SARS-CoV-2: Possible recombination and emergence of potentially more virulent strains

Affiliations


Abstract

COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains' recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.

Conflict of interest statement

The authors have declared that no competing interests exist.


Figures


Similar articles

Haplotype distribution of SARS-CoV-2 variants in low and high vaccination rate countries during ongoing global COVID-19 pandemic in early 2021.

Bui NN, Lin YT, Huang SH, Lin CW.Infect Genet Evol. 2022 Jan;97:105164. doi: 10.1016/j.meegid.2021.105164. Epub 2021 Nov 27.PMID: 34848355 Free PMC article.

Whole-genome sequencing of SARS-CoV-2 reveals the detection of G614 variant in Pakistan.

Umair M, Ikram A, Salman M, Khurshid A, Alam M, Badar N, Suleman R, Tahir F, Sharif S, Montgomery J, Whitmer S, Klena J.PLoS One. 2021 Mar 23;16(3):e0248371. doi: 10.1371/journal.pone.0248371. eCollection 2021.PMID: 33755704 Free PMC article.

Impact of Genetic Variability in ACE2 Expression on the Evolutionary Dynamics of SARS-CoV-2 Spike D614G Mutation.

Huang SW, Miller SO, Yen CH, Wang SF.Genes (Basel). 2020 Dec 24;12(1):16. doi: 10.3390/genes12010016.PMID: 33374416 Free PMC article.

SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity.

Huang SW, Wang SF.Int J Mol Sci. 2021 Mar 17;22(6):3060. doi: 10.3390/ijms22063060.PMID: 33802729 Free PMC article. Review.

The Genetic Variant of SARS-CoV-2: would It Matter for Controlling the Devastating Pandemic?

Guo S, Liu K, Zheng J.Int J Biol Sci. 2021 Apr 10;17(6):1476-1485. doi: 10.7150/ijbs.59137. eCollection 2021.PMID: 33907511 Free PMC article. Review.


Cited by

PepGM: a probabilistic graphical model for taxonomic inference of viral proteome samples with associated confidence scores.

Holstein T, Kistner F, Martens L, Muth T.Bioinformatics. 2023 May 4;39(5):btad289. doi: 10.1093/bioinformatics/btad289.PMID: 37129543 Free PMC article.

Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations.

Zhao LP, Cohen S, Zhao M, Madeleine M, Payne TH, Lybrand TP, Geraghty DE, Jerome KR, Corey L.JAMA Netw Open. 2023 Feb 1;6(2):e230191. doi: 10.1001/jamanetworkopen.2023.0191.PMID: 36809468 Free PMC article.

Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools.

Preska Steinberg A, Silander OK, Kussell E.Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2206945119. doi: 10.1073/pnas.2206945119. Epub 2023 Jan 24.PMID: 36693089 Free PMC article.

Characterization of SARS-CoV-2 recombinants and emerging Omicron sublineages.

Wang Y, Long Y, Wang F, Li C, Liu W.Int J Med Sci. 2023 Jan 1;20(1):151-162. doi: 10.7150/ijms.79116. eCollection 2023.PMID: 36619228 Free PMC article. Review.

A spike-trimer protein-based tetravalent COVID-19 vaccine elicits enhanced breadth of neutralization against SARS-CoV-2 Omicron subvariants and other variants.

Wang R, Huang H, Yu C, Sun C, Ma J, Kong D, Lin Y, Zhao D, Zhou S, Lu J, Cao S, Zhang Y, Luo C, Li X, Wang Y, Xie L.Sci China Life Sci. 2022 Dec 30:1-13. doi: 10.1007/s11427-022-2207-7. Online ahead of print.PMID: 36598621 Free PMC article.


KMEL References


References

  1.  
    1. Poland GA. SARS-CoV-2: a time for clear and immediate action. The Lancet Infectious Diseases. Lancet Publishing Group; 2020. pp. 531–532. 10.1016/S1473-3099(20)30250-4 - DOI - PMC - PubMed
  2.  
    1. Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunol Rev. 2020;296: 205–219. 10.1111/imr.12897 - DOI - PMC - PubMed
  3.  
    1. Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annual Review of Microbiology. Annual Reviews Inc.; 2019. pp. 529–557. 10.1146/annurev-micro-020518-115759 - DOI - PubMed
  4.  
    1. Xi J, Xu K, Jiang P, Lian J, Hao S, Jia H, et al.. Virus strain of a mild COVID-19 patient in Hangzhou representing a new trend in SARS-CoV-2 evolution related to Furin cleavage site. medRxiv. 2020; 2020.03.10.20033944. 10.1101/2020.03.10.20033944 - DOI - PMC - PubMed
  5.  
    1. Poland GA, Bass J, Goldstein MR. SARS-CoV-2 Infections: An ACE in the Hole and Systems Biology Studies—a Research Agenda. Mayo Clinic Proceedings. Elsevier Ltd; 2020. pp. 1838–1841. 10.1016/j.mayocp.2020.06.044 - DOI - PMC - PubMed
  6.  
    1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80-). 2020;367: 1444–1448. 10.1126/science.abb2762 - DOI - PMC - PubMed
  7.  
    1. Adhikari P, Li N, Shin M, Steinmetz NF, Twarock R, Podgornik R, et al.. Intra- And intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys Chem Chem Phys. 2020;22: 18272–18283. 10.1039/d0cp03145c - DOI - PubMed
  8.  
    1. Shaminur Rahman M, Rafiul Islam M, Nazmul Hoque M, M Rubayet Ul Alam AS, Akther M, Akter Puspo J, et al.. Comprehensive annotations of the mutational spectra of SARS-CoV-2 spike protein: a fast. bioRxiv. 2020; 2020.06.29.177238. 10.1101/2020.06.29.177238 - DOI - PMC - PubMed
  9.  
    1. Eaaswarkhanth M, Madhoun A Al, Al-Mulla F. Could the D614 G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? Int J Infect Dis. 2020. [cited 26 May 2020]. 10.1016/j.ijid.2020.05.071 - DOI - PMC - PubMed
  10.  
    1. Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clinic Proceedings. Elsevier Ltd; 2020. pp. 2172–2188. 10.1016/j.mayocp.2020.07.021 - DOI - PMC - PubMed
  11.  
    1. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81. 10.1016/j.meegid.2020.104260 - DOI - PMC - PubMed
  12.  
    1. Kasibhatla SM, Kinikar M, Limaye S, Kale MM, Kulkarni‐Kale U. Understanding evolution of SARS‐CoV‐2: a perspective from analysis of genetic diversity of RdRp gene. J Med Virol. 2020. 10.1002/jmv.25909 - DOI - PMC - PubMed
  13.  
    1. Bai Y, Jiang D, Lon JR, Chen X, Hu M, Lin S, et al.. Evolution and molecular characteristics of SARS-CoV-2 genome. bioRxiv. 2020; 2020.04.24.058933. 10.1101/2020.04.24.058933 - DOI
  14.  
    1. Al-Mulla F, Mohammad A, Al Madhoun A, Haddad D, Ali H, Eaaswarkhanth M, et al.. ACE2 and FURIN variants are potential predictors of SARS-CoV-2 outcome: A time to implement precision medicine against COVID-19. Heliyon. 2021;7: e06133. 10.1016/j.heliyon.2021.e06133 - DOI - PMC - PubMed
  15.  
    1. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance. European Centre for Disease Prevention and Control (ECDC); 2017. 10.2807/1560-7917.ES.2017.22.13.30494 - DOI - PMC - PubMed
  16.  
    1. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013. 10.1093/molbev/mst010 - DOI - PMC - PubMed
  17.  
    1. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009. 10.1093/bioinformatics/btp348 - DOI - PMC - PubMed
  18.  
    1. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. Zou Q, editor. PLoS One. 2016;11: e0163962. 10.1371/journal.pone.0163962 - DOI - PMC - PubMed
  19.  
    1. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al.. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb genomics. 2016;2: e000056. 10.1099/mgen.0.000056 - DOI - PMC - PubMed
  20.  
    1. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010. 10.1093/nar/gkq603 - DOI - PMC - PubMed
  21.  
    1. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015. 10.1186/s13742-015-0047-8 - DOI - PMC - PubMed
  22.  
    1. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 2005. 10.1093/bioinformatics/bth457 - DOI - PubMed
  23.  
    1. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006. 10.1534/genetics.105.048975 - DOI - PMC - PubMed
  24.  
    1. Martin DP, Murrell B, Khoosal A, Muhire B. Detecting and analyzing genetic recombination using RDP4. Methods in Molecular Biology. Humana Press Inc.; 2017. pp. 433–460. 10.1007/978-1-4939-6622-6_17 - DOI - PubMed
  25.  
    1. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009. 10.1101/gr.094052.109 - DOI - PMC - PubMed
  26.  
    1. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015. 10.1111/1755-0998.12387 - DOI - PMC - PubMed
  27.  
    1. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, et al.. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (80-). 2020;368: eabb7498. 10.1126/science.abb7498 - DOI - PMC - PubMed
  28.  
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al.. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-). 2020;367: 1260 LP– 1263. 10.1126/science.abb2507 - DOI - PMC - PubMed
  29.  
    1. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al.. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018. 10.1093/nar/gky427 - DOI - PMC - PubMed
  30.  
    1. Rodrigues CHM, Pires DEV, Ascher DB. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018. 10.1093/nar/gky300 - DOI - PMC - PubMed
  31.  
    1. Jakobsen IB, Easteal S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Bioinformatics. 1996;12: 291–295. 10.1093/bioinformatics/12.4.291 - DOI - PubMed
  32.  
    1. Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34: 126–129. 10.1007/BF00182389 - DOI - PubMed
  33.  
    1. Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F. Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. International Journal of Infectious Diseases. Elsevier B.V.; 2021. pp. 611–616. 10.1016/j.ijid.2020.10.033 - DOI - PMC - PubMed
  34.  
    1. Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews. American Chemical Society; 2018. pp. 1691–1741. 10.1021/acs.chemrev.7b00305 - DOI - PMC - PubMed
  35.  
    1. Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, et al.. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy. Springer Nature; 2020. pp. 1–3. 10.1038/s41392-019-0089-y - DOI - PMC - PubMed
  36.  
    1. te Velthuis AJW, Arnold JJ, Cameron CE, van den Worm SHE, Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res. 2009. 10.1093/nar/gkp904 - DOI - PMC - PubMed
  37.  
    1. Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun. 2019;10: 1–9. 10.1038/s41467-018-07882-8 - DOI - PMC - PubMed
  38.  
    1. Wu J, Liu W, Gong P. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family. Int J Mol Sci. 2015;16: 12943–12957. 10.3390/ijms160612943 - DOI - PMC - PubMed
  39.  
    1. Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI, Varsani A, et al.. An 81-Nucleotide Deletion in SARS-CoV-2 ORF7a Identified from Sentinel Surveillance in Arizona (January to March 2020). J Virol. 2020;94. 10.1128/jvi.00711-20 - DOI - PMC - PubMed
  40.  
    1. Guan Q, Sadykov M, Nugmanova R, Carr MJ, Arold ST, Pain A. The genomic variation landscape of globally-circulating clades of SARS-CoV-2 defines a genetic barcoding scheme. bioRxiv. 2020; 2020.04.21.054221. 10.1101/2020.04.21.054221 - DOI