis.

Zhang J, Tu H, Zheng Z, Zhao X, Lin X.Oncogene. 2023 May;42(19):1585-1596. doi: 10.1038/s41388-023-02669-8. Epub 2023 Mar 30.PMID: 36997719

Dendritic cells in inborn errors of immunity.

Gupta S, Agrawal A.Front Immunol. 2023 Jan 23;14:1080129. doi: 10.3389/fimmu.2023.1080129. eCollection 2023.PMID: 36756122 Free PMC article. Review.

Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections.

Chi X, Huang M, Tu H, Zhang B, Lin X, Xu H, Dong C, Hu X.Sci China Life Sci. 2023 Feb 3:1-36. doi: 10.1007/s11427-021-2187-3. Online ahead of print.PMID: 36738430 Free PMC article. Review.

Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children.

Du Y, Liu M, Nigrovic PA, Dedeoglu F, Lee PY.J Allergy Clin Immunol. 2023 Mar;151(3):607-618. doi: 10.1016/j.jaci.2022.12.816. Epub 2023 Jan 25.PMID: 36707349 Review.


KMEL References


References

  1.  
    1. Abecasis G.R., and Wigginton J.E.. 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am. J. Hum. Genet. 77:754–767. 10.1086/497345 - DOI - PMC - PubMed
  2.  
    1. Abecasis G.R., Cherny S.S., Cookson W.O., and Cardon L.R.. 2002. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30:97–101. 10.1038/ng786 - DOI - PubMed
  3.  
    1. Al-Herz W., Bousfiha A., Casanova J.L., Chatila T., Conley M.E., Cunningham-Rundles C., Etzioni A., Franco J.L., Gaspar H.B., Holland S.M., et al. . 2014. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5:162 10.3389/fimmu.2014.00162 - DOI - PMC - PubMed
  4.  
    1. Alitalo K. 2011. The lymphatic vasculature in disease. Nat. Med. 17:1371–1380. 10.1038/nm.2545 - DOI - PubMed
  5.  
    1. Allen R.C., Armitage R.J., Conley M.E., Rosenblatt H., Jenkins N.A., Copeland N.G., Bedell M.A., Edelhoff S., Disteche C.M., Simoneaux D.K., et al. . 1993. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 259:990–993. 10.1126/science.7679801 - DOI - PubMed
  6.  
    1. Alsina L., Israelsson E., Altman M.C., Dang K.K., Ghandil P., Israel L., von Bernuth H., Baldwin N., Qin H., Jin Z., et al. . 2014. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol. 15:1134–1142. 10.1038/ni.3028 - DOI - PMC - PubMed
  7.  
    1. Ashida N., Senbanerjee S., Kodama S., Foo S.Y., Coggins M., Spencer J.A., Zamiri P., Shen D., Li L., Sciuto T., et al. . 2011. IKKβ regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways. Nat. Commun. 2:318 10.1038/ncomms1317 - DOI - PMC - PubMed
  8.  
    1. Boisson B., and Casanova J.L.. 2014. LUBAC: A new function in immunity. J. Exp. Med. 211:1272 10.1084/jem.2117insight3 - DOI - PMC - PubMed
  9.  
    1. Boisson B., Laplantine E., Prando C., Giliani S., Israelsson E., Xu Z., Abhyankar A., Israël L., Trevejo-Nunez G., Bogunovic D., et al. . 2012. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13:1178–1186. 10.1038/ni.2457 - DOI - PMC - PubMed
  10.  
    1. Boisson B., Quartier P., and Casanova J.L.. 2015. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr. Opin. Immunol. 32:90–105. 10.1016/j.coi.2015.01.005 - DOI - PMC - PubMed
  11.  
    1. Bolze A., Byun M., McDonald D., Morgan N.V., Abhyankar A., Premkumar L., Puel A., Bacon C.M., Rieux-Laucat F., Pang K., et al. . 2010. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87:873–881. 10.1016/j.ajhg.2010.10.028 - DOI - PMC - PubMed
  12.  
    1. Byun M., Abhyankar A., Lelarge V., Plancoulaine S., Palanduz A., Telhan L., Boisson B., Picard C., Dewell S., Zhao C., et al. . 2010. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207:2307–2312. 10.1084/jem.20101597 - DOI - PMC - PubMed
  13.  
    1. Casanova J.L., Abel L., and Quintana-Murci L.. 2011. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29:447–491. 10.1146/annurev-immunol-030409-101335 - DOI - PubMed
  14.  
    1. Casanova J.L., Conley M.E., Seligman S.J., Abel L., and Notarangelo L.D.. 2014. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med. 211:2137–2149. 10.1084/jem.20140520 - DOI - PMC - PubMed
  15.  
    1. Conley M.E., and Casanova J.L.. 2014. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr. Opin. Immunol. 30:17–23. 10.1016/j.coi.2014.05.004 - DOI - PMC - PubMed
  16.  
    1. Courtois G., Smahi A., Reichenbach J., Döffinger R., Cancrini C., Bonnet M., Puel A., Chable-Bessia C., Yamaoka S., Feinberg J., et al. . 2003. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112:1108–1115. 10.1172/JCI18714 - DOI - PMC - PubMed
  17.  
    1. DiSanto J.P., Bonnefoy J.Y., Gauchat J.F., Fischer A., and de Saint Basile G.. 1993. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 361:541–543. 10.1038/361541a0 - DOI - PubMed
  18.  
    1. Döffinger R., Smahi A., Bessia C., Geissmann F., Feinberg J., Durandy A., Bodemer C., Kenwrick S., Dupuis-Girod S., Blanche S., et al. . 2001. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat. Genet. 27:277–285. 10.1038/85837 - DOI - PubMed
  19.  
    1. Dubois S.M., Alexia C., Wu Y., Leclair H.M., Leveau C., Schol E., Fest T., Tarte K., Chen Z.J., Gavard J., and Bidère N.. 2014. A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells. Blood. 123:2199–2203. 10.1182/blood-2013-05-504019 - DOI - PubMed
  20.  
    1. Elliott P.R., Nielsen S.V., Marco-Casanova P., Fiil B.K., Keusekotten K., Mailand N., Freund S.M., Gyrd-Hansen M., and Komander D.. 2014. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell. 54:335–348. 10.1016/j.molcel.2014.03.018 - DOI - PMC - PubMed
  21.  
    1. Ferrari S., Giliani S., Insalaco A., Al-Ghonaium A., Soresina A.R., Loubser M., Avanzini M.A., Marconi M., Badolato R., Ugazio A.G., et al. . 2001. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA. 98:12614–12619. 10.1073/pnas.221456898 - DOI - PMC - PubMed
  22.  
    1. Fujita H., Rahighi S., Akita M., Kato R., Sasaki Y., Wakatsuki S., and Iwai K.. 2014. Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol. Cell. Biol. 34:1322–1335. 10.1128/MCB.01538-13 - DOI - PMC - PubMed
  23.  
    1. Fuss I.J., Strober W., Cuccherini B.A., Pearlstein G.R., Bossuyt X., Brown M., Fleisher T.A., and Horgan K.. 1998. Intestinal lymphangiectasia, a disease characterized by selective loss of naive CD45RA+ lymphocytes into the gastrointestinal tract. Eur. J. Immunol. 28:4275–4285. 10.1002/(SICI)1521-4141(199812)28:12<4275::AID-IMMU4275>3.0.CO;2-P - DOI - PubMed
  24.  
    1. Gerlach B., Cordier S.M., Schmukle A.C., Emmerich C.H., Rieser E., Haas T.L., Webb A.I., Rickard J.A., Anderton H., Wong W.W., et al. . 2011. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 471:591–596. 10.1038/nature09816 - DOI - PubMed
  25.  
    1. Haas T.L., Emmerich C.H., Gerlach B., Schmukle A.C., Cordier S.M., Rieser E., Feltham R., Vince J., Warnken U., Wenger T., et al. . 2009. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell. 36:831–844. 10.1016/j.molcel.2009.10.013 - DOI - PubMed
  26.  
    1. HogenEsch H., Gijbels M.J., Offerman E., van Hooft J., van Bekkum D.W., and Zurcher C.. 1993. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am. J. Pathol. 143:972–982. - PMC - PubMed
  27.  
    1. HogenEsch H., Janke S., Boggess D., and Sundberg J.P.. 1999. Absence of Peyer’s patches and abnormal lymphoid architecture in chronic proliferative dermatitis (cpdm/cpdm) mice. J. Immunol. 162:3890–3896. - PubMed
  28.  
    1. HogenEsch H., Torregrosa S.E., Boggess D., Sundberg B.A., Carroll J., and Sundberg J.P.. 2001. Increased expression of type 2 cytokines in chronic proliferative dermatitis (cpdm) mutant mice and resolution of inflammation following treatment with IL-12. Eur. J. Immunol. 31:734–742. 10.1002/1521-4141(200103)31:3<734::AID-IMMU734>3.0.CO;2-9 - DOI - PubMed
  29.  
    1. Hostager B.S., Fox D.K., Whitten D., Wilkerson C.G., Eipper B.A., Francone V.P., Rothman P.B., and Colgan J.D.. 2010. HOIL-1L interacting protein (HOIP) as an NF-kappaB regulating component of the CD40 signaling complex. PLoS ONE. 5:e11380 10.1371/journal.pone.0011380 - DOI - PMC - PubMed
  30.  
    1. Hostager B.S., Kashiwada M., Colgan J.D., and Rothman P.B.. 2011. HOIL-1L interacting protein (HOIP) is essential for CD40 signaling. PLoS ONE. 6:e23061 10.1371/journal.pone.0023061 - DOI - PMC - PubMed
  31.  
    1. Ikeda F., Deribe Y.L., Skånland S.S., Stieglitz B., Grabbe C., Franz-Wachtel M., van Wijk S.J., Goswami P., Nagy V., Terzic J., et al. . 2011. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature. 471:637–641. 10.1038/nature09814 - DOI - PMC - PubMed
  32.  
    1. Itan Y., Zhang S.Y., Vogt G., Abhyankar A., Herman M., Nitschke P., Fried D., Quintana-Murci L., Abel L., and Casanova J.L.. 2013. The human gene connectome as a map of short cuts for morbid allele discovery. Proc. Natl. Acad. Sci. USA. 110:5558–5563. 10.1073/pnas.1218167110 - DOI - PMC - PubMed
  33.  
    1. Iwai K., and Tokunaga F.. 2009. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep. 10:706–713. 10.1038/embor.2009.144 - DOI - PMC - PubMed
  34.  
    1. Kennedy M.K., Mohler K.M., Shanebeck K.D., Baum P.R., Picha K.S., Otten-Evans C.A., Janeway C.A. Jr, and Grabstein K.H.. 1994. Induction of B cell costimulatory function by recombinant murine CD40 ligand. Eur. J. Immunol. 24:116–123. 10.1002/eji.1830240118 - DOI - PubMed
  35.  
    1. Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., and Shendure J.. 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46:310–315. 10.1038/ng.2892 - DOI - PMC - PubMed
  36.  
    1. Kirisako T., Kamei K., Murata S., Kato M., Fukumoto H., Kanie M., Sano S., Tokunaga F., Tanaka K., and Iwai K.. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25:4877–4887. 10.1038/sj.emboj.7601360 - DOI - PMC - PubMed
  37.  
    1. Lee C.E., Fulcher D.A., Whittle B., Chand R., Fewings N., Field M., Andrews D., Goodnow C.C., and Cook M.C.. 2014. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood. 124:2964–2972. 10.1182/blood-2014-06-578542 - DOI - PMC - PubMed
  38.  
    1. Li H., and Durbin R.. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. 10.1093/bioinformatics/btp324 - DOI - PMC - PubMed
  39.  
    1. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., and Durbin R.. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25:2078–2079. 10.1093/bioinformatics/btp352 - DOI - PMC - PubMed
  40.  
    1. Liang Y., Seymour R.E., and Sundberg J.P.. 2011. Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol. 131:141–149. 10.1038/jid.2010.259 - DOI - PMC - PubMed
  41.  
    1. Lindsley A.W., Qian Y., Valencia C.A., Shah K., Zhang K., and Assa’ad A.. 2014. Combined immune deficiency in a patient with a novel NFKB2 mutation. J. Clin. Immunol. 34:910–915. 10.1007/s10875-014-0095-3 - DOI - PMC - PubMed
  42.  
    1. MacDuff D.A., Reese T.A., Kimmey J.M., Weiss L.A., Song C., Zhang X., Kambal A., Duan E., Carrero J.A., Boisson B., et al. . 2015. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. eLife. 4:e04494 10.7554/eLife.04494 - DOI - PMC - PubMed
  43.  
    1. Matsumoto M.L., Dong K.C., Yu C., Phu L., Gao X., Hannoush R.N., Hymowitz S.G., Kirkpatrick D.S., Dixit V.M., and Kelley R.F.. 2012. Engineering and structural characterization of a linear polyubiquitin-specific antibody. J. Mol. Biol. 418:134–144. - PubMed
  44.  
    1. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., and DePristo M.A.. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. 10.1101/gr.107524.110 - DOI - PMC - PubMed
  45.  
    1. Mousallem T., Yang J., Urban T.J., Wang H., Adeli M., Parrott R.E., Roberts J.L., Goldstein D.B., Buckley R.H., and Zhong X.P.. 2014. A nonsense mutation in IKBKB causes combined immunodeficiency. Blood. 124:2046–2050. 10.1182/blood-2014-04-571265 - DOI - PMC - PubMed
  46.  
    1. Nielsen C., Jakobsen M.A., Larsen M.J., Müller A.C., Hansen S., Lillevang S.T., Fisker N., and Barington T.. 2014. Immunodeficiency associated with a nonsense mutation of IKBKB. J. Clin. Immunol. 34:916–921. 10.1007/s10875-014-0097-1 - DOI - PubMed
  47.  
    1. Nilsson J., Schoser B., Laforet P., Kalev O., Lindberg C., Romero N.B., Dávila López M., Akman H.O., Wahbi K., Iglseder S., et al. . 2013. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann. Neurol. 74:914–919. 10.1002/ana.23963 - DOI - PubMed
  48.  
    1. Pannicke U., Baumann B., Fuchs S., Henneke P., Rensing-Ehl A., Rizzi M., Janda A., Hese K., Schlesier M., Holzmann K., et al. . 2013. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N. Engl. J. Med. 369:2504–2514. 10.1056/NEJMoa1309199 - DOI - PubMed
  49.  
    1. Peltzer N., Rieser E., Taraborrelli L., Draber P., Darding M., Pernaute B., Shimizu Y., Sarr A., Draberova H., Montinaro A., et al. . 2014. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Reports. 9:153–165. 10.1016/j.celrep.2014.08.066 - DOI - PubMed
  50.  
    1. Picard C., Puel A., Bonnet M., Ku C.L., Bustamante J., Yang K., Soudais C., Dupuis S., Feinberg J., Fieschi C., et al. . 2003. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 299:2076–2079. 10.1126/science.1081902 - DOI - PubMed
  51.  
    1. Picard C., von Bernuth H., Ghandil P., Chrabieh M., Levy O., Arkwright P.D., McDonald D., Geha R.S., Takada H., Krause J.C., et al. . 2010. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 89:403–425. 10.1097/MD.0b013e3181fd8ec3 - DOI - PMC - PubMed
  52.  
    1. Picard C., Casanova J.L., and Puel A.. 2011. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24:490–497. 10.1128/CMR.00001-11 - DOI - PMC - PubMed
  53.  
    1. Popovic D., Vucic D., and Dikic I.. 2014. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20:1242–1253. 10.1038/nm.3739 - DOI - PubMed
  54.  
    1. Puel A., Picard C., Ku C.L., Smahi A., and Casanova J.L.. 2004. Inherited disorders of NF-kappaB-mediated immunity in man. Curr. Opin. Immunol. 16:34–41. 10.1016/j.coi.2003.11.013 - DOI - PubMed
  55.  
    1. Recher M., Berglund L.J., Avery D.T., Cowan M.J., Gennery A.R., Smart J., Peake J., Wong M., Pai S.Y., Baxi S., et al. . 2011. IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood. 118:6824–6835. 10.1182/blood-2011-06-362533 - DOI - PMC - PubMed
  56.  
    1. Rodgers M.A., Bowman J.W., Fujita H., Orazio N., Shi M., Liang Q., Amatya R., Kelly T.J., Iwai K., Ting J., and Jung J.U.. 2014. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 211:1333–1347. 10.1084/jem.20132486 - DOI - PMC - PubMed
  57.  
    1. Sasaki Y., Sano S., Nakahara M., Murata S., Kometani K., Aiba Y., Sakamoto S., Watanabe Y., Tanaka K., Kurosaki T., and Iwai K.. 2013. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 32:2463–2476. 10.1038/emboj.2013.184 - DOI - PMC - PubMed
  58.  
    1. Schaeffer V., Akutsu M., Olma M.H., Gomes L.C., Kawasaki M., and Dikic I.. 2014. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell. 54:349–361. 10.1016/j.molcel.2014.03.016 - DOI - PubMed
  59.  
    1. Seymour R.E., Hasham M.G., Cox G.A., Shultz L.D., Hogenesch H., Roopenian D.C., and Sundberg J.P.. 2007. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8:416–421. 10.1038/sj.gene.6364403 - DOI - PubMed
  60.  
    1. Smahi A., Courtois G., Vabres P., Yamaoka S., Heuertz S., Munnich A., Israël A., Heiss N.S., Klauck S.M., Kioschis P., et al. . The International Incontinentia Pigmenti (IP) Consortium. 2000. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. Nature. 405:466–472. 10.1038/35013114 - DOI - PubMed
  61.  
    1. Smit J.J., Monteferrario D., Noordermeer S.M., van Dijk W.J., van der Reijden B.A., and Sixma T.K.. 2012. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31:3833–3844. 10.1038/emboj.2012.217 - DOI - PMC - PubMed
  62.  
    1. Stieglitz B., Rana R.R., Koliopoulos M.G., Morris-Davies A.C., Schaeffer V., Christodoulou E., Howell S., Brown N.R., Dikic I., and Rittinger K.. 2013. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature. 503:422–426. 10.1038/nature12638 - DOI - PMC - PubMed
  63.  
    1. Tarantino N., Tinevez J.Y., Crowell E.F., Boisson B., Henriques R., Mhlanga M., Agou F., Israël A., and Laplantine E.. 2014. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J. Cell Biol. 204:231–245. 10.1083/jcb.201307172 - DOI - PMC - PubMed
  64.  
    1. Tokunaga F., Sakata S., Saeki Y., Satomi Y., Kirisako T., Kamei K., Nakagawa T., Kato M., Murata S., Yamaoka S., et al. . 2009. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11:123–132. 10.1038/ncb1821 - DOI - PubMed
  65.  
    1. Tokunaga F., Nakagawa T., Nakahara M., Saeki Y., Taniguchi M., Sakata S., Tanaka K., Nakano H., and Iwai K.. 2011. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature. 471:633–636. 10.1038/nature09815 - DOI - PubMed
  66.  
    1. von Bernuth H., Picard C., Jin Z., Pankla R., Xiao H., Ku C.L., Chrabieh M., Mustapha I.B., Ghandil P., Camcioglu Y., et al. . 2008. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 321:691–696. 10.1126/science.1158298 - DOI - PMC - PubMed
  67.  
    1. Wang K., Kim C., Bradfield J., Guo Y., Toskala E., Otieno F.G., Hou C., Thomas K., Cardinale C., Lyon G.J., et al. . 2013. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 5:67 10.1186/gm471 - DOI - PMC - PubMed
  68.  
    1. Willmann K.L., Klaver S., Doğu F., Santos-Valente E., Garncarz W., Bilic I., Mace E., Salzer E., Conde C.D., Sic H., et al. . 2014. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat. Commun. 5:5360 10.1038/ncomms6360 - DOI - PMC - PubMed
  69.  
    1. Zak D.E., Schmitz F., Gold E.S., Diercks A.H., Peschon J.J., Valvo J.S., Niemistö A., Podolsky I., Fallen S.G., Suen R., et al. . 2011. Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc. Natl. Acad. Sci. USA. 108:11536–11541. 10.1073/pnas.1107577108 - DOI - PMC - PubMed