Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury

Affiliations


Abstract

The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.

Keywords: ACE2; ARDS; Angiotensin II; COVID-19; Coronavirus; SARS.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that there are no conflicts of interest.


Figures


Similar articles

Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19.

Kuba K, Yamaguchi T, Penninger JM.Front Immunol. 2021 Dec 22;12:732690. doi: 10.3389/fimmu.2021.732690. eCollection 2021.PMID: 35003058 Free PMC article. Review.

Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review.

Aleksova A, Gagno G, Sinagra G, Beltrami AP, Janjusevic M, Ippolito G, Zumla A, Fluca AL, Ferro F.Int J Mol Sci. 2021 Apr 26;22(9):4526. doi: 10.3390/ijms22094526.PMID: 33926110 Free PMC article. Review.

Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19.

Cheng H, Wang Y, Wang GQ.J Med Virol. 2020 Jul;92(7):726-730. doi: 10.1002/jmv.25785. Epub 2020 Apr 5.PMID: 32221983 Free PMC article. Review.

SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.

Datta PK, Liu F, Fischer T, Rappaport J, Qin X.Theranostics. 2020 Jun 12;10(16):7448-7464. doi: 10.7150/thno.48076. eCollection 2020.PMID: 32642005 Free PMC article. Review.

Angiotensin-converting enzyme 2 and COVID-19 in cardiorenal diseases.

Sharma RK, Li J, Krishnan S, Richards EM, Raizada MK, Mohandas R.Clin Sci (Lond). 2021 Jan 15;135(1):1-17. doi: 10.1042/CS20200482.PMID: 33399851 Free PMC article. Review.


Cited by

Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19.

Grewal T, Buechler C.Biomedicines. 2023 Apr 27;11(5):1302. doi: 10.3390/biomedicines11051302.PMID: 37238973 Free PMC article. Review.

Susceptibility of Diabetic Patients to COVID-19 Infections: Clinico-Hematological and Complications Analysis.

Atwah B, Iqbal MS, Kabrah S, Kabrah A, Alghamdi S, Tabassum A, Baghdadi MA, Alzahrani H.Vaccines (Basel). 2023 Mar 1;11(3):561. doi: 10.3390/vaccines11030561.PMID: 36992148 Free PMC article.

SARS-CoV-2 infection and its effects on the endocrine system.

Steenblock C, Toepfner N, Beuschlein F, Perakakis N, Mohan Anjana R, Mohan V, Mahapatra NR, Bornstein SR.Best Pract Res Clin Endocrinol Metab. 2023 Mar 5:101761. doi: 10.1016/j.beem.2023.101761. Online ahead of print.PMID: 36907787 Free PMC article. Review.

S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review.

Nejat R, Torshizi MF, Najafi DJ.Vaccines (Basel). 2023 Jan 17;11(2):204. doi: 10.3390/vaccines11020204.PMID: 36851081 Free PMC article. Review.

Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines.

Bellavite P, Ferraresi A, Isidoro C.Biomedicines. 2023 Feb 3;11(2):451. doi: 10.3390/biomedicines11020451.PMID: 36830987 Free PMC article. Review.


KMEL References


References

  1.  
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., Breitbart R.E., Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000;87(5):E1–9. doi: 10.1161/01.res.87.5.e1. - DOI - PubMed
  2.  
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275(43):33238–33243. doi: 10.1074/jbc.M002615200. - DOI - PubMed
  3.  
    1. Turner A.J. ACE2 cell biology, regulation, and physiological functions. In: Unger T., Steckelings U.M., dos Santos R.A.S., editors. The Protective Arm of the Renin Angiotensin System: Functional Aspects and Therapeutic Implications. Elsevier Inc.; Amsterdam: 2015. pp. 185–189.
  4.  
    1. Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 2010;128(1):119–128. doi: 10.1016/j.pharmthera.2010.06.003. - DOI - PMC - PubMed
  5.  
    1. Singer D., Camargo S.M. Collectrin and ACE2 in renal and intestinal amino acid transport. Channels (Austin) 2011;5(5):410–423. doi: 10.4161/chan.5.5.16470. - DOI - PubMed
  6.  
    1. Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Godbout K., Parsons T., Baronas E., Hsieh F., Acton S., Patane M., Nichols A., Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 2002;277(17):14838–14843. doi: 10.1074/jbc.M200581200. - DOI - PubMed
  7.  
    1. Iwata M., Greenberg B.H. Ectodomain shedding of ACE and ACE2 as regulators of their protein functions. Curr. Enzym. Inhib. 2011;7(1):42–55. doi: 10.2174/157340811795713756. - DOI
  8.  
    1. Epelman S., Tang W.H., Chen S.Y., Van Lente F., Francis G.S., Sen S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J. Am. Coll. Cardiol. 2008;52(9):750–754. doi: 10.1016/j.jacc.2008.02.088. - DOI - PMC - PubMed
  9.  
    1. Rice G.I., Jones A.L., Grant P.J., Carter A.M., Turner A.J., Hooper N.M. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48(5):914–920. doi: 10.1161/01.HYP.0000244543.91937.79. - DOI - PubMed
  10.  
    1. Xu J., Sriramula S., Xia H., Moreno-Walton L., Culicchia F., Domenig O., Poglitsch M., Lazartigues E. Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ. Res. 2017;121(1):43–55. doi: 10.1161/CIRCRESAHA.116.310509. - DOI - PMC - PubMed
  11.  
    1. Lambert D.W., Yarski M., Warner F.J., Thornhill P., Parkin E.T., Smith A.I., Hooper N.M., Turner A.J. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) J. Biol. Chem. 2005;280(34):30113–30119. doi: 10.1074/jbc.M505111200. - DOI - PMC - PubMed
  12.  
    1. Patel V.B., Clarke N., Wang Z., Fan D., Parajuli N., Basu R., Putko B., Kassiri Z., Turner A.J., Oudit G.Y. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J. Mol. Cell. Cardiol. 2014;66:167–176. doi: 10.1016/j.yjmcc.2013.11.017. - DOI - PubMed
  13.  
    1. Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., Castner B.J., Stocking K.L., Reddy P., Srinivasan S., Nelson N., Boiani N., Schooley K.A., Gerhart M., Davis R., Fitzner J.N., Johnson R.S., Paxton R.J., March C.J., Cerretti D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature. 1997;385(6618):729–733. doi: 10.1038/385729a0. - DOI - PubMed
  14.  
    1. Moss M.L., Jin S.L., Milla M.E., Bickett D.M., Burkhart W., Carter H.L., Chen W.J., Clay W.C., Didsbury J.R., Hassler D., Hoffman C.R., Kost T.A., Lambert M.H., Leesnitzer M.A., McCauley P., McGeehan G., Mitchell J., Moyer M., Pahel G., Rocque W., Overton L.K., Schoenen F., Seaton T., Su J.L., Becherer J.D. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997;385(6618):733–736. doi: 10.1038/385733a0. - DOI - PubMed
  15.  
    1. Scott A.J., O’Dea K.P., O’Callaghan D., Williams L., Dokpesi J.O., Tatton L., Handy J.M., Hogg P.J., Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J. Biol. Chem. 2011;286(41):35466–35476. doi: 10.1074/jbc.M111.277434. - DOI - PMC - PubMed
  16.  
    1. Xu P., Derynck R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol. Cell. 2010;37(4):551–566. doi: 10.1016/j.molcel.2010.01.034. - DOI - PMC - PubMed
  17.  
    1. Jia H.P., Look D.C., Tan P., Shi L., Hickey M., Gakhar L., Chappell M.C., Wohlford-Lenane C., McCray P.B., Jr. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;297(1):L84–96. doi: 10.1152/ajplung.00071.2009. - DOI - PMC - PubMed
  18.  
    1. Lambert D.W., Clarke N.E., Hooper N.M., Turner A.J. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 2008;582(2):385–390. doi: 10.1016/j.febslet.2007.11.085. - DOI - PMC - PubMed
  19.  
    1. Salem E.S., Grobe N., Elased K.M. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 2014;306(6):F629–639. doi: 10.1152/ajprenal.00516.2013. - DOI - PMC - PubMed
  20.  
    1. Chodavarapu H., Grobe N., Somineni H.K., Salem E.S., Madhu M., Elased K.M. Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PLoS One. 2013;8(4):e62833. doi: 10.1371/journal.pone.0062833. - DOI - PMC - PubMed
  21.  
    1. Riera M., Anguiano L., Clotet S., Roca-Ho H., Rebull M., Pascual J., Soler M.J. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria. Am. J. Physiol. Renal Physiol. 2016;310(6):F534–546. doi: 10.1152/ajprenal.00082.2015. - DOI - PubMed
  22.  
    1. Somineni H.K., Boivin G.P., Elased K.M. Daily exercise training protects against albuminuria and angiotensin converting enzyme 2 shedding in db/db diabetic mice. J. Endocrinol. 2014;221(2):235–251. doi: 10.1530/JOE-13-0532. - DOI - PMC - PubMed
  23.  
    1. Xu J., Mukerjee S., Silva-Alves C.R., Carvalho-Galvao A., Cruz J.C., Balarini C.M., Braga V.A., Lazartigues E., Franca-Silva M.S. A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems. Front. Physiol. 2016;7:469. doi: 10.3389/fphys.2016.00469. - DOI - PMC - PubMed
  24.  
    1. Anguiano L., Riera M., Pascual J., Soler M.J. Circulating ACE2 in cardiovascular and kidney diseases. Curr. Med. Chem. 2017;24(30):3231–3241. doi: 10.2174/0929867324666170414162841. - DOI - PubMed
  25.  
    1. Arendse L.B., Danser A.H.J., Poglitsch M., Touyz R.M., Burnett J.C., Llorens-Cortes C., Ehlers M.R., Sturrock E.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev. 2019;71(4):539–570. doi: 10.1124/pr.118.017129. - DOI - PMC - PubMed
  26.  
    1. Chappell M.C. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am. J. Physiol. Heart Circulatory Physiol. 2016;310(2):H137–152. doi: 10.1152/ajpheart.00618.2015. - DOI - PMC - PubMed
  27.  
    1. Paz Ocaranza M., Riquelme J.A., Garcia L., Jalil J.E., Chiong M., Santos R.A.S., Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020;17(2):116–129. doi: 10.1038/s41569-019-0244-8. - DOI - PMC - PubMed
  28.  
    1. Santos R.A.S., Sampaio W.O., Alzamora A.C., Motta-Santos D., Alenina N., Bader M., Campagnole-Santos M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the renin-angiotensin system: focus on angiotensin-(1-7) Physiol. Rev. 2018;98(1):505–553. doi: 10.1152/physrev.00023.2016. - DOI - PMC - PubMed
  29.  
    1. Koka V., Huang X.R., Chung A.C., Wang W., Truong L.D., Lan H.Y. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am. J. Pathol. 2008;172(5):1174–1183. doi: 10.2353/ajpath.2008.070762. - DOI - PMC - PubMed
  30.  
    1. Gallagher P.E., Ferrario C.M., Tallant E.A. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am. J. Physiol. Cell Physiol. 2008;295(5):C1169–1174. doi: 10.1152/ajpcell.00145.2008. - DOI - PMC - PubMed
  31.  
    1. Gallagher P.E., Ferrario C.M., Tallant E.A. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2008;295(6):H2373–2379. doi: 10.1152/ajpheart.00426.2008. - DOI - PMC - PubMed
  32.  
    1. Xiao L., Haack K.K., Zucker I.H. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am. J. Physiol. Cell Physiol. 2013;304(11):C1073–1079. doi: 10.1152/ajpcell.00364.2012. - DOI - PMC - PubMed
  33.  
    1. Deshotels M.R., Xia H., Sriramula S., Lazartigues E., Filipeanu C.M. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension. 2014;64(6):1368–1375. doi: 10.1161/HYPERTENSIONAHA.114.03743. - DOI - PMC - PubMed
  34.  
    1. Xia H., Sriramula S., Chhabra K.H., Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ. Res. 2013;113(9):1087–1096. doi: 10.1161/CIRCRESAHA.113.301811. - DOI - PMC - PubMed
  35.  
    1. Chou C.H., Chuang L.Y., Lu C.Y., Guh J.Y. Interaction between TGF-β and ACE2-Ang-(1-7)-Mas pathway in high glucose-cultured NRK-52E cells. Mol. Cell. Endocrinol. 2013;366(1):21–30. doi: 10.1016/j.mce.2012.11.004. - DOI - PubMed
  36.  
    1. Shao M., Wen Z.-B., Yang H.-H., Zhang C.-Y., Xiong J.-B., Guan X.-X., Zhong W.-J., Jiang H.-L., Sun C.-C., Luo X.-Q., He X.-F., Zhou Y., Guan C.-X. Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-β1 in alveolar epithelial cells. Biomed. Pharmacother. 2019;117 doi: 10.1016/j.biopha.2019.109193. - DOI - PubMed
  37.  
    1. Su H., Yang M., Wan C., Yi L.X., Tang F., Zhu H.Y., Yi F., Yang H.C., Fogo A.B., Nie X., Zhang C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227. doi: 10.1016/j.kint.2020.04.003. - DOI - PMC - PubMed
  38.  
    1. Zhang H., Li Y., Zeng Y., Wu R., Ou J. Endothelin-1 downregulates angiotensin-converting enzyme-2 expression in human bronchial epithelial cells. Pharmacology. 2013;91(5–6):297–304. doi: 10.1159/000350395. - DOI - PubMed
  39.  
    1. Su Z., Zimpelmann J., Burns K.D. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006;69(12):2212–2218. doi: 10.1038/sj.ki.5001509. - DOI - PubMed
  40.  
    1. Gallagher P.E., Chappell M.C., Ferrario C.M., Tallant E.A. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am. J. Physiol. Cell Physiol. 2006;290(2):C420–426. doi: 10.1152/ajpcell.00409.2004. - DOI - PubMed
  41.  
    1. Hao P.P., Yang J.M., Zhang M.X., Zhang K., Chen Y.G., Zhang C., Zhang Y. Angiotensin-(1-7) treatment mitigates right ventricular fibrosis as a distinctive feature of diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2015;308(9):H1007–1019. doi: 10.1152/ajpheart.00563.2014. - DOI - PubMed
  42.  
    1. Xue H., Zhou L., Yuan P., Wang Z., Ni J., Yao T., Wang J., Huang Y., Yu C., Lu L. Counteraction between angiotensin II and angiotensin-(1-7) via activating angiotensin type I and Mas receptor on rat renal mesangial cells. Regul. Pept. 2012;177(1–3):12–20. doi: 10.1016/j.regpep.2012.04.002. - DOI - PubMed
  43.  
    1. Zimpelmann J., Burns K.D. Angiotensin-(1-7) activates growth-stimulatory pathways in human mesangial cells. Am. J. Physiol. Renal Physiol. 2009;296(2):F337–346. doi: 10.1152/ajprenal.90437.2008. - DOI - PubMed
  44.  
    1. Ma X., Xu D., Ai Y., Zhao S., Zhang L., Ming G., Liu Z. Angiotensin-(1-7)/mas signaling inhibits lipopolysaccharide-induced ADAM17 shedding activity and apoptosis in alveolar epithelial cells. Pharmacology. 2016;97(1–2):63–71. doi: 10.1159/000441606. - DOI - PubMed
  45.  
    1. Zhai C.-g., Xu Y.-y., Tie Y.-y., Zhang Y., Chen W.-q., Ji X.-p., Mao Y., Qiao L., Cheng J., Xu Q.-b., Zhang C. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J. Mol. Cell. Cardiol. 2018;114:243–252. doi: 10.1016/j.yjmcc.2017.11.018. - DOI - PubMed
  46.  
    1. Read C., Nyimanu D., Williams T.L., Huggins D.J., Sulentic P., Macrae R.G.C., Yang P., Glen R.C., Maguire J.J., Davenport A.P. International union of basic and clinical pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that Elabela/Toddler is a second endogenous peptide ligand. Pharmacol. Rev. 2019;71(4):467–502. doi: 10.1124/pr.119.017533. - DOI - PMC - PubMed
  47.  
    1. Wang W., McKinnie S.M., Farhan M., Paul M., McDonald T., McLean B., Llorens-Cortes C., Hazra S., Murray A.G., Vederas J.C., Oudit G.Y. Angiotensin-converting enzyme 2 metabolizes and partially inactivates Pyr-Apelin-13 and Apelin-17: physiological effects in the cardiovascular system. Hypertension. 2016;68(2):365–377. doi: 10.1161/hypertensionaha.115.06892. - DOI - PubMed
  48.  
    1. Zhang Z.Z., Wang W., Jin H.Y., Chen X., Cheng Y.W., Xu Y.L., Song B., Penninger J.M., Oudit G.Y., Zhong J.C. Apelin is a negative regulator of angiotensin II-Mediated adverse myocardial remodeling and dysfunction. Hypertension. 2017;70(6):1165–1175. doi: 10.1161/hypertensionaha.117.10156. - DOI - PubMed
  49.  
    1. Sato T., Sato C., Kadowaki A., Watanabe H., Ho L., Ishida J., Yamaguchi T., Kimura A., Fukamizu A., Penninger J.M., Reversade B., Ito H., Imai Y., Kuba K. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc. Res. 2017;113(7):760–769. doi: 10.1093/cvr/cvx061. - DOI - PubMed
  50.  
    1. Sato T., Suzuki T., Watanabe H., Kadowaki A., Fukamizu A., Liu P.P., Kimura A., Ito H., Penninger J.M., Imai Y., Kuba K. Apelin is a positive regulator of ACE2 in failing hearts. J. Clin. Invest. 2013;123(12):5203–5211. doi: 10.1172/jci69608. - DOI - PMC - PubMed
  51.  
    1. Sabry M.M., Mahmoud M.M., Shoukry H.S., Rashed L., Kamar S.S., Ahmed M.M. Interactive effects of apelin, renin-angiotensin system and nitric oxide in treatment of obesity-induced type 2 diabetes mellitus in male albino rats. Arch. Physiol. Biochem. 2019;125(3):244–254. doi: 10.1080/13813455.2018.1453521. - DOI - PubMed
  52.  
    1. Masoud A.G., Lin J., Azad A.K., Farhan M.A., Fischer C., Zhu L.F., Zhang H., Sis B., Kassiri Z., Moore R.B., Kim D., Anderson C.C., Vederas J.C., Adam B.A., Oudit G.Y., Murray A.G. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J. Clin. Invest. 2020;130(1):94–107. doi: 10.1172/jci128469. - DOI - PMC - PubMed
  53.  
    1. Sato T., Kadowaki A., Suzuki T., Ito H., Watanabe H., Imai Y., Kuba K. Loss of apelin augments angiotensin II-induced cardiac dysfunction and pathological remodeling. Int. J. Mol. Sci. 2019;20(2) doi: 10.3390/ijms20020239. - DOI - PMC - PubMed
  54.  
    1. Rhaleb N.E., Yang X.P., Carretero O.A. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr. Physiol. 2011;1(2):971–993. doi: 10.1002/cphy.c100053. - DOI - PMC - PubMed
  55.  
    1. Roks A.J., van Geel P.P., Pinto Y.M., Buikema H., Henning R.H., de Zeeuw D., van Gilst W.H. Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension. 1999;34(2):296–301. doi: 10.1161/01.hyp.34.2.296. - DOI - PubMed
  56.  
    1. Tom B., de Vries R., Saxena P.R., Danser A.H. Bradykinin potentiation by angiotensin-(1-7) and ACE inhibitors correlates with ACE C- and N-domain blockade. Hypertension. 2001;38(1):95–99. doi: 10.1161/01.hyp.38.1.95. - DOI - PubMed
  57.  
    1. Raffai G., Khang G., Vanhoutte P.M. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1. J. Cardiovasc. Pharmacol. 2014;63(5):453–460. doi: 10.1097/fjc.0000000000000069. - DOI - PubMed
  58.  
    1. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S., McCray P.B., Jr., Chappell M., Hackam D.J., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg(9) bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell Mol. Physiol. 2018;314(1):L17–l31. doi: 10.1152/ajplung.00498.2016. - DOI - PMC - PubMed
  59.  
    1. More A.S., Kim H.M., Khang G., Hildebrandt T., Bernlöhr C., Doods H., Vanhoutte P.M., Wu D. Des-Arg9-bradykinin causes kinin B1 receptor mediated endothelium-independent contractions in endotoxin-treated porcine coronary arteries. Pharmacol. Res. 2014;90:18–24. doi: 10.1016/j.phrs.2014.09.001. - DOI - PubMed
  60.  
    1. Ehrenfeld P., Conejeros I., Pavicic M.F., Matus C.E., Gonzalez C.B., Quest A.F.G., Bhoola K.D., Poblete M.T., Burgos R.A., Figueroa C.D. Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells. Cancer Lett. 2011;301(1):106–118. doi: 10.1016/j.canlet.2010.09.020. - DOI - PubMed
  61.  
    1. Matus C.E., Ehrenfeld P., Pavicic F., González C.B., Concha M., Bhoola K.D., Burgos R.A., Figueroa C.D. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor. Exp. Dermatol. 2016;25(9):694–700. doi: 10.1111/exd.13038. - DOI - PubMed
  62.  
    1. Dey M., Baldys A., Sumter D.B., Göoz P., Luttrell L.M., Raymond J.R., Göoz M. Bradykinin decreases podocyte permeability through ADAM17-dependent epidermal growth factor receptor activation and zonula occludens-1 rearrangement. J. Pharmacol. Exp. Ther. 2010;334(3):775–783. doi: 10.1124/jpet.110.168054. - DOI - PMC - PubMed
  63.  
    1. Lorke D.E., Petroianu G., Oz M. α7-nicotinic acetylcholine receptors and β-amyloid peptides in Alzheimer’s disease. In: Li M.D., editor. Nicotinic Acetylcholine Receptor Technologies. Springer Science + Business Media; Berlin, Heidelberg: 2016. pp. 171–205.
  64.  
    1. Hu J., Miyatake F., Aizu Y., Nakagawa H., Nakamura S., Tamaoka A., Takahash R., Urakami K., Shoji M. Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci. Lett. 1999;277(1):65–67. doi: 10.1016/s0304-3940(99)00827-7. - DOI - PubMed
  65.  
    1. Hu J., Igarashi A., Kamata M., Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 2001;276(51):47863–47868. doi: 10.1074/jbc.M104068200. - DOI - PubMed
  66.  
    1. Zou K., Yamaguchi H., Akatsu H., Sakamoto T., Ko M., Mizoguchi K., Gong J.S., Yu W., Yamamoto T., Kosaka K., Yanagisawa K., Michikawa M. Angiotensin-converting enzyme converts amyloid beta-protein 1-42 (Abeta(1-42)) to Abeta(1-40), and its inhibition enhances brain Abeta deposition. J. Neurosci. 2007;27(32):8628–8635. doi: 10.1523/jneurosci.1549-07.2007. - DOI - PMC - PubMed
  67.  
    1. Liu S., Liu J., Miura Y., Tanabe C., Maeda T., Terayama Y., Turner A.J., Zou K., Komano H. Conversion of Aβ43 to Aβ40 by the successive action of angiotensin-converting enzyme 2 and angiotensin-converting enzyme. J. Neurosci. Res. 2014;92(9):1178–1186. doi: 10.1002/jnr.23404. - DOI - PubMed
  68.  
    1. Kehoe P.G., Wong S., Al Mulhim N., Palmer L.E., Miners J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther. 2016;8(1):50. doi: 10.1186/s13195-016-0217-7. - DOI - PMC - PubMed
  69.  
    1. Tikhonova M.A., Amstislavskaya T.G., Belichenko V.M., Fedoseeva L.A., Kovalenko S.P., Pisareva E.E., Avdeeva A.S., Kolosova N.G., Belyaev N.D., Aftanas L.I. Modulation of the expression of genes related to the system of amyloid-beta metabolism in the brain as a novel mechanism of ceftriaxone neuroprotective properties. BMC Neurosci. 2018;19(Suppl 1):13. doi: 10.1186/s12868-018-0412-5. - DOI - PMC - PubMed
  70.  
    1. Kehoe P.G., Al Mulhim N., Zetterberg H., Blennow K., Miners J.S. Cerebrospinal fluid changes in the renin-angiotensin system in Alzheimer’s disease. J. Alzheimers Dis. 2019;72(2):525–535. doi: 10.3233/jad-190721. - DOI - PubMed
  71.  
    1. Wang X.L., Iwanami J., Min L.J., Tsukuda K., Nakaoka H., Bai H.Y., Shan B.S., Kan-No H., Kukida M., Chisaka T., Yamauchi T., Higaki A., Mogi M., Horiuchi M. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech. Dis. 2016;2:16024. doi: 10.1038/npjamd.2016.24. - DOI - PMC - PubMed
  72.  
    1. Evans C.E., Miners J.S., Piva G., Willis C.L., Heard D.M., Kidd E.J., Good M.A., Kehoe P.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol. 2020;139(3):485–502. doi: 10.1007/s00401-019-02098-6. - DOI - PMC - PubMed
  73.  
    1. Kamel A.S., Abdelkader N.F., Abd El-Rahman S.S., Emara M., Zaki H.F., Khattab M.M. Stimulation of ACE2/ANG(1-7)/mas axis by diminazene ameliorates Alzheimer’s disease in the D-Galactose-Ovariectomized rat model: role of PI3K/Akt pathway. Mol. Neurobiol. 2018;55(10):8188–8202. doi: 10.1007/s12035-018-0966-3. - DOI - PubMed
  74.  
    1. Duan R., Xue X., Zhang Q.Q., Wang S.Y., Gong P.Y., Jiang Y.E.T., Zhang Y.D. ACE2 activator diminazene aceturate ameliorates Alzheimer’s disease-like neuropathology and rescues cognitive impairment in SAMP8 mice. Aging (Albany NY) 2020;12(14):14819–14829. doi: 10.18632/aging.103544. - DOI - PMC - PubMed
  75.  
    1. Fu X., Lin R., Qiu Y., Yu P., Lei B. Overexpression of angiotensin-converting enzyme 2 ameliorates amyloid β-Induced inflammatory response in human primary retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 2017;58(7):3018–3028. doi: 10.1167/iovs.17-21546. - DOI - PubMed
  76.  
    1. Chen J.L., Zhang D.L., Sun Y., Zhao Y.X., Zhao K.X., Pu D., Xiao Q. Angiotensin-(1-7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via Mas receptor activation. Neuroscience. 2017;346:267–277. doi: 10.1016/j.neuroscience.2017.01.027. - DOI - PubMed
  77.  
    1. Uekawa K., Hasegawa Y., Senju S., Nakagata N., Ma M., Nakagawa T., Koibuchi N., Kim-Mitsuyama S. Intracerebroventricular infusion of angiotensin-(1-7) ameliorates cognitive impairment and memory dysfunction in a mouse model of alzheimer’s disease. J. Alzheimers Dis. 2016;53(1):127–133. doi: 10.3233/jad-150642. - DOI - PubMed
  78.  
    1. Jiang T., Tan L., Gao Q., Lu H., Zhu X.C., Zhou J.S., Zhang Y.D. Plasma angiotensin-(1-7) is a potential biomarker for Alzheimer’s disease. Curr. Neurovasc. Res. 2016;13(2):96–99. doi: 10.2174/1567202613666160224124739. - DOI - PubMed
  79.  
    1. Jiang T., Zhang Y.D., Zhou J.S., Zhu X.C., Tian Y.Y., Zhao H.D., Lu H., Gao Q., Tan L., Yu J.T. Angiotensin-(1-7) is reduced and inversely correlates with tau hyperphosphorylation in animal models of Alzheimer’s disease. Mol. Neurobiol. 2016;53(4):2489–2497. doi: 10.1007/s12035-015-9260-9. - DOI - PubMed
  80.  
    1. Jiang T., Xue L.-J., Yang Y., Wang Q.-G., Xue X., Ou Z., Gao Q., Shi J.-Q., Wu L., Zhang Y.-D. AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. Aging. 2018;10(4):645–657. doi: 10.18632/aging.101419. - DOI - PMC - PubMed
  81.  
    1. Hay M., Polt R., Heien M.L., Vanderah T.W., Largent-Milnes T.M., Rodgers K., Falk T., Bartlett M.J., Doyle K.P., Konhilas J.P. A novel angiotensin-(1-7) glycosylated mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J. Pharmacol. Exp. Ther. 2019;369(1):9–25. doi: 10.1124/jpet.118.254854. - DOI - PMC - PubMed
  82.  
    1. Mateos L., Ismail M.A., Winblad B., Cedazo-Mínguez A. Side-chain-oxidized oxysterols upregulate ACE2 and Mas receptor in rat primary neurons. Neurodegener. Dis. 2012;10(1–4):313–316. doi: 10.1159/000333340. - DOI - PubMed
  83.  
    1. Ding Q., Shults N.V., Harris B.T., Suzuki Y.J. Angiotensin-converting enzyme 2 (ACE2) is upregulated in Alzheimer’s disease brain. bioRxiv. 2020 doi: 10.1101/2020.10.08.331157. 2020.10.08.331157. - DOI
  84.  
    1. Lim K.H., Yang S., Kim S.H., Joo J.Y. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer’s disease. J. Infect. 2020;81(3):e33–e34. doi: 10.1016/j.jinf.2020.06.072. - DOI - PMC - PubMed
  85.  
    1. Gironacci M.M., Vicario A., Cerezo G., Silva M.G. The depressor axis of the renin-angiotensin system and brain disorders: a translational approach. Clin Sci. (Lond) 2018;132(10):1021–1038. doi: 10.1042/cs20180189. - DOI - PubMed
  86.  
    1. Wright J.W., Harding J.W. Contributions by the brain renin-angiotensin system to memory, cognition, and Alzheimer’s disease. J. Alzheimers Dis. 2019;67(2):469–480. doi: 10.3233/jad-181035. - DOI - PubMed
  87.  
    1. Bloch S., Obari D., Girouard H. Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation. 2015;22(3):159–167. doi: 10.1111/micc.12193. - DOI - PubMed
  88.  
    1. de Morais S.D.B., Shanks J., Zucker I.H. Integrative physiological aspects of brain RAS in hypertension. Curr. Hypertens. Rep. 2018;20(2):10. doi: 10.1007/s11906-018-0810-1. - DOI - PMC - PubMed
  89.  
    1. Mendoza A., Lazartigues E. The compensatory renin-angiotensin system in the central regulation of arterial pressure: new avenues and new challenges. Ther. Adv. Cardiovasc. Dis. 2015;9(4):201–208. doi: 10.1177/1753944715578056. - DOI - PMC - PubMed
  90.  
    1. Mukerjee S., Gao H., Xu J., Sato R., Zsombok A., Lazartigues E. ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension. 2019;74(5):1181–1191. doi: 10.1161/hypertensionaha.119.13133. - DOI - PMC - PubMed
  91.  
    1. Sriramula S., Xia H., Xu P., Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension. 2015;65(3):577–586. doi: 10.1161/HYPERTENSIONAHA.114.04691. - DOI - PMC - PubMed
  92.  
    1. Yamazato M., Ferreira A.J., Yamazato Y., Diez-Freire C., Yuan L., Gillies R., Raizada M.K. Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. J. Renin. Syst. 2011;12(4):456–461. doi: 10.1177/1470320311412809. - DOI - PMC - PubMed
  93.  
    1. Alenina N., Bader M. ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models. Neurochem. Res. 2019;44(6):1323–1329. doi: 10.1007/s11064-018-2679-4. - DOI - PMC - PubMed
  94.  
    1. Danilczyk U., Sarao R., Remy C., Benabbas C., Stange G., Richter A., Arya S., Pospisilik J.A., Singer D., Camargo S.M., Makrides V., Ramadan T., Verrey F., Wagner C.A., Penninger J.M. Essential role for collectrin in renal amino acid transport. Nature. 2006;444(7122):1088–1091. doi: 10.1038/nature05475. - DOI - PubMed
  95.  
    1. Zhang H., Wada J., Hida K., Tsuchiyama Y., Hiragushi K., Shikata K., Wang H., Lin S., Kanwar Y.S., Makino H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem. 2001;276(20):17132–17139. doi: 10.1074/jbc.M006723200. - DOI - PubMed
  96.  
    1. Kuba K., Imai Y., Penninger J.M. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ. J. 2013;77(2):301–308. doi: 10.1253/circj.cj-12-1544. - DOI - PubMed
  97.  
    1. Perlot T., Penninger J.M. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013;15(13):866–873. doi: 10.1016/j.micinf.2013.08.003. - DOI - PMC - PubMed
  98.  
    1. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. doi: 10.1126/science.abb2762. - DOI - PMC - PubMed
  99.  
    1. Malakauskas S.M., Quan H., Fields T.A., McCall S.J., Yu M.J., Kourany W.M., Frey C.W., Le T.H. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am. J. Physiol. Renal Physiol. 2007;292(2):F533–544. doi: 10.1152/ajprenal.00325.2006. - DOI - PubMed
  100.  
    1. Camargo S.M., Singer D., Makrides V., Huggel K., Pos K.M., Wagner C.A., Kuba K., Danilczyk U., Skovby F., Kleta R., Penninger J.M., Verrey F. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136(3):872–882. doi: 10.1053/j.gastro.2008.10.055. - DOI - PMC - PubMed
  101.  
    1. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., Sigl V., Hanada T., Hanada R., Lipinski S., Wild B., Camargo S.M.R., Singer D., Richter A., Kuba K., Fukamizu A., Schreiber S., Clevers H., Verrey F., Rosenstiel P., Penninger J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–481. doi: 10.1038/nature11228. - DOI - PMC - PubMed
  102.  
    1. Fairweather S.J., Bröer A., O’Mara M.L., Bröer S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1. Biochem. J. 2012;446(1):135–148. doi: 10.1042/bj20120307. - DOI - PMC - PubMed
  103.  
    1. Lin Q., Keller R.S., Weaver B., Zisman L.S. Interaction of ACE2 and integrin β1 in failing human heart. Biochimica et Biophysica Acta (BBA) 2004;1689(3):175–178. doi: 10.1016/j.bbadis.2004.05.005. - DOI - PubMed
  104.  
    1. Clarke N.E., Fisher M.J., Porter K.E., Lambert D.W., Turner A.J. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS One. 2012;7(4):e34747. doi: 10.1371/journal.pone.0034747. - DOI - PMC - PubMed
  105.  
    1. Beddingfield B.J., Iwanaga N., Chapagain P.P., Zheng W., Roy C.J., Hu T.Y., Kolls J.K., Bix G.J. The integrin binding peptide, ATN-161, as a novel therapy for SARS-CoV-2 infection. JACC. 2020 doi: 10.1016/j.jacbts.2020.10.003. - DOI - PMC - PubMed
  106.  
    1. Fung T.S., Liu D.X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 2019;73:529–557. doi: 10.1146/annurev-micro-020518-115759. - DOI - PubMed
  107.  
    1. Zhang Y.Z., Holmes E.C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020;181(2):223–227. doi: 10.1016/j.cell.2020.03.035. - DOI - PMC - PubMed
  108.  
    1. Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17(3):181–192. doi: 10.1038/s41579-018-0118-9. - DOI - PMC - PubMed
  109.  
    1. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016;3(1):237–261. doi: 10.1146/annurev-virology-110615-042301. - DOI - PMC - PubMed
  110.  
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052. e8. - DOI - PMC - PubMed
  111.  
    1. Hofmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. U.S.A. 2005;102(22):7988–7993. doi: 10.1073/pnas.0409465102. - DOI - PMC - PubMed
  112.  
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. doi: 10.1038/nature02145. - DOI - PMC - PubMed
  113.  
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. - DOI - PMC - PubMed
  114.  
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi: 10.1126/science.abb2507. - DOI - PMC - PubMed
  115.  
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020;94(7):e00127–20. doi: 10.1128/jvi.00127-20. - DOI - PMC - PubMed
  116.  
    1. Andres C., Garcia-Cehic D., Gregori J., Piñana M., Rodriguez-Frias F., Guerrero-Murillo M., Esperalba J., Rando A., Goterris L., Codina M.G., Quer S., Martín M.C., Campins M., Ferrer R., Almirante B., Esteban J.I., Pumarola T., Antón A., Quer J. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. Emerg. Microbes Infect. 2020:1–48. doi: 10.1080/22221751.2020.1806735. - DOI - PubMed
  117.  
    1. Jin X., Xu K., Jiang P., Lian J., Hao S., Yao H., Jia H., Zhang Y., Zheng L., Zheng N., Chen D., Yao J., Hu J., Gao J., Wen L., Shen J., Ren Y., Yu G., Wang X., Lu Y., Yu X., Yu L., Xiang D., Wu N., Lu X., Cheng L., Liu F., Wu H., Jin C., Yang X., Qian P., Qiu Y., Sheng J., Liang T., Li L., Yang Y. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site. Emerg. Microbes Infect. 2020;9(1):1474–1488. doi: 10.1080/22221751.2020.1781551. - DOI - PMC - PubMed
  118.  
    1. MacGowan S.A., Barton G.J. Missense variants in ACE2 are predicted to encourage and inhibit interaction with SARS-CoV-2 Spike and contribute to genetic risk in COVID-19. bioRxiv. 2020 doi: 10.1101/2020.05.03.074781. 2020.05.03.074781. - DOI
  119.  
    1. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868. doi: 10.1126/science.1116480. - DOI - PubMed
  120.  
    1. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., Wong S.K., Huang I.C., Xu K., Vasilieva N., Murakami A., He Y., Marasco W.A., Guan Y., Choe H., Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–1643. doi: 10.1038/sj.emboj.7600640. - DOI - PMC - PubMed
  121.  
    1. Gui M., Song W., Zhou H., Xu J., Chen S., Xiang Y., Wang X. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27(1):119–129. doi: 10.1038/cr.2016.152. - DOI - PMC - PubMed
  122.  
    1. Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 2020;117(21):11727–11734. doi: 10.1073/pnas.2003138117. - DOI - PMC - PubMed
  123.  
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292. doi: 10.1016/j.cell.2020.02.058. e6. - DOI - PMC - PubMed
  124.  
    1. Hoffmann M., Kleine-Weber H., Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 2020;78(4):779–784. doi: 10.1016/j.molcel.2020.04.022. e5. - DOI - PMC - PubMed
  125.  
    1. Simmons G., Zmora P., Gierer S., Heurich A., Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605–614. doi: 10.1016/j.antiviral.2013.09.028. - DOI - PMC - PubMed
  126.  
    1. Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–1033. - PMC - PubMed
  127.  
    1. Millet J.K., Whittaker G.R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–134. doi: 10.1016/j.virusres.2014.11.021. - DOI - PMC - PubMed
  128.  
    1. Schneider M., Ackermann K., Stuart M., Wex C., Protzer U., Schätzl H.M., Gilch S. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol. 2012;86(18):10112–10122. doi: 10.1128/jvi.01001-12. - DOI - PMC - PubMed
  129.  
    1. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. U.S.A. 2005;102(35):12543–12547. doi: 10.1073/pnas.0503203102. - DOI - PMC - PubMed
  130.  
    1. Glowacka I., Bertram S., Müller M.A., Allen P., Soilleux E., Pfefferle S., Steffen I., Tsegaye T.S., He Y., Gnirss K., Niemeyer D., Schneider H., Drosten C., Pöhlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 2011;85(9):4122–4134. doi: 10.1128/jvi.02232-10. - DOI - PMC - PubMed
  131.  
    1. Iwata-Yoshikawa N., Okamura T., Shimizu Y., Hasegawa H., Takeda M., Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 2019;93(6) doi: 10.1128/jvi.01815-18. - DOI - PMC - PubMed
  132.  
    1. Matsuyama S., Nao N., Shirato K., Kawase M., Saito S., Takayama I., Nagata N., Sekizuka T., Katoh H., Kato F., Sakata M., Tahara M., Kutsuna S., Ohmagari N., Kuroda M., Suzuki T., Kageyama T., Takeda M. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 2020;117(13):7001–7003. doi: 10.1073/pnas.2002589117. - DOI - PMC - PubMed
  133.  
    1. Kawase M., Shirato K., van der Hoek L., Taguchi F., Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 2012;86(12):6537–6545. doi: 10.1128/jvi.00094-12. - DOI - PMC - PubMed
  134.  
    1. Hoffmann M., Schroeder S., Kleine-Weber H., Müller M.A., Drosten C., Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 2020;64(6) doi: 10.1128/aac.00754-20. - DOI - PMC - PubMed
  135.  
    1. Yamamoto N., Ariumi Y., Nishida N., Yamamoto R., Bauer G., Gojobori T., Shimotohno K., Mizokami M. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene. 2020;758:144944. doi: 10.1016/j.gene.2020.144944. - DOI - PMC - PubMed
  136.  
    1. Lucas J.M., Heinlein C., Kim T., Hernandez S.A., Malik M.S., True L.D., Morrissey C., Corey E., Montgomery B., Mostaghel E., Clegg N., Coleman I., Brown C.M., Schneider E.L., Craik C., Simon J.A., Bedalov A., Nelson P.S. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310–1325. doi: 10.1158/2159-8290.Cd-13-1010. - DOI - PMC - PubMed
  137.  
    1. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., Hennig B.P., Kreuter M., Conrad C., Eils R. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39(10):e105114. doi: 10.15252/embj.20105114. - DOI - PMC - PubMed
  138.  
    1. Komatsu T., Suzuki Y., Imai J., Sugano S., Hida M., Tanigami A., Muroi S., Yamada Y., Hanaoka K. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2) DNA Seq. 2002;13(4):217–220. doi: 10.1080/1042517021000021608. - DOI - PubMed
  139.  
    1. Lin B., Ferguson C., White J.T., Wang S., Vessella R., True L.D., Hood L., Nelson P.S. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999;59(17):4180–4184. - PubMed
  140.  
    1. Mikkonen L., Pihlajamaa P., Sahu B., Zhang F.P., Jänne O.A. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell. Endocrinol. 2010;317(1–2):14–24. doi: 10.1016/j.mce.2009.12.022. - DOI - PubMed
  141.  
    1. Stopsack K.H., Mucci L.A., Antonarakis E.S., Nelson P.S., Kantoff P.W. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov. 2020;10(6):779–782. doi: 10.1158/2159-8290.Cd-20-0451. - DOI - PMC - PubMed
  142.  
    1. Channappanavar R., Fett C., Mack M., Ten Eyck P.P., Meyerholz D.K., Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017;198(10):4046–4053. doi: 10.4049/jimmunol.1601896. - DOI - PMC - PubMed
  143.  
    1. La Vignera S., Cannarella R., Condorelli R.A., Torre F., Aversa A., Calogero A.E. Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis d. Int. J. Mol. Sci. 2020;21(8) doi: 10.3390/ijms21082948. - DOI - PMC - PubMed
  144.  
    1. Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176 doi: 10.1016/j.antiviral.2020.104742. - DOI - PMC - PubMed
  145.  
    1. Braun E., Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019;8(8):e1073. doi: 10.1002/cti2.1073. - DOI - PMC - PubMed
  146.  
    1. Fernandez C., Rysä J., Almgren P., Nilsson J., Engström G., Orho-Melander M., Ruskoaho H., Melander O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 2018;284(4):377–387. doi: 10.1111/joim.12783. - DOI - PMC - PubMed
  147.  
    1. Shiryaev S.A., Remacle A.G., Ratnikov B.I., Nelson N.A., Savinov A.Y., Wei G., Bottini M., Rega M.F., Parent A., Desjardins R., Fugere M., Day R., Sabet M., Pellecchia M., Liddington R.C., Smith J.W., Mustelin T., Guiney D.G., Lebl M., Strongin A.Y. Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens. J. Biol. Chem. 2007;282(29):20847–20853. doi: 10.1074/jbc.M703847200. - DOI - PubMed
  148.  
    1. Cheng Y.-W., Chao T.-L., Li C.-L., Chiu M.-F., Kao H.-C., Wang S.-H., Pang Y.-H., Lin C.-H., Tsai Y.-M., Lee W.-H., Tao M.-H., Ho T.-C., Wu P.-Y., Jang L.-T., Chen P.-J., Chang S.-Y., Yeh S.-H. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Available at SSRN. Cell Rep. 2020 doi: 10.2139/ssrn.3613035. under review. - DOI - PMC - PubMed
  149.  
    1. Inoue Y., Tanaka N., Tanaka Y., Inoue S., Morita K., Zhuang M., Hattori T., Sugamura K. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 2007;81(16):8722–8729. doi: 10.1128/jvi.00253-07. - DOI - PMC - PubMed
  150.  
    1. Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290–301. doi: 10.1038/cr.2008.15. - DOI - PMC - PubMed
  151.  
    1. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11(1):1620. doi: 10.1038/s41467-020-15562-9. - DOI - PMC - PubMed
  152.  
    1. Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014;88(2):1293–1307. doi: 10.1128/jvi.02202-13. - DOI - PMC - PubMed
  153.  
    1. Hoffmann M., Hofmann-Winkler H., Pöhlmann S. Activation of Viruses by Host Proteases. 2018. Priming time: how cellular proteases arm coronavirus spike proteins; pp. 71–98. - DOI
  154.  
    1. Huentelman M.J., Zubcevic J., Hernández Prada J.A., Xiao X., Dimitrov D.S., Raizada M.K., Ostrov D.A. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension. 2004;44(6):903–906. doi: 10.1161/01.Hyp.0000146120.29648.36. - DOI - PubMed
  155.  
    1. Lu J., Sun P.D. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. bioRxiv. 2020 doi: 10.1101/2020.07.01.182659. - DOI - PMC - PubMed
  156.  
    1. Hofmann H., Geier M., Marzi A., Krumbiegel M., Peipp M., Fey G.H., Gramberg T., Pohlmann S. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun. 2004;319(4):1216–1221. doi: 10.1016/j.bbrc.2004.05.114. - DOI - PMC - PubMed
  157.  
    1. Iwata M., Silva Enciso J.E., Greenberg B.H. Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor alpha-converting enzyme. Am. J. Physiol., Cell Physiol. 2009;297(5):C1318–1329. doi: 10.1152/ajpcell.00036.2009. - DOI - PubMed
  158.  
    1. Haga S., Yamamoto N., Nakai-Murakami C., Osawa Y., Tokunaga K., Sata T., Yamamoto N., Sasazuki T., Ishizaka Y. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. U.S.A. 2008;105(22):7809–7814. doi: 10.1073/pnas.0711241105. - DOI - PMC - PubMed
  159.  
    1. Yang S., Wu S., Yu Z., Huang J., Zhong X., Liu X., Zhu H., Xiao L., Deng Q., Sun W. Transcriptomic analysis reveals novel mechanisms of SARS-CoV-2 infection in human lung cells. Immunity, Inflammation Dis. 2020;8(4):753–762. doi: 10.1002/iid3.366. - DOI - PMC - PubMed
  160.  
    1. Chen Y., Liu L., Wei Q., Zhu H., Jiang H., Tu X., Qin C., Chen Z. Rhesus angiotensin converting enzyme 2 supports entry of severe acute respiratory syndrome coronavirus in Chinese macaques. Virology. 2008;381(1):89–97. doi: 10.1016/j.virol.2008.08.016. - DOI - PMC - PubMed
  161.  
    1. Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P.B., Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 2005;79(23):14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005. - DOI - PMC - PubMed
  162.  
    1. Li W., Sui J., Huang I.C., Kuhn J.H., Radoshitzky S.R., Marasco W.A., Choe H., Farzan M. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology. 2007;367(2):367–374. doi: 10.1016/j.virol.2007.04.035. - DOI - PMC - PubMed
  163.  
    1. Oz M., Lorke D.E., Kabbani N. 2021. A Comprehensive Guide to the Pharmacologic Regulation of Angiotensin Converting Enzyme 2 (ACE2), the SARS-CoV-2 Entry Receptor Pharmacology & Therapeutics. in press. - PMC - PubMed
  164.  
    1. Algaissi A., Agrawal A.S., Han S., Peng B.H., Luo C., Li F., Chan T.S., Couch R.B., Tseng C.K. Elevated human dipeptidyl peptidase 4 expression reduces the susceptibility of hDPP4 transgenic mice to middle east respiratory syndrome coronavirus infection and disease. J. Infect. Dis. 2019;219(5):829–835. doi: 10.1093/infdis/jiy574. - DOI - PMC - PubMed
  165.  
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., Liu Y., Zheng D., Leibbrandt A., Wada T., Slutsky A.S., Liu D., Qin C., Jiang C., Penninger J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005;11(8):875–879. doi: 10.1038/nm1267. - DOI - PMC - PubMed
  166.  
    1. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M., Butany J. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest. 2009;39(7):618–625. doi: 10.1111/j.1365-2362.2009.02153.x. - DOI - PMC - PubMed
  167.  
    1. Winkler E.S., Bailey A.L., Kafai N.M., Nair S., McCune B.T., Yu J., Fox J.M., Chen R.E., Earnest J.T., Keeler S.P., Ritter J.H., Kang L.-I., Dort S., Robichaud A., Head R., Holtzman M.J., Diamond M.S. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 2020;21(11):1327–1335. doi: 10.1038/s41590-020-0778-2. - DOI - PMC - PubMed
  168.  
    1. Lei Y., Zhang J., Schiavon C.R., He M., Chen L., Shen H., Zhang Y., Yin Q., Cho Y., Andrade L., Shadel G.S., Hepokoski M., Lei T., Wang H., Zhang J., Yuan J.X.-J., Malhotra A., Manor U., Wang S., Yuan Z.-Y., Shyy J.Y.-J. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2. bioRxiv. 2020 doi: 10.1101/2020.12.04.409144. 2020.12.04.409144. - DOI - PMC - PubMed
  169.  
    1. Wang S., Guo F., Liu K., Wang H., Rao S., Yang P., Jiang C. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res. 2008;136(1–2):8–15. doi: 10.1016/j.virusres.2008.03.004. - DOI - PMC - PubMed
  170.  
    1. Gorshkov K., Susumu K., Chen J., Xu M., Pradhan M., Zhu W., Hu X., Breger J.C., Wolak M., Oh E. Quantum dot-conjugated SARS-CoV-2 spike pseudo-virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis. ACS Nano. 2020;14(9):12234–12247. doi: 10.1021/acsnano.0c05975. - DOI - PMC - PubMed
  171.  
    1. Shulla A., Heald-Sargent T., Subramanya G., Zhao J., Perlman S., Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 2011;85(2):873–882. doi: 10.1128/jvi.02062-10. - DOI - PMC - PubMed
  172.  
    1. Zipeto D., Palmeira Jd.F., Argañaraz G.A., Argañaraz E.R. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol. 2020;11(2642) doi: 10.3389/fimmu.2020.576745. - DOI - PMC - PubMed
  173.  
    1. Chen I.-Y., Chang S.C., Wu H.-Y., Yu T.-C., Wei W.-C., Lin S., Chien C.-L., Chang M.-F. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus Spike-ACE2 signaling pathway. J. Virol. 2010;84(15):7703–7712. doi: 10.1128/jvi.02560-09. - DOI - PMC - PubMed
  174.  
    1. Dosch S.F., Mahajan S.D., Collins A.R. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res. 2009;142(1–2):19–27. doi: 10.1016/j.virusres.2009.01.005. - DOI - PMC - PubMed
  175.  
    1. He L., Ding Y., Zhang Q., Che X., He Y., Shen H., Wang H., Li Z., Zhao L., Geng J., Deng Y., Yang L., Li J., Cai J., Qiu L., Wen K., Xu X., Jiang S. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006;210(3):288–297. doi: 10.1002/path.2067. - DOI - PMC - PubMed
  176.  
    1. Rockx B., Baas T., Zornetzer G.A., Haagmans B., Sheahan T., Frieman M., Dyer M.D., Teal T.H., Proll S., van den Brand J., Baric R., Katze M.G. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J. Virol. 2009;83(14):7062–7074. doi: 10.1128/jvi.00127-09. - DOI - PMC - PubMed
  177.  
    1. de Lang A., Osterhaus A.D., Haagmans B.L. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology. 2006;353(2):474–481. doi: 10.1016/j.virol.2006.06.011. - DOI - PMC - PubMed
  178.  
    1. Sriramula S., Cardinale J.P., Francis J. Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS One. 2013;8(5):e63847. doi: 10.1371/journal.pone.0063847. - DOI - PMC - PubMed
  179.  
    1. Dijkman R., Jebbink M.F., Deijs M., Milewska A., Pyrc K., Buelow E., van der Bijl A., van der Hoek L. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J. Gen. Virol. 2012;93(Pt 9):1924–1929.. doi: 10.1099/vir.0.043919-0. - DOI - PubMed
  180.  
    1. Wevers B.A., van der Hoek L. Renin-angiotensin system in human coronavirus pathogenesis. Future Virol. 2010;5(2):145–161. doi: 10.2217/fvl.10.4. - DOI - PMC - PubMed
  181.  
    1. Liu X., Yang N., Tang J., Liu S., Luo D., Duan Q., Wang X. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014;185:64–71. doi: 10.1016/j.virusres.2014.03.010. - DOI - PMC - PubMed
  182.  
    1. Wang D., Chai X.Q., Magnussen C.G., Zosky G.R., Shu S.H., Wei X., Hu S.S. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulm. Pharmacol. Ther. 2019;58:101833. doi: 10.1016/j.pupt.2019.101833. - DOI - PMC - PubMed
  183.  
    1. Wosten-van Asperen R.M., Lutter R., Specht P.A., Moll G.N., van Woensel J.B., van der Loos C.M., van Goor H., Kamilic J., Florquin S., Bos A.P. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J. Pathol. 2011;225(4):618–627. doi: 10.1002/path.2987. - DOI - PubMed
  184.  
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.-C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112+. - PMC - PubMed
  185.  
    1. Chen J., Xiao X., Chen S., Zhang C., Chen J., Yi D., Shenoy V., Raizada M.K., Zhao B., Chen Y. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension. 2013;61(3):681–689. doi: 10.1161/hypertensionaha.111.00202. - DOI - PMC - PubMed
  186.  
    1. Wong M.H., Chapin O.C., Johnson M.D. LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system. Am. J. Respir. Cell Mol. Biol. 2012;46(5):641–650. doi: 10.1165/rcmb.2011-0289OC. - DOI - PMC - PubMed
  187.  
    1. Ye R., Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp. Mol. Pathol. 2020;113:104350. doi: 10.1016/j.yexmp.2019.104350. - DOI - PubMed
  188.  
    1. Li G., Liu Y., Zhu Y., Liu A., Xu Y., Li X., Li Z., Su J., Sun L. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191(4):327–336. doi: 10.1007/s00408-013-9470-8. - DOI - PubMed
  189.  
    1. Yan D., Li G., Zhang Y., Liu Y. Angiotensin-converting enzyme 2 activation suppresses pulmonary vascular remodeling by inducing apoptosis through the Hippo signaling pathway in rats with pulmonary arterial hypertension. Clin. Exp. Hypertens. 2019;41(6):589–598. doi: 10.1080/10641963.2019.1583247. - DOI - PubMed
  190.  
    1. Zhang B.N., Zhang X., Xu H., Gao X.M., Zhang G.Z., Zhang H., Yang F. Dynamic variation of RAS on silicotic fibrosis pathogenesis in rats. Curr. Med. Sci. 2019;39(4):551–559. doi: 10.1007/s11596-019-2073-8. - DOI - PubMed
  191.  
    1. Dhawale V.S., Amara V.R., Karpe P.A., Malek V., Patel D., Tikoo K. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol. Appl. Pharmacol. 2016;306:17–26. doi: 10.1016/j.taap.2016.06.026. - DOI - PubMed
  192.  
    1. Xue T., Wei N., Xin Z., Qingyu X. Angiotensin-converting enzyme-2 overexpression attenuates inflammation in rat model of chronic obstructive pulmonary disease. Inhal. Toxicol. 2014;26(1):14–22. doi: 10.3109/08958378.2013.850563. - DOI - PubMed
  193.  
    1. Uhal B.D., Dang M., Dang V., Llatos R., Cano E., Abdul-Hafez A., Markey J., Piasecki C.C., Molina-Molina M. Cell cycle dependence of ACE-2 explains downregulation in idiopathic pulmonary fibrosis. Eur. Respir. J. 2013;42(1):198–210. doi: 10.1183/09031936.00015612. - DOI - PubMed
  194.  
    1. Bártová E., Legartová S., Krejčí J., Arcidiacono O.A. Cell differentiation and aging accompanied by depletion of the ACE2 protein. Aging (Albany NY) 2020;12 doi: 10.18632/aging.202221. - DOI - PMC - PubMed
  195.  
    1. Mathewson A.C., Bishop A., Yao Y., Kemp F., Ren J., Chen H., Xu X., Berkhout B., van der Hoek L., Jones I.M. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J. Gen. Virol. 2008;89(Pt 11):2741–2745. doi: 10.1099/vir.0.2008/003962-0. - DOI - PMC - PubMed
  196.  
    1. Huang I.C., Bosch B.J., Li F., Li W., Lee K.H., Ghiran S., Vasilieva N., Dermody T.S., Harrison S.C., Dormitzer P.R., Farzan M., Rottier P.J., Choe H. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 2006;281(6):3198–3203. doi: 10.1074/jbc.M508381200. - DOI - PMC - PubMed
  197.  
    1. Hofmann H., Marzi A., Gramberg T., Geier M., Pyrc K., van der Hoek L., Berkhout B., Pöhlmann S. Attachment factor and receptor engagement of SARS coronavirus and human coronavirus NL63. Adv. Exp. Med. Biol. 2006;581:219–227. doi: 10.1007/978-0-387-33012-9_37. - DOI - PMC - PubMed
  198.  
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570. - DOI - PMC - PubMed
  199.  
    1. Chen Y., Guo Y., Pan Y., Zhao Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 2020;525(1):135–140. doi: 10.1016/j.bbrc.2020.02.071. - DOI - PMC - PubMed
  200.  
    1. Wang Y., Wang Y., Luo W., Huang L., Xiao J., Li F., Qin S., Song X., Wu Y., Zeng Q., Jin F., Wang Y. A comprehensive investigation of the mRNA and protein level of ACE2, the putative receptor of SARS-CoV-2, in human tissues and blood cells. Int. J. Med. Sci. 2020;17(11):1522–1531. doi: 10.7150/ijms.46695. - DOI - PMC - PubMed
  201.  
    1. Gembardt F., Sterner-Kock A., Imboden H., Spalteholz M., Reibitz F., Schultheiss H.P., Siems W.E., Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26(7):1270–1277. doi: 10.1016/j.peptides.2005.01.009. - DOI - PMC - PubMed
  202.  
    1. Aguiar J.A., Tremblay B.J.-M., Mansfield M.J., Woody O., Lobb B., Banerjee A., Chandiramohan A., Tiessen N., Cao Q., Dvorkin-Gheva A., Revill S., Miller M.S., Carlsten C., Organ L., Joseph C., John A., Hanson P., Austin R., McManus B.M., Jenkins G., Mossman K., Ask K., Doxey A.C., Hirota J.A. Gene expression and <em>in situ</em> protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur. Respir. J. 2020:2001123. doi: 10.1183/13993003.01123-2020. - DOI - PMC - PubMed
  203.  
    1. Hennighausen L., Lee H.K. Activation of the SARS-CoV-2 receptor Ace2 by cytokines through pan JAK-STAT enhancers. bioRxiv. 2020 doi: 10.1101/2020.05.11.089045. 2020.05.11.089045. - DOI - PMC - PubMed
  204.  
    1. Hikmet F., Méar L., Edvinsson Å., Micke P., Uhlén M., Lindskog C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 2020;16(7):e9610. doi: 10.15252/msb.20209610. - DOI - PMC - PubMed
  205.  
    1. Hönzke K., Obermayer B., Mache C., Fatykhova D., Kessler M., Dökel S., Wyler E., Hoffmann K., Schulze J., Mieth M., Hellwig K., Biere B., Brunotte L., Mecate-Zambrano A., Hoppe J., Dohmen M., Hinze C., Elezkurtaj S., Tönnies M., Bauer T., Eggeling S., Tran H.-L., Schneider P., Neudecker J., Rückert J.-C., Schmidt-Ott K., Busch J., Klauschen F., Horst D., Radbruch H., Heppner F., Corman V.M., Niemeyer D., Müller M.A., Goffinet C., Beule D., Landthaler M., Ludwig S., Niedobitek G., Suttorp N., Witzenrath M., Gruber A., Drosten C., Sander L., Wolff T., Hippenstiel S., Hocke A.C. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but strong virus-induced immune activation in alveolar macrophages. Cell. 2020;6(October) doi: 10.2139/ssrn.3687020. - DOI
  206.  
    1. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020;202(5):756–759. doi: 10.1164/rccm.202001-0179LE. - DOI - PMC - PubMed
  207.  
    1. Liu Y., Qu H.Q., Qu J., Tian L., Hakonarson H. Expression pattern of the SARS-CoV-2 entry genes ACE2 and TMPRSS2 in the respiratory tract. Viruses. 2020;12(10) doi: 10.3390/v12101174. - DOI - PMC - PubMed
  208.  
    1. Hou Y.J., Okuda K., Edwards C.E., Martinez D.R., Asakura T., Dinnon K.H., 3rd, Kato T., Lee R.E., Yount B.L., Mascenik T.M., Chen G., Olivier K.N., Ghio A., Tse L.V., Leist S.R., Gralinski L.E., Schäfer A., Dang H., Gilmore R., Nakano S., Sun L., Fulcher M.L., Livraghi-Butrico A., Nicely N.I., Cameron M., Cameron C., Kelvin D.J., de Silva A., Margolis D.M., Markmann A., Bartelt L., Zumwalt R., Martinez F.J., Salvatore S.P., Borczuk A., Tata P.R., Sontake V., Kimple A., Jaspers I., O’Neal W.K., Randell S.H., Boucher R.C., Baric R.S. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182(2):429–446. doi: 10.1016/j.cell.2020.05.042. e14. - DOI - PMC - PubMed
  209.  
    1. Busnadiego I., Fernbach S., Pohl M.O., Karakus U., Huber M., Trkola A., Stertz S., Hale B.G. Antiviral activity of type I, II, and III interferons counterbalances ACE2 inducibility and restricts SARS-CoV-2. mBio. 2020;11(5):e01928–20. doi: 10.1128/mBio.01928-20. - DOI - PMC - PubMed
  210.  
    1. Chua R.L., Lukassen S., Trump S., Hennig B.P., Wendisch D., Pott F., Debnath O., Thürmann L., Kurth F., Völker M.T., Kazmierski J., Timmermann B., Twardziok S., Schneider S., Machleidt F., Müller-Redetzky H., Maier M., Krannich A., Schmidt S., Balzer F., Liebig J., Loske J., Suttorp N., Eils J., Ishaque N., Liebert U.G., von Kalle C., Hocke A., Witzenrath M., Goffinet C., Drosten C., Laudi S., Lehmann I., Conrad C., Sander L.-E., Eils R. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020;38(8):970–979. doi: 10.1038/s41587-020-0602-4. - DOI - PubMed
  211.  
    1. Lee H.K., Jung O., Hennighausen L. Activation of ACE2 and interferon-stimulated transcriptomes in human airway epithelium is curbed by Janus kinase inhibitors. bioRxiv. 2020 doi: 10.1101/2020.10.04.325415. 2020.10.04.325415. - DOI
  212.  
    1. Sajuthi S.P., DeFord P., Li Y., Jackson N.D., Montgomery M.T., Everman J.L., Rios C.L., Pruesse E., Nolin J.D., Plender E.G., Wechsler M.E., Mak A.C.Y., Eng C., Salazar S., Medina V., Wohlford E.M., Huntsman S., Nickerson D.A., Germer S., Zody M.C., Abecasis G., Kang H.M., Rice K.M., Kumar R., Oh S., Rodriguez-Santana J., Burchard E.G., Seibold M.A. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nat. Commun. 2020;11(1):5139. doi: 10.1038/s41467-020-18781-2. - DOI - PMC - PubMed
  213.  
    1. Tembhre M.K., Parihar A.S., Sharma V.K., Imran S., Bhari N., Lakshmy R., Bhalla A. Enhanced expression of ACE2 in psoriatic skin and its upregulation in keratinocytes by interferon-gamma: implication of inflammatory milieu in skin tropism of SARS-CoV-2. Br. J. Dermatol. 2020 doi: 10.1111/bjd.19670. - DOI - PubMed
  214.  
    1. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., Feldman J., Muus C., Wadsworth M.H., 2nd, Kazer S.W., Hughes T.K., Doran B., Gatter G.J., Vukovic M., Taliaferro F., Mead B.E., Guo Z., Wang J.P., Gras D., Plaisant M., Ansari M., Angelidis I., Adler H., Sucre J.M.S., Taylor C.J., Lin B., Waghray A., Mitsialis V., Dwyer D.F., Buchheit K.M., Boyce J.A., Barrett N.A., Laidlaw T.M., Carroll S.L., Colonna L., Tkachev V., Peterson C.W., Yu A., Zheng H.B., Gideon H.P., Winchell C.G., Lin P.L., Bingle C.D., Snapper S.B., Kropski J.A., Theis F.J., Schiller H.B., Zaragosi L.E., Barbry P., Leslie A., Kiem H.P., Flynn J.L., Fortune S.M., Berger B., Finberg R.W., Kean L.S., Garber M., Schmidt A.G., Lingwood D., Shalek A.K., Ordovas-Montanes J. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035. doi: 10.1016/j.cell.2020.04.035. e19. - DOI - PMC - PubMed
  215.  
    1. Fignani D., Licata G., Brusco N., Nigi L., Grieco G.E., Marselli L., Overbergh L., Gysemans C., Colli M.L., Marchetti P., Mathieu C., Eizirik D.L., Sebastiani G., Dotta F. SARS-CoV-2 receptor Angiotensin I-converting enzyme type 2 is expressed in human pancreatic islet β-cells and is upregulated by inflammatory stress. bioRxiv. 2020 doi: 10.1101/2020.07.23.208041. 2020.07.23.208041. - DOI - PMC - PubMed
  216.  
    1. Mokuda S., Tokunaga T., Masumoto J., Sugiyama E. Angiotensin-converting enzyme 2, a SARS-CoV-2 receptor, is upregulated by interleukin-6 via STAT3 signaling in rheumatoid synovium. bioRxiv. 2020 doi: 10.1101/2020.05.26.115261. 2020.05.26.115261. - DOI - PubMed
  217.  
    1. Verstockt B., Verstockt S., Abdu Rahiman S., Ke B.J., Arnauts K., Cleynen I., Sabino J., Ferrante M., Matteoli G., Vermeire S. Intestinal receptor of SARS-CoV-2 in inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J. Crohns Colitis. 2020 doi: 10.1093/ecco-jcc/jjaa185. - DOI - PMC - PubMed
  218.  
    1. Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020;9(1):45. doi: 10.1186/s40249-020-00662-x. - DOI - PMC - PubMed
  219.  
    1. Murphy R.C., Lai Y., Barrow K.A., Hamerman J.A., Lacy-Hulbert A., Piliponsky A.M., Ziegler S.F., Altemeier W.A., Debley J.S., Gharib S.A., Hallstrand T.S. Effects of asthma and human rhinovirus A16 on the expression of the SARS-CoV-2 entry factors in human airway epithelium. Am. J. Respir. Cell Mol. Biol. Sep. 2020;18 doi: 10.1165/rcmb.2020-0394LE. - DOI - PMC - PubMed
  220.  
    1. Zhang M., Du L., Faleti O.D., Huang J., Xiao G., Lyu X. Higher pharyngeal epithelial gene expression of Angiotensin-Converting Enzyme-2 in upper respiratory infection patients. Int. J. Infect. Dis. 2020 doi: 10.1016/j.ijid.2020.11.197. - DOI - PMC - PubMed
  221.  
    1. Chen H., Liu W., Liu D., Zhao L., Yu J. SARS-CoV-2 activates lung epithelia cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients by single-cell sequencing. medRxiv. 2020 doi: 10.1101/2020.05.08.20096024. 2020.05.08.20096024. - DOI
  222.  
    1. Turk C., Turk S., Temirci E.S., Malkan U.Y., Haznedaroglu İ C. In vitro analysis of the renin-angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. J. Renin Angiotensin Aldosterone Syst. 2020;21(2) doi: 10.1177/1470320320928872. - DOI - PMC - PubMed
  223.  
    1. Xu J., Xu X., Jiang L., Dua K., Hansbro P.M., Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res. 2020;21(1):182. doi: 10.1186/s12931-020-01445-6. - DOI - PMC - PubMed
  224.  
    1. Garvin M.R., Alvarez C., Miller J.I., Prates E.T., Walker A.M., Amos B.K., Mast A.E., Justice A., Aronow B., Jacobson D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020;9 doi: 10.7554/eLife.59177. - DOI - PMC - PubMed
  225.  
    1. Codo A.C., Davanzo G.G., Monteiro Ld.B., de Souza G.F., Muraro S.P., Virgilio-da-Silva J.V., Prodonoff J.S., Carregari V.C., de Biagi Junior C.A.O., Crunfli F., Jimenez Restrepo J.L., Vendramini P.H., Reis-de-Oliveira G., Bispo dos Santos K., Toledo-Teixeira D.A., Parise P.L., Martini M.C., Marques R.E., Carmo H.R., Borin A., Coimbra L.D., Boldrini V.O., Brunetti N.S., Vieira A.S., Mansour E., Ulaf R.G., Bernardes A.F., Nunes T.A., Ribeiro L.C., Palma A.C., Agrela M.V., Moretti M.L., Sposito A.C., Pereira F.B., Velloso L.A., Vinolo M.A.R., Damasio A., Proença-Módena J.L., Carvalho R.F., Mori M.A., Martins-de-Souza D., Nakaya H.I., Farias A.S., Moraes-Vieira P.M. elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020 doi: 10.1016/j.cmet.2020.07.007. - DOI - PMC - PubMed
  226.  
    1. Feng Q., Li L., Wang X. Identifying pathways and networks associated with the SARS-CoV-2 cell receptor ACE2 based on gene expression profiles in normal and SARS-CoV-2-Infected human tissues. Front. Mol. Biosci. 2020;7:568954. doi: 10.3389/fmolb.2020.568954. - DOI - PMC - PubMed
  227.  
    1. Zhuang M.W., Cheng Y., Zhang J., Jiang X.M., Wang L., Deng J., Wang P.H. Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. J. Med. Virol. 2020 doi: 10.1002/jmv.26139. - DOI - PMC - PubMed
  228.  
    1. Onabajo O.O., Banday A.R., Yan W., Obajemu A., Stanifer M.L., Santer D.M., Florez-Vargas O., Piontkivska H., Vargas J., Kee C., Tyrrell D.L.J., Mendoza J.L., Boulant S., Prokunina-Olsson L. Interferons and viruses induce a novel primate-specific isoform dACE2 and not the SARS-CoV-2 receptor ACE2. bioRxiv. 2020 doi: 10.1101/2020.07.19.210955. 2020.07.19.210955. - DOI
  229.  
    1. Blume C., Jackson C.L., Spalluto C.M., Legebeke J., Nazlamova L., Conforti F., Perotin-Collard J.-M., Frank M., Crispin M., Coles J., Thompson J., Ridley R.A., Dean L.S.N., Loxham M., Azim A., Tariq K., Johnston D., Skipp P.J., Djukanovic R., Baralle D., McCormick C., Davies D.E., Lucas J.S., Wheway G., Mennella V. A novel isoform of <em>ACE2</em> is expressed in human nasal and bronchial respiratory epithelia and is upregulated in response to RNA respiratory virus infection. bioRxiv. 2020 doi: 10.1101/2020.07.31.230870. 2020.07.31.230870. - DOI - PubMed
  230.  
    1. Ng K.W., Attig J., Bolland W., Young G.R., Major J., Wrobel A.G., Gamblin S., Wack A., Kassiotis G. Tissue-specific and interferon-inducible expression of nonfunctional ACE2 through endogenous retroelement co-option. Nat. Genet. 2020 doi: 10.1038/s41588-020-00732-8. - DOI - PMC - PubMed
  231.  
    1. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020;19(6):102537. doi: 10.1016/j.autrev.2020.102537. - DOI - PMC - PubMed
  232.  
    1. Chen D.Y., Khan N., Close B.J., Goel R.K., Blum B., Tavares A.H., Kenney D., Conway H.L., Ewoldt J.K., Kapell S., Chitalia V.C., Crossland N.A., Chen C.S., Kotton D.N., Baker S.C., Connor J.H., Douam F., Emili A., Saeed M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. bioRxiv. 2020 doi: 10.1101/2020.10.27.358259. - DOI
  233.  
    1. Chu H., Chan J.F.-W., Wang Y., Yuen T.T.-T., Chai Y., Hou Y., Shuai H., Yang D., Hu B., Huang X., Zhang X., Cai J.-P., Zhou J., Yuan S., Kok K.-H., To K.K.-W., Chan I.H.-Y., Zhang A.J., Sit K.-Y., Au W.-K., Yuen K.-Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis. 2020;71(6):1400–1409. doi: 10.1093/cid/ciaa410. - DOI - PMC - PubMed
  234.  
    1. Gutiérrez-Chamorro L., Riveira-Muñoz E., Barrios C., Palau V., Massanella M., Garcia-Vidal E., Badia R., Pedreño S., Senserrich J., Rodríguez E., Clotet B., Cabrera C., Mitjà O., Crespo M., Pascual J., Riera M., Ballana E. SARS-CoV-2 infection suppresses ACE2 function and antiviral immune response in the upper respiratory tract of infected patients. bioRxiv. 2020 doi: 10.1101/2020.11.18.388850. 2020.11.18.388850. - DOI
  235.  
    1. Pinto B.G.G., Oliveira A.E.R., Singh Y., Jimenez L., Goncalves A.N.A., Ogava R.L.T., Creighton R., Peron J.P.S., Nakaya H.I. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J. Infect. Dis. 2020 doi: 10.1093/infdis/jiaa332. - DOI - PMC - PubMed
  236.  
    1. Clarke N.E., Belyaev N.D., Lambert D.W., Turner A.J. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin. Sci. (Lond) 2014;126(7):507–516. doi: 10.1042/cs20130291. - DOI - PubMed
  237.  
    1. Chan P.K., To K.F., Lo A.W., Cheung J.L., Chu I., Au F.W., Tong J.H., Tam J.S., Sung J.J., Ng H.K. Persistent infection of SARS coronavirus in colonic cells in vitro. J. Med. Virol. 2004;74(1):1–7. doi: 10.1002/jmv.20138. - DOI - PMC - PubMed
  238.  
    1. Mossel E.C., Huang C., Narayanan K., Makino S., Tesh R.B., Peters C.J. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J. Virol. 2005;79(6):3846–3850. doi: 10.1128/jvi.79.6.3846-3850.2005. - DOI - PMC - PubMed
  239.  
    1. Tseng C.T., Huang C., Newman P., Wang N., Narayanan K., Watts D.M., Makino S., Packard M.M., Zaki S.R., Chan T.S., Peters C.J. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J. Virol. 2007;81(3):1162–1173. doi: 10.1128/jvi.01702-06. - DOI - PMC - PubMed
  240.  
    1. Yamashita M., Yamate M., Li G.M., Ikuta K. Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem. Biophys. Res. Commun. 2005;334(1):79–85. doi: 10.1016/j.bbrc.2005.06.061. - DOI - PMC - PubMed
  241.  
    1. Sun S.H., Chen Q., Gu H.J., Yang G., Wang Y.X., Huang X.Y., Liu S.S., Zhang N.N., Li X.F., Xiong R., Guo Y., Deng Y.Q., Huang W.J., Liu Q., Liu Q.M., Shen Y.L., Zhou Y., Yang X., Zhao T.Y., Fan C.F., Zhou Y.S., Qin C.F., Wang Y.C. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124–133. doi: 10.1016/j.chom.2020.05.020. e4. - DOI - PMC - PubMed
  242.  
    1. Ahmetaj-Shala B., Vaja R., Atanur S.S., George P.M., Kirkby N.S., Mitchell J.A. Systemic analysis of putative SARS-CoV-2 entry and processing genes in cardiovascular tissues identifies a positive correlation of BSG with age in endothelial cells. bioRxiv. 2020 doi: 10.1101/2020.06.23.165324. 2020.06.23.165324. - DOI
  243.  
    1. Chen Z., Mi L., Xu J., Yu J., Wang X., Jiang J., Xing J., Shang P., Qian A., Li Y., Shaw P.X., Wang J., Duan S., Ding J., Fan C., Zhang Y., Yang Y., Yu X., Feng Q., Li B., Yao X., Zhang Z., Li L., Xue X., Zhu P. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 2005;191(5):755–760. doi: 10.1086/427811. - DOI - PMC - PubMed
  244.  
    1. Ganier C., Du-Harpur X., Harun N., Wan B., Arthurs C., Luscombe N., Watt F., Lynch M. CD147 (<em>BSG</em>) but not <em>ACE2</em> expression is detectable in vascular endothelial cells within single cell RNA sequencing datasets derived from multiple tissues in healthy individuals. bioRxiv. 2020 doi: 10.1101/2020.05.29.123513. 2020.05.29.123513. - DOI
  245.  
    1. Wang K., Chen W., Zhang Z., Deng Y., Lian J.-Q., Du P., Wei D., Zhang Y., Sun X.-X., Gong L., Yang X., He L., Zhang L., Yang Z., Geng J.-J., Chen R., Zhang H., Wang B., Zhu Y.-M., Nan G., Jiang J.-L., Li L., Wu J., Lin P., Huang W., Xie L., Zheng Z.-H., Zhang K., Miao J.-L., Cui H.-Y., Huang M., Zhang J., Fu L., Yang X.-M., Zhao Z., Sun S., Gu H., Wang Z., Wang C.-F., Lu Y., Liu Y.-Y., Wang Q.-Y., Bian H., Zhu P., Chen Z.-N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020;5(1):283. doi: 10.1038/s41392-020-00426-x. - DOI - PMC - PubMed
  246.  
    1. Amraie R., Napoleon M.A., Yin W., Berrigan J., Suder E., Zhao G., Olejnik J., Gummuluru S., Muhlberger E., Chitalia V., Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells. bioRxiv. 2020 doi: 10.1101/2020.06.22.165803. 2020.06.22.165803. - DOI
  247.  
    1. Gao C., Zeng J., Jia N., Stavenhagen K., Matsumoto Y., Zhang H., Li J., Hume A.J., Mühlberger E., van Die I., Kwan J., Tantisira K., Emili A., Cummings R.D. SARS-CoV-2 spike protein interacts with multiple innate immune receptors. bioRxiv. 2020 doi: 10.1101/2020.07.29.227462. 2020.07.29.227462. - DOI
  248.  
    1. Gramberg T., Hofmann H., Möller P., Lalor P.F., Marzi A., Geier M., Krumbiegel M., Winkler T., Kirchhoff F., Adams D.H., Becker S., Münch J., Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology. 2005;340(2):224–236. doi: 10.1016/j.virol.2005.06.026. - DOI - PMC - PubMed
  249.  
    1. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J., Thomas W.D., Jr., Thackray L.B., Young M.D., Mason R.J., Ambrosino D.M., Wentworth D.E., Demartini J.C., Holmes K.V. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. U.S.A. 2004;101(44):15748–15753. doi: 10.1073/pnas.0403812101. - DOI - PMC - PubMed
  250.  
    1. Marzi A., Gramberg T., Simmons G., Möller P., Rennekamp A.J., Krumbiegel M., Geier M., Eisemann J., Turza N., Saunier B., Steinkasserer A., Becker S., Bates P., Hofmann H., Pöhlmann S. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 2004;78(21):12090–12095. doi: 10.1128/jvi.78.21.12090-12095.2004. - DOI - PMC - PubMed
  251.  
    1. Yang Z.Y., Huang Y., Ganesh L., Leung K., Kong W.P., Schwartz O., Subbarao K., Nabel G.J. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 2004;78(11):5642–5650. doi: 10.1128/jvi.78.11.5642-5650.2004. - DOI - PMC - PubMed
  252.  
    1. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Österlund P., Joensuu M., Meunier F.A., Butcher S., Winkler M.S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. 2020 doi: 10.1101/2020.06.07.137802. 2020.06.07.137802. - DOI
  253.  
    1. Daly J.L., Simonetti B., Antón-Plágaro C., Kavanagh Williamson M., Shoemark D.K., Simón-Gracia L., Klein K., Bauer M., Hollandi R., Greber U.F., Horvath P., Sessions R.B., Helenius A., Hiscox J.A., Teesalu T., Matthews D.A., Davidson A.D., Cullen P.J., Yamauchi Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. bioRxiv. 2020 doi: 10.1101/2020.06.05.134114. 2020.06.05.134114. - DOI - PubMed
  254.  
    1. Hao W., Ma B., Li Z., Wang X., Gao X., Li Y., Qin B., Shang S., Cui S., Tan Z. Binding of the SARS-CoV-2 spike protein to glycans. bioRxiv. 2020 doi: 10.1101/2020.05.17.100537. 2020.05.17.100537. - DOI - PMC - PubMed
  255.  
    1. Liu L., Chopra P., Li X., Wolfert M.A., Tompkins S.M., Boons G.J. SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner. bioRxiv. 2020 doi: 10.1101/2020.05.10.087288. - DOI
  256.  
    1. Ichimura T., Mori Y., Aschauer P., Padmanabha Das K.M., Padera R.F., Weins A., Nasr M.L., Bonventre J.V. KIM-1/TIM-1 is a receptor for SARS-CoV-2 in lung and kidney. medRxiv. 2020 doi: 10.1101/2020.09.16.20190694. - DOI
  257.  
    1. Asandei A., Mereuta L., Schiopu I., Park J., Seo C.H., Park Y., Luchian T. Non-receptor-Mediated lipid membrane permeabilization by the SARS-CoV-2 spike protein S1 subunit. ACS Appl. Mater. Interfaces. 2020 doi: 10.1021/acsami.0c17044. - DOI - PubMed
  258.  
    1. Karmouty-Quintana H., Thandavarayan R.A., Keller S.P., Sahay S., Pandit L.M., Akkanti B. Emerging mechanisms of pulmonary vasoconstriction in SARS-CoV-2-Induced acute respiratory distress syndrome (ARDS) and potential therapeutic targets. Int. J. Mol. Sci. 2020;21(21) doi: 10.3390/ijms21218081. - DOI - PMC - PubMed
  259.  
    1. Gao Y.L., Du Y., Zhang C., Cheng C., Yang H.Y., Jin Y.F., Duan G.C., Chen S.Y. Role of renin-angiotensin system in acute lung injury caused by viral infection. Infect. Drug Resist. 2020;13:3715–3725. doi: 10.2147/idr.S265718. - DOI - PMC - PubMed
  260.  
    1. Hrenak J., Simko F. Renin-angiotensin system: an important player in the pathogenesis of acute respiratory distress syndrome. Int. J. Mol. Sci. 2020;21(21) doi: 10.3390/ijms21218038. - DOI - PMC - PubMed
  261.  
    1. Gu H., Xie Z., Li T., Zhang S., Lai C., Zhu P., Wang K., Han L., Duan Y., Zhao Z., Yang X., Xing L., Zhang P., Wang Z., Li R., Yu J.J., Wang X., Yang P. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci. Rep. 2016;6:19840. doi: 10.1038/srep19840. - DOI - PMC - PubMed
  262.  
    1. Zou Z., Yan Y., Shu Y., Gao R., Sun Y., Li X., Ju X., Liang Z., Liu Q., Zhao Y., Guo F., Bai T., Han Z., Zhu J., Zhou H., Huang F., Li C., Lu H., Li N., Li D., Jin N., Penninger J.M., Jiang C. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat. Commun. 2014;5(1):3594. doi: 10.1038/ncomms4594. - DOI - PMC - PubMed
  263.  
    1. Treml B., Neu N., Kleinsasser A., Gritsch C., Finsterwalder T., Geiger R., Schuster M., Janzek E., Loibner H., Penninger J., Loeckinger A. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit. Care Med. 2010;38(2):596–601. doi: 10.1097/CCM.0b013e3181c03009. - DOI - PubMed
  264.  
    1. Yang P., Gu H., Zhao Z., Wang W., Cao B., Lai C., Yang X., Zhang L., Duan Y., Zhang S., Chen W., Zhen W., Cai M., Penninger J.M., Jiang C., Wang X. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci. Rep. 2014;4:7027. doi: 10.1038/srep07027. - DOI - PMC - PubMed
  265.  
    1. Sriram K., Insel P.A. A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance. Br. J. Pharmacol. 2020;177(21):4825–4844. doi: 10.1111/bph.15082. - DOI - PMC - PubMed
  266.  
    1. Serfozo P., Wysocki J., Gulua G., Schulze A., Ye M., Liu P., Jin J., Bader M., Myohanen T., Garcia-Horsman J.A., Batlle D. Ang II (Angiotensin II) conversion to angiotensin-(1-7) in the circulation is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting enzyme 2)-Independent. Hypertension. 2020;75(1):173–182. doi: 10.1161/HYPERTENSIONAHA.119.14071. - DOI - PMC - PubMed
  267.  
    1. Huang F., Guo J., Zou Z., Liu J., Cao B., Zhang S., Li H., Wang W., Sheng M., Liu S., Pan J., Bao C., Zeng M., Xiao H., Qian G., Hu X., Chen Y., Chen Y., Zhao Y., Liu Q., Zhou H., Zhu J., Gao H., Yang S., Liu X., Zheng S., Yang J., Diao H., Cao H., Wu Y., Zhao M., Tan S., Guo D., Zhao X., Ye Y., Wu W., Xu Y., Penninger J.M., Li D., Gao G.F., Jiang C., Li L. Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nat. Commun. 2014;5:3595. doi: 10.1038/ncomms4595. - DOI - PMC - PubMed
  268.  
    1. Wenz M., Hoffmann B., Bohlender J., Kaczmarczyk G. Angiotensin II formation and endothelin clearance in ARDS patients in supine and prone positions. Intensive Care Med. 2000;26(3):292–298. doi: 10.1007/s001340051152. - DOI - PubMed
  269.  
    1. Doerschug K.C., Delsing A.S., Schmidt G.A., Ashare A. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical Care (London, England) 2010;14(1):R24. doi: 10.1186/cc8887. - DOI - PMC - PubMed
  270.  
    1. Henry B.M., Benoit J., Berger B., Pulvino C., Lavie C.J., Lippi G., Benoit S.W. Coronavirus disease 2019 (COVID-19) is associated with low circulating plasma levels of angiotensin 1 and angiotensin 1,7. J. Med. Virol. 2020 doi: 10.1002/jmv.26479. - DOI - PubMed
  271.  
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., Zhang Z., Wang L., Peng L., Chen L., Qin Y., Zhao D., Tan S., Yin L., Xu J., Zhou C., Jiang C., Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63(3):364–374. doi: 10.1007/s11427-020-1643-8. - DOI - PMC - PubMed
  272.  
    1. Liu N., Hong Y., Chen R.-G., Zhu H.-M. High rate of increased level of plasma Angiotensin II and its gender difference in COVID-19: an analysis of 55 hospitalized patients with COVID-19 in a single hospital, Wuhan, China. medRxiv. 2020 doi: 10.1101/2020.04.27.20080432. 2020.04.27.20080432. - DOI
  273.  
    1. Wu Z., Hu R., Zhang C., Ren W., Yu A., Zhou X. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit Care. 2020;24(1):290. doi: 10.1186/s13054-020-03015-0. - DOI - PMC - PubMed
  274.  
    1. Giardini V., Carrer A., Casati M., Contro E., Vergani P., Gambacorti-Passerini C. Increased sFLT-1/PlGF ratio in COVID-19: a novel link to angiotensin II-mediated endothelial dysfunction. Am. J. Hematol. 2020;95(8):E188–E191. doi: 10.1002/ajh.25882. - DOI - PMC - PubMed
  275.  
    1. Dudoignon E., Moreno N., Deniau B., Coutrot M., Longer R., Amiot Q., Mebazaa A., Pirracchio R., Depret F., Legrand M. Activation of the renin-angiotensin-aldosterone system is associated with Acute Kidney Injury in COVID-19. Anaesth. Crit. Care Pain Med. 2020;39(4):453–455. doi: 10.1016/j.accpm.2020.06.006. - DOI - PMC - PubMed
  276.  
    1. Villard O., Morquin D., MOLINARI N., Raingeard I., Nagot N., Cristol J.-P., Jung B., Roubille C., Foulongne V., Fesler P., Lamure S., Taourel P., Konate A., Maria A.T.J., Makinson A., Bertchansky I., Larcher R., Klouche K., Le Moing V., Renard E., Guilpain P. The plasmatic aldosterone and C-reactive protein levels, and the severity of Covid-19: the Dyhor-19 study. J. Clin. Med. 2020;9(7):2315. doi: 10.3390/jcm9072315. - DOI - PMC - PubMed
  277.  
    1. Henry B.M., Benoit S., Lippi G., Benoit J. Circulating plasma levels of angiotensin II and aldosterone in patients with coronavirus disease 2019 (COVID-19): a preliminary report. Prog. Cardiovasc. Dis. 2020 doi: 10.1016/j.pcad.2020.07.006. - DOI - PMC - PubMed
  278.  
    1. Rieder M., Wirth L., Pollmeier L., Jeserich M., Goller I., Baldus N., Schmid B., Busch H.J., Hofmann M., Kern W., Bode C., Duerschmied D., Lother A. Serum ACE-2, angiotensin II, and aldosterone levels are unchanged in patients with COVID-19. Am. J. Hypertens. 2020 doi: 10.1093/ajh/hpaa169. - DOI - PMC - PubMed
  279.  
    1. Zhang H., Shang W., Liu Q., Zhang X., Zheng M., Yue M. Clinical characteristics of 194 cases of COVID-19 in Huanggang and Taian, China. Infection. 2020;48(5):687–694. doi: 10.1007/s15010-020-01440-5. - DOI - PMC - PubMed
  280.  
    1. Enes A., Pir P. Transcriptional response of signalling pathways to SARS-CoV-2 infection in normal human bronchial epithelial cells. bioRxiv. 2020 doi: 10.1101/2020.06.20.163006. 2020.06.20.163006. - DOI
  281.  
    1. Nagy B., Fejes Z., Szentkereszty Z., Suto R., Várkonyi I., Ajzner É., Kappelmayer J., Papp Z., Tóth A., Fagyas M. A dramatic rise in serum ACE2 activity in a critically ill COVID-19 patient. Int. J. Infect. Dis. 2020 doi: 10.1016/j.ijid.2020.11.184. - DOI - PMC - PubMed
  282.  
    1. Zhang J., Xie B., Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun. 2020;87:59–73. doi: 10.1016/j.bbi.2020.04.046. - DOI - PMC - PubMed
  283.  
    1. Kintscher U., Slagman A., Domenig O., Röhle R., Konietschke F., Poglitsch M., Möckel M. Plasma angiotensin peptide profiling and ACE2-Activity in COVID-19 patients treated with pharmacological blockers of the renin angiotensin system. Hypertension. 2020 doi: 10.1161/hypertensionaha.120.15841. - DOI - PMC - PubMed
  284.  
    1. Rojas M., Acosta-Ampudia Y., Monsalve Diana M., Ramírez-Santana Carolina, Anaya J.M. How important is the assessment of soluble ACE-2 in COVID-19? Am. J. Hypertens. 2020 doi: 10.1093/ajh/hpaa178. - DOI - PMC - PubMed
  285.  
    1. Schlicht K., Rohmann N., Geisler C., Hollstein T., Knappe C., Hartmann K., Schwarz J., Tran F., Schunk D., Junker R., Bahmer T., Rosenstiel P., Schulte D., Türk K., Franke A., Schreiber S., Laudes M. Circulating levels of soluble Dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int. J. Obes. 2020;44(11):2335–2338. doi: 10.1038/s41366-020-00689-y. - DOI - PMC - PubMed
  286.  
    1. Inn K.S., Kim Y., Aigerim A., Park U., Hwang E.S., Choi M.S., Kim Y.S., Cho N.H. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus. Virology. 2018;518:324–327. doi: 10.1016/j.virol.2018.03.015. - DOI - PMC - PubMed
  287.  
    1. Goetz R., Joshi R., Chiles J., Scullin D., Wade R., Luckhardt T., Wells J. A remarkable response to angiotensin II therapy in severe SARS-COV-2 infection. Chest. 2020;158(4):A1012. doi: 10.1016/j.chest.2020.08.942. - DOI
  288.  
    1. Leisman D.E., Mastroianni F., Fisler G., Shah S., Hasan Z., Narasimhan M., Taylor M.D., Deutschman C.S. Physiologic response to angiotensin II treatment for coronavirus disease 2019-Induced vasodilatory shock: a retrospective matched cohort study. Crit Care Explor. 2020;2(10):e0230. doi: 10.1097/cce.0000000000000230. - DOI - PMC - PubMed
  289.  
    1. Ofosu-Barko K., Liu Y., Tamimi F.A., Al Husami W., Ganatra S., Resnic F., Shah S.P. Angiotensin II administration in patients with COVID-19 shock. Crit. Pathw. Cardiol. 2020 doi: 10.1097/hpc.0000000000000246. - DOI - PMC - PubMed
  290.  
    1. Grobe N., Weir N.M., Leiva O., Ong F.S., Bernstein K.E., Schmaier A.H., Morris M., Elased K.M. Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry. Am. J. Physiol., Cell Physiol. 2013;304(10):C945–953. doi: 10.1152/ajpcell.00346.2012. - DOI - PMC - PubMed
  291.  
    1. Gurley S.B., Coffman T.M. Angiotensin-converting enzyme 2 gene targeting studies in mice: mixed messages. Exp. Physiol. 2008;93(5):538–542. doi: 10.1113/expphysiol.2007.040014. - DOI - PubMed
  292.  
    1. Peña Silva R.A., Chu Y., Miller J.D., Mitchell I.J., Penninger J.M., Faraci F.M., Heistad D.D. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke. 2012;43(12):3358–3363. doi: 10.1161/strokeaha.112.667063. - DOI - PMC - PubMed
  293.  
    1. Wysocki J., Ortiz-Melo D.I., Mattocks N.K., Xu K., Prescott J., Evora K., Ye M., Sparks M.A., Haque S.K., Batlle D., Gurley S.B. ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiol. Rep. 2014;2(3):e00264. doi: 10.1002/phy2.264. - DOI - PMC - PubMed
  294.  
    1. Wysocki J., Ye M., Rodriguez E., González-Pacheco F.R., Barrios C., Evora K., Schuster M., Loibner H., Brosnihan K.B., Ferrario C.M., Penninger J.M., Batlle D. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55(1):90–98. doi: 10.1161/hypertensionaha.109.138420. - DOI - PMC - PubMed
  295.  
    1. Haschke M., Schuster M., Poglitsch M., Loibner H., Salzberg M., Bruggisser M., Penninger J., Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet. 2013;52(9):783–792. doi: 10.1007/s40262-013-0072-7. - DOI - PubMed
  296.  
    1. Hisatake S., Kiuchi S., Kabuki T., Oka T., Dobashi S., Ikeda T. Serum angiotensin-converting enzyme 2 concentration and angiotensin-(1-7) concentration in patients with acute heart failure patients requiring emergency hospitalization. Heart Vessels. 2017;32(3):303–308. doi: 10.1007/s00380-016-0877-z. - DOI - PubMed
  297.  
    1. Khan A., Benthin C., Zeno B., Albertson T.E., Boyd J., Christie J.D., Hall R., Poirier G., Ronco J.J., Tidswell M., Hardes K., Powley W.M., Wright T.J., Siederer S.K., Fairman D.A., Lipson D.A., Bayliffe A.I., Lazaar A.L. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x. - DOI - PMC - PubMed
  298.  
    1. Zoufaly A., Poglitsch M., Aberle J.H., Hoepler W., Seitz T., Traugott M., Grieb A., Pawelka E., Laferl H., Wenisch C., Neuhold S., Haider D., Stiasny K., Bergthaler A., Puchhammer-Stoeckl E., Mirazimi A., Montserrat N., Zhang H., Slutsky A.S., Penninger J.M. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med. 2020;8(11):1154–1158. doi: 10.1016/s2213-2600(20)30418-5. - DOI - PMC - PubMed
  299.  
    1. Zhang R., Wu Y., Zhao M., Liu C., Zhou L., Shen S., Liao S., Yang K., Li Q., Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;297(4):L631–640. doi: 10.1152/ajplung.90415.2008. - DOI - PubMed
  300.  
    1. Zhang R., Su H., Ma X., Xu X., Liang L., Ma G., Shi L. MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am. J. Physiol. Lung Cell Mol. Physiol. 2019;316(3):L547–l557. doi: 10.1152/ajplung.00387.2018. - DOI - PubMed
  301.  
    1. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990;86(4):1343–1346. doi: 10.1172/jci114844. - DOI - PMC - PubMed
  302.  
    1. Matsuda A., Kishi T., Jacob A., Aziz M., Wang P. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis. BMC Med. Genet. 2012;13:76. doi: 10.1186/1471-2350-13-76. - DOI - PMC - PubMed
  303.  
    1. Zheng H., Cao J.J. ACE gene polymorphism and severe lung injury in patients with COVID-19. Am. J. Pathol. 2020 doi: 10.1016/j.ajpath.2020.07.009. - DOI - PMC - PubMed
  304.  
    1. Marshall R.P., Webb S., Bellingan G.J., Montgomery H.E., Chaudhari B., McAnulty R.J., Humphries S.E., Hill M.R., Laurent G.J. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002;166(5):646–650. doi: 10.1164/rccm.2108086. - DOI - PubMed
  305.  
    1. Gómez J., Albaiceta G.M., García-Clemente M., López-Larrea C., Amado-Rodríguez L., Lopez-Alonso I., Hermida T., Enriquez A.I., Herrero P., Melón S., Alvarez-Argüelles M.E., Boga J.A., Rojo-Alba S., Cuesta-Llavona E., Alvarez V., Lorca R., Coto E. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene. 2020;762 doi: 10.1016/j.gene.2020.145102. - DOI - PMC - PubMed
  306.  
    1. Aung A.K., Aitken T., Teh B.M., Yu C., Ofori-Asenso R., Chin K.L., Liew D. Angiotensin converting enzyme genotypes and mortality from COVID-19: an ecological study. J. Infect. 2020 doi: 10.1016/j.jinf.2020.11.012. S0163-4453(20)30708-8. - DOI - PMC - PubMed
  307.  
    1. Bellone M., Calvisi S.L. ACE polymorphisms and COVID-19-related mortality in Europe. J. Mol. Med. (Berl) 2020;98(11):1505–1509. doi: 10.1007/s00109-020-01981-0. - DOI - PMC - PubMed
  308.  
    1. Chiu R.W.K., Tang N.L.S., Hui D.S.C., Chung G.T.Y., Chim S.S.C., Chan K.C.A., Sung Y.-m., Chan L.Y.S., Tong Y.-k., Lee W.-s., Chan P.K.S., Lo Y.M.D. ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin. Chem. 2004;50(9):1683–1686. doi: 10.1373/clinchem.2004.035436. - DOI - PMC - PubMed
  309.  
    1. Itoyama S., Keicho N., Hijikata M., Quy T., Phi N.C., Long H.T., Ha L.D., Ban V.V., Matsushita I., Yanai H., Kirikae F., Kirikae T., Kuratsuji T., Sasazuki T. Identification of an alternative 5’-untranslated exon and new polymorphisms of angiotensin-converting enzyme 2 gene: lack of association with SARS in the Vietnamese population. Am. J. Med. Genet. A. 2005;136(1):52–57. doi: 10.1002/ajmg.a.30779. - DOI - PMC - PubMed
  310.  
    1. Li W., Greenough T.C., Moore M.J., Vasilieva N., Somasundaran M., Sullivan J.L., Farzan M., Choe H. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol. 2004;78(20):11429–11433. doi: 10.1128/JVI.78.20.11429-11433.2004. - DOI - PMC - PubMed
  311.  
    1. Lutz C., Maher L., Lee C., Kang W. COVID-19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum. Genomics. 2020;14(1):20. doi: 10.1186/s40246-020-00272-6. - DOI - PMC - PubMed
  312.  
    1. Zhao X., Chen D., Szabla R., Zheng M., Li G., Du P., Zheng S., Li X., Song C., Li R., Guo J.-T., Junop M., Zeng H., Lin H. Broad and differential animal ACE2 receptor usage by SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.04.19.048710. 2020.04.19.048710. - DOI - PMC - PubMed
  313.  
    1. Golden J.W., Cline C.R., Zeng X., Garrison A.R., Carey B.D., Mucker E.M., White L.E., Shamblin J.D., Brocato R.L., Liu J., Babka A.M., Rauch H.B., Smith J.M., Hollidge B.S., Fitzpatrick C., Badger C.V., Hooper J.W. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. bioRxiv. 2020 doi: 10.1101/2020.07.09.195230. 2020.07.09.195230. - DOI - PMC - PubMed
  314.  
    1. McCray P.B., Jr., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., Netland J., Jia H.P., Halabi C., Sigmund C.D., Meyerholz D.K., Kirby P., Look D.C., Perlman S. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007;81(2):813–821. doi: 10.1128/JVI.02012-06. - DOI - PMC - PubMed
  315.  
    1. Oladunni F.S., Park J.-G., Tamayo P.P., Gonzalez O., Akhter A., Allué-Guardia A., Olmo-Fontánez A., Gautam S., Garcia-Vilanova A., Ye C., Chiem K., Headley C., Dwivedi V., Parodi L.M., Alfson K.J., Staples H.M., Schami A., Garcia J.I., Whigham A., Platt R.N., Gazi M., Martinez J., Chuba C., Earley S., Rodriguez O.H., Mdaki S.D., Kavelish K.N., Escalona R., Hallam C.R.A., Christie C., Patterson J.L., Anderson T.J.C., Carrion R., Dick E.J., Hall-Ursone S., Schlesinger L.S., Kaushal D., Giavedoni L.D., Alvarez X., Turner J., Martinez-Sobrido L., Torrelles J.B. Lethality of SARS-CoV-2 infection in K18 human angiotensin converting enzyme 2 transgenic mice. bioRxiv. 2020 doi: 10.1101/2020.07.18.210179. 2020.07.18.210179. - DOI - PMC - PubMed
  316.  
    1. Rathnasinghe R., Strohmeier S., Amanat F., Gillespie V.L., Krammer F., García-Sastre A., Coughlan L., Schotsaert M., Uccellini M. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. bioRxiv. 2020 doi: 10.1101/2020.07.06.190066. - DOI - PMC - PubMed
  317.  
    1. Tamargo M., Tamargo J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin. Drug Discov. 2017;12(8):827–848. doi: 10.1080/17460441.2017.1335301. - DOI - PubMed
  318.  
    1. Oparil S., Schmieder R.E. New approaches in the treatment of hypertension. Circ. Res. 2015;116(6):1074–1095. doi: 10.1161/circresaha.116.303603. - DOI - PubMed
  319.  
    1. Huang L., Sexton D.J., Skogerson K., Devlin M., Smith R., Sanyal I., Parry T., Kent R., Enright J., Wu Q.L., Conley G., DeOliveira D., Morganelli L., Ducar M., Wescott C.R., Ladner R.C. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003;278(18):15532–15540. doi: 10.1074/jbc.M212934200. - DOI - PubMed
  320.  
    1. Dales N.A., Gould A.E., Brown J.A., Calderwood E.F., Guan B., Minor C.A., Gavin J.M., Hales P., Kaushik V.K., Stewart M., Tummino P.J., Vickers C.S., Ocain T.D., Patane M.A. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J. Am. Chem. Soc. 2002;124(40):11852–11853. doi: 10.1021/ja0277226. - DOI - PubMed
  321.  
    1. Towler P., Staker B., Prasad S.G., Menon S., Tang J., Parsons T., Ryan D., Fisher M., Williams D., Dales N.A., Patane M.A., Pantoliano M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem. 2004;279(17):17996–18007. doi: 10.1074/jbc.M311191200. - DOI - PMC - PubMed
  322.  
    1. Pedersen K.B., Sriramula S., Chhabra K.H., Xia H., Lazartigues E. Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;301(5):R1293–1299. doi: 10.1152/ajpregu.00339.2011. - DOI - PMC - PubMed
  323.  
    1. Ye M., Wysocki J., Gonzalez-Pacheco F.R., Salem M., Evora K., Garcia-Halpin L., Poglitsch M., Schuster M., Batlle D. Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension. 2012;60(3):730–740. doi: 10.1161/HYPERTENSIONAHA.112.198622. - DOI - PMC - PubMed
  324.  
    1. Joshi S., Balasubramanian N., Vasam G., Jarajapu Y.P. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells. Eur. J. Pharmacol. 2016;774:25–33. doi: 10.1016/j.ejphar.2016.01.007. - DOI - PMC - PubMed
  325.  
    1. Patel V.B., Takawale A., Ramprasath T., Das S.K., Basu R., Grant M.B., Hall D.A., Kassiri Z., Oudit G.Y. Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2. J. Mol. Med. 2015;93(9):1003–1013. doi: 10.1007/s00109-015-1285-z. - DOI - PMC - PubMed
  326.  
    1. Hernández Prada J.A., Ferreira A.J., Katovich M.J., Shenoy V., Qi Y., Santos R.A., Castellano R.K., Lampkins A.J., Gubala V., Ostrov D.A., Raizada M.K. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 2008;51(5):1312–1317. doi: 10.1161/hypertensionaha.107.108944. - DOI - PubMed
  327.  
    1. Kulemina L.V., Ostrov D.A. Prediction of off-target effects on angiotensin-converting enzyme 2. J. Biomol. Screen. 2011;16(8):878–885. doi: 10.1177/1087057111413919. - DOI - PubMed
  328.  
    1. Haber P.K., Ye M., Wysocki J., Maier C., Haque S.K., Batlle D. Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: studies in vivo, ex vivo, and in vitro. Hypertension. 2014;63(4):774–782. doi: 10.1161/hypertensionaha.113.02856. - DOI - PMC - PubMed
  329.  
    1. Goru S.K., Kadakol A., Malek V., Pandey A., Sharma N., Gaikwad A.B. Diminazene aceturate prevents nephropathy by increasing glomerular ACE2 and AT2 receptor expression in a rat model of type1 diabetes. Br. J. Pharmacol. 2017;174(18):3118–3130. doi: 10.1111/bph.13946. - DOI - PMC - PubMed
  330.  
    1. Marquez A., Wysocki J., Pandit J., Batlle D. An update on ACE2 amplification and its therapeutic potential. Acta Physiologica n/a(n/a) 2020:e13513. doi: 10.1111/apha.13513. - DOI - PMC - PubMed
  331.  
    1. Qi Y., Zhang J., Cole-Jeffrey C.T., Shenoy V., Espejo A., Hanna M., Song C., Pepine C.J., Katovich M.J., Raizada M.K. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension. 2013;62(4):746–752. doi: 10.1161/hypertensionaha.113.01337. - DOