Rubella Virus Infected Macrophages and Neutrophils Define Patterns of Granulomatous Inflammation in Inborn and Acquired Errors of Immunity

Affiliations

20 December 2021

-

doi: 10.3389/fimmu.2021.796065


Abstract

Rubella virus (RuV) has recently been found in association with granulomatous inflammation of the skin and several internal organs in patients with inborn errors of immunity (IEI). The cellular tropism and molecular mechanisms of RuV persistence and pathogenesis in select immunocompromised hosts are not clear. We provide clinical, immunological, virological, and histological data on a cohort of 28 patients with a broad spectrum of IEI and RuV-associated granulomas in skin and nine extracutaneous tissues to further delineate this relationship. Combined immunodeficiency was the most frequent diagnosis (67.8%) among patients. Patients with previously undocumented conditions, i.e., humoral immunodeficiencies, a secondary immunodeficiency, and a defect of innate immunity were identified as being susceptible to RuV-associated granulomas. Hematopoietic cell transplantation was the most successful treatment in this case series resulting in granuloma resolution; steroids, and TNF-α and IL-1R inhibitors were moderately effective. In addition to M2 macrophages, neutrophils were identified by immunohistochemical analysis as a novel cell type infected with RuV. Four patterns of RuV-associated granulomatous inflammation were classified based on the structural organization of granulomas and identity and location of cell types harboring RuV antigen. Identification of conditions that increase susceptibility to RuV-associated granulomas combined with structural characterization of the granulomas may lead to a better understanding of the pathogenesis of RuV-associated granulomas and discover new targets for therapeutic interventions.

Keywords: granuloma treatments; granulomatous inflammation; inborn errors of immunity; macrophages; neutrophils; primary immunodeficiency; skin lesion; vaccine-derived rubella viruses.

Conflict of interest statement

MA is employed by Sidra Medicine and Hamad Medical Corporation, Qatar. HB is employed by Labor Berlin GmbH, Germany. JH received grants from Immune Deficiency Foundation, the US immunodeficiency network, Chao-physician Scientist award, the Texas Medical Center Digestive Diseases Center and the Jeffrey Modell Foundation. JH received honorarium, consultation fees from Horizon, Pharming, Baxalta, CSL Behring, the National guard, and Al-Faisal University Hospital. TPA received consultation fees from Horizon, Pharming, CSL Behring. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
 


Figures


Similar articles

Rubella virus-associated chronic inflammation in primary immunodeficiency diseases.

Perelygina L, Icenogle J, Sullivan KE.Curr Opin Allergy Clin Immunol. 2020 Dec;20(6):574-581. doi: 10.1097/ACI.0000000000000694.PMID: 33044342 Free PMC article. Review.

Association of Persistent Rubella Virus With Idiopathic Skin Granulomas in Clinically Immunocompetent Adults.

Wanat KA, Perelygina L, Chen MH, Hao L, Abernathy E, Bender NR, Shields BE, Wilson BD, Crosby D, Routes J, Samimi SS, Haun PL, Sokumbi O, Icenogle JP, Sullivan KE, Rosenbach M, Drolet BA.JAMA Dermatol. 2022 Jun 1;158(6):626-633. doi: 10.1001/jamadermatol.2022.0828.PMID: 35338705 Free PMC article.

Cutaneous Granulomas Associated with Rubella Virus: A Clinical Review.

Zhang D, Wanat KA, Perelygina L, Rosenbach M, Haun PL, Drolet BA, Shields BE.J Am Acad Dermatol. 2023 Jun 2:S0190-9622(23)00998-2. doi: 10.1016/j.jaad.2023.05.058. Online ahead of print.PMID: 37271455 Review.

Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders.

Buchbinder D, Hauck F, Albert MH, Rack A, Bakhtiar S, Shcherbina A, Deripapa E, Sullivan KE, Perelygina L, Eloit M, Neven B, Pérot P, Moshous D, Suarez F, Bodemer C, Bonilla FA, Vaz LE, Krol AL, Klein C, Seppanen M, Nugent DJ, Singh J, Ochs HD.J Clin Immunol. 2019 Jan;39(1):81-89. doi: 10.1007/s10875-018-0581-0. Epub 2019 Jan 3.PMID: 30607663 Free PMC article.

Granulomatous Dermatitis Associated With Rubella Virus Infection in an Adult With Immunodeficiency.

Shields BE, Perelygina L, Samimi S, Haun P, Leung T, Abernathy E, Chen MH, Hao L, Icenogle J, Drolet B, Wilson B, Bryer JS, England R, Blumberg E, Wanat KA, Sullivan K, Rosenbach M.JAMA Dermatol. 2021 Jul 1;157(7):842-847. doi: 10.1001/jamadermatol.2021.1577.PMID: 34037685 Free PMC article.


Cited by

Case report: Rubella virus-induced cutaneous granulomas in a girl with atypical SCID caused by DCLRE1C gene mutations.

Deng S, Rao S, Wang AR, Shi W.Front Genet. 2023 Mar 16;14:1115027. doi: 10.3389/fgene.2023.1115027. eCollection 2023.PMID: 37007969 Free PMC article.

Granulomatous inflammation in inborn errors of immunity.

Sacco KA, Gazzin A, Notarangelo LD, Delmonte OM.Front Pediatr. 2023 Feb 20;11:1110115. doi: 10.3389/fped.2023.1110115. eCollection 2023.PMID: 36891233 Free PMC article. Review.

Refractory, fatal autoimmune hemolytic anemia due to ineffective thymic-derived T-cell reconstitution following allogeneic hematopoietic cell transplantation for hypomorphic RAG1 deficiency.

Yonkof JR, Basu A, Redmond MT, Dobbs AK, Perelygina L, Notarangelo LD, Abraham RS, Rangarajan HG.Pediatr Blood Cancer. 2023 May;70(5):e30183. doi: 10.1002/pbc.30183. Epub 2022 Dec 30.PMID: 36583469 No abstract available.

Case report: Persistent shedding of a live vaccine-derived rubella virus in a young man with severe combined immunodeficiency and cutaneous granuloma.

Bonner KE, Sukerman E, Liko J, Lanzieri TM, Sutton M, DeBess E, Leesman C, Icenogle J, Hao L, Chen MH, Faisthalab R, Leman RF, Cieslak PR, DeRavin SS, Perelygina L.Front Immunol. 2022 Dec 8;13:1075351. doi: 10.3389/fimmu.2022.1075351. eCollection 2022.PMID: 36569925 Free PMC article.

Metagenomic sequencing of the bronchoalveolar lavage extracellular virome and cellular transcriptome of sarcoidosis patients does not detect rubella virus.

Keeler EL, Vukmirovic M, Yan X, Gulino K, Ghedin E, Kaminski N, Sullivan KE, Bushman FD, Collman RG, Rosenbach M.Sarcoidosis Vasc Diffuse Lung Dis. 2022 Dec 19;39(4):e2022040. doi: 10.36141/svdld.v39i4.13407.PMID: 36533601 Free PMC article.


KMEL References


References

  1.  
    1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. . Human Inborn Errors of Immunity: 2019 Update on the Classification From the International Union of Immunological Societies Expert Committee. J Clin Immunol (2020) 40(1):24–64. doi: 10.1007/s10875-019-00737-x - DOI - PMC - PubMed
  2.  
    1. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. . The Ever-Increasing Array of Novel Inborn Errors of Immunity: An Interim Update by the IUIS Committee. J Clin Immunol (2021) 41(3):666–79. doi: 10.1007/s10875-021-00980-1 - DOI - PMC - PubMed
  3.  
    1. Pagan AJ, Ramakrishnan L. The Formation and Function of Granulomas. Annu Rev Immunol (2018) 36:639–65. doi: 10.1146/annurev-immunol-032712-100022 - DOI - PubMed
  4.  
    1. Leung J, Sullivan KE, Perelygina L, Icenogle JP, Fuleihan RL, Lanzieri TM. Prevalence of Granulomas in Patients With Primary Immunodeficiency Disorders, United States: Data From National Health Care Claims and the US Immunodeficiency Network Registry. J Clin Immunol (2018) 38(6):717–26. doi: 10.1007/s10875-018-0534-7 - DOI - PMC - PubMed
  5.  
    1. Lehman H. Skin Manifestations of Primary Immune Deficiency. Clin Rev Allergy Immunol (2014) 46(2):112–9. doi: 10.1007/s12016-013-8377-8 - DOI - PubMed
  6.  
    1. Plotkin S, Reef S, Cooper L, Alford CA, J. R, Klein J, et al. . "Rubella," in Infectious Diseases of the Fetus and Newborn Infant. Philadelphia, PA: Elsveier; (2011) p. 861–98.
  7.  
    1. Rawls WE. Viral Persistence in Congenital Rubella. Prog Med Virol (1974) 18:273–88. - PubMed
  8.  
    1. Webster WS. Teratogen Update: Congenital Rubella. Teratology (1998) 58(1):13–23. doi: 10.1002/(SICI)1096-9926(199807)58:1<13::AID-TERA5>3.0.CO;2-2[pii]10.1002/(SICI)1096-9926(199807)58:1<13::AID-TERA5>3.0.CO;2-2 - DOI - PubMed
  9.  
    1. Nguyen TV, Pham VH, Abe K. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis. EBioMedicine (2015) 2(1):59–63. doi: 10.1016/j.ebiom.2014.10.021 - DOI - PMC - PubMed
  10.  
    1. Lazar M, Perelygina L, Martines R, Greer P, Paddock CD, Peltecu G, et al. . Immunolocalization and Distribution of Rubella Antigen in Fatal Congenital Rubella Syndrome. EBioMedicine (2016) 3:86–92. doi: 10.1016/j.ebiom.2015.11.050 - DOI - PMC - PubMed
  11.  
    1. Sherman FE, Michaels RH, Kenny FM. Acute Encephalopathy (Encephalitis) Complicating Rubella. Report of Cases With Virologic Studies, Cortisol-Production Determinations, and Observations at Autopsy. JAMA (1965) 192:675–81. doi: 10.1001/jama.1965.03080210019005 - DOI - PubMed
  12.  
    1. Tingle AJ, Allen M, Petty RE, Kettyls GD, Chantler JK. Rubella-Associated Arthritis. I. Comparative Study of Joint Manifestations Associated With Natural Rubella Infection and RA 27/3 Rubella Immunisation. Ann Rheum Dis (1986) 45(2):110–4. doi: 10.1136/ard.45.2.110 - DOI - PMC - PubMed
  13.  
    1. Abernathy E, Peairs RR, Chen MH, Icenogle J, Namdari H. Genomic Characterization of a Persistent Rubella Virus From a Case of Fuch’ Uveitis Syndrome in a 73 Year Old Man. J Clin Virol (2015) 69:104–9. doi: 10.1016/j.jcv.2015.06.084 - DOI - PMC - PubMed
  14.  
    1. Kreps EO, Derveaux T, De Keyser F, Kestelyn P. Fuchs’ Uveitis Syndrome: No Longer a Syndrome? Ocul Immunol Inflammation (2015) 24:1–10. doi: 10.3109/09273948.2015.1005239 - DOI - PubMed
  15.  
    1. Bodemer C, Sauvage V, Mahlaoui N, Cheval J, Couderc T, Leclerc-Mercier S, et al. . Live Rubella Virus Vaccine Long-Term Persistence as an Antigenic Trigger of Cutaneous Granulomas in Patients With Primary Immunodeficiency. Clin Microbiol Infect (2014) 20(10):O656–663. doi: 10.1111/1469-0691.12573 - DOI - PubMed
  16.  
    1. Perelygina L, Plotkin S, Russo P, Hautala T, Bonilla F, Ochs HD, et al. . Rubella Persistence in Epidermal Keratinocytes and Granuloma M2 Macrophages in Patients With Primary Immunodeficiencies. J Allergy Clin Immunol (2016) 138 1436-1439(5):e1411. doi: 10.1016/j.jaci.2016.06.030 - DOI - PMC - PubMed
  17.  
    1. Neven B, Perot P, Bruneau J, Pasquet M, Ramirez M, Diana JS, et al. . Cutaneous and Visceral Chronic Granulomatous Disease Triggered by a Rubella Virus Vaccine Strain in Children With Primary Immunodeficiencies. Clin Infect Dis (2017) 64(1):83–6. doi: 10.1093/cid/ciw675 - DOI - PubMed
  18.  
    1. Buchbinder D, Hauck F, Albert MH, Rack A, Bakhtiar S, Shcherbina A, et al. . Rubella Virus-Associated Cutaneous Granulomatous Disease: A Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. J Clin Immunol (2019) 39(1):81–9. doi: 10.1007/s10875-018-0581-0 - DOI - PMC - PubMed
  19.  
    1. Dhossche J, Johnson L, White K, Funk T, Leitenberger S, Perelygina L, et al. . Cutaneous Granulomatous Disease With Presence of Rubella Virus in Lesions. JAMA Dermatol (2019) 155(7):859–61. doi: 10.1001/jamadermatol.2019.0814 - DOI - PubMed
  20.  
    1. Perelygina L, Chen MH, Suppiah S, Adebayo A, Abernathy E, Dorsey M, et al. . Infectious Vaccine-Derived Rubella Viruses Emerge, Persist, and Evolve in Cutaneous Granulomas of Children With Primary Immunodeficiencies. PloS Pathog (2019) 15(10):e1008080. doi: 10.1371/journal.ppat.1008080 - DOI - PMC - PubMed
  21.  
    1. Shields BE, Perelygina L, Samimi S, Haun P, Leung T, Abernathy E, et al. . Granulomatous Dermatitis Associated With Rubella Virus Infection in an Adult With Immunodeficiency. JAMA Dermatol (2021) 15(7):842–7. doi: 10.1001/jamadermatol.2021.1577 - DOI - PMC - PubMed
  22.  
    1. Nanda A, Al-Herz W, Al-Sabah H, Al-Ajmi H. Noninfectious Cutaneous Granulomas in Primary Immunodeficiency Disorders: Report From a National Registry. Am J Dermatopathol (2014) 36(10):832–7. doi: 10.1097/DAD.0000000000000112 - DOI - PubMed
  23.  
    1. Leclerc-Mercier S, Moshous D, Neven B, Mahlaoui N, Martin L, Pellier I, et al. . Cutaneous Granulomas With Primary Immunodeficiency in Children: A Report of 17 New Patients and a Review of the Literature. J Eur Acad Dermatol Venereol (2019) 33(7):1412–20. doi: 10.1111/jdv.15568 - DOI - PubMed
  24.  
    1. Perelygina L, Icenogle J, Sullivan KE. Rubella Virus-Associated Chronic Inflammation in Primary Immunodeficiency Diseases. Curr Opin Allergy Clin Immunol (2020) 20(6):574–81. doi: 10.1097/ACI.0000000000000694 - DOI - PMC - PubMed
  25.  
    1. Gross M, Speckmann C, May A, Gajardo-Carrasco T, Wustrau K, Maier SL, et al. . Rubella Vaccine-Induced Granulomas are a Novel Phenotype With Incomplete Penetrance of Genetic Defects in Cytotoxicity. J Allergy Clin Immunol (2021). doi: 10.1016/j.jaci.2021.05.007 - DOI - PubMed
  26.  
    1. Ramakrishnan L. Revisiting the Role of the Granuloma in Tuberculosis. Nat Rev Immunol (2012) 12(5):352–66. doi: 10.1038/nri3211 - DOI - PubMed
  27.  
    1. Millar JA, Butler JR, Evans S, Mattila JT, Linderman JJ, Flynn JL, et al. . Spatial Organization and Recruitment of Non-Specific T Cells May Limit T Cell-Macrophage Interactions Within Mycobacterium Tuberculosis Granulomas. Front Immunol (2020) 11:613638. doi: 10.3389/fimmu.2020.613638 - DOI - PMC - PubMed
  28.  
    1. Group, C.T.F.P.S . The French National Registry of Primary Immunodeficiency Diseases. Clin Immunol (2010) 135(2):264–72. doi: 10.1016/j.clim.2010.02.021 - DOI - PubMed
  29.  
    1. Carneiro-Sampaio M, Moraes-Vasconcelos D, Kokron CM, Jacob CM, Toledo-Barros M, Dorna MB, et al. . Primary Immunodeficiency Diseases in Different Age Groups: A Report on 1,008 Cases From a Single Brazilian Reference Center. J Clin Immunol (2013) 33(4):716–24. doi: 10.1007/s10875-013-9865-6 - DOI - PubMed
  30.  
    1. Marschall K, Hoernes M, Bitzenhofer-Gruber M, Jandus P, Duppenthaler A, Wuillemin WA, et al. . The Swiss National Registry for Primary Immunodeficiencies: Report on the First 6 Years’ Activity From 2008 to 2014. Clin Exp Immunol (2015) 182(1):45–50. doi: 10.1111/cei.12661 - DOI - PMC - PubMed
  31.  
    1. Al-Herz W, Al-Ahmad M, Al-Khabaz A, Husain A, Sadek A, Othman Y. The Kuwait National Primary Immunodeficiency Registry 2004-2018. Front Immunol (2019) 10:1754. doi: 10.3389/fimmu.2019.01754 - DOI - PMC - PubMed
  32.  
    1. El-Helou SM, Biegner AK, Bode S, Ehl SR, Heeg M, Maccari ME, et al. . The German National Registry of Primary Immunodeficiencies, (2012-2017). Front Immunol (2019) 10:1272. doi: 10.3389/fimmu.2019.01272 - DOI - PMC - PubMed
  33.  
    1. Mukhina AA, Kuzmenko NB, Rodina YA, Kondratenko IV, Bologov AA, Latysheva TV, et al. . Primary Immunodeficiencies in Russia: Data From the National Registry. Front Immunol (2020) 11:1491. doi: 10.3389/fimmu.2020.01491 - DOI - PMC - PubMed
  34.  
    1. Weber ANR, Bittner Z, Liu X, Dang TM, Radsak MP, Brunner C. Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity. Front Immunol (2017) 8:1454. doi: 10.3389/fimmu.2017.01454 - DOI - PMC - PubMed
  35.  
    1. Olbrich P, Freeman AF. STAT1 and STAT3 Mutations: Important Lessons for Clinical Immunologists. Expert Rev Clin Immunol (2018) 14(12):1029–41. doi: 10.1080/1744666X.2018.1531704 - DOI - PubMed
  36.  
    1. Bourke CD, Berkley JA, Prendergast AJ. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol (2016) 37(6):386–98. doi: 10.1016/j.it.2016.04.003 - DOI - PMC - PubMed
  37.  
    1. Perelygina L, Buchbinder D, Dorsey MJ, Eloit M, Hauck F, Hautala T, et al. . Outcomes for Nitazoxanide Treatment in a Case Series of Patients With Primary Immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol (2019) 39(1):112–7. doi: 10.1007/s10875-019-0589-0 - DOI - PMC - PubMed
  38.  
    1. Zinkham WH, Medearis DN, Jr., Osborn JE. Blood and Bone-Marrow Findings in Congenital Rubella. J Pediatr (1967) 71(4):512–24. doi: 10.1016/S0022-3476(67)80101-X - DOI - PubMed
  39.  
    1. Young N, Harrison M, Moore J, Mortimer P, Humphries RK. Direct Demonstration of the Human Parvovirus in Erythroid Progenitor Cells Infected. vitro J Clin Invest (1984) 74(6):2024–32. doi: 10.1172/JCI111625 - DOI - PMC - PubMed
  40.  
    1. Rosenfeld SJ, Young NS. Viruses and Bone Marrow Failure. Blood Rev (1991) 5(2):71–7. doi: 10.1016/0268-960x(91)90037-d - DOI - PubMed
  41.  
    1. Rezaee F, Gibson LF, Piktel D, Othumpangat S, Piedimonte G. Respiratory Syncytial Virus Infection in Human Bone Marrow Stromal Cells. Am J Respir Cell Mol Biol (2011) 45(2):277–86. doi: 10.1165/rcmb.2010-0121OC - DOI - PMC - PubMed
  42.  
    1. Beltrami S, Gordon J. Immune Surveillance and Response to JC Virus Infection and PML. J Neurovirol (2014) 20(2):137–49. doi: 10.1007/s13365-013-0222-6 - DOI - PMC - PubMed
  43.  
    1. McCracken JM, Allen LA. Regulation of Human Neutrophil Apoptosis and Lifespan in Health and Disease. J Cell Death (2014) 7:15–23. doi: 10.4137/JCD.S11038 - DOI - PMC - PubMed
  44.  
    1. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil Function: From Mechanisms to Disease. Annu Rev Immunol (2012) 30:459–89. doi: 10.1146/annurev-immunol-020711-074942 - DOI - PubMed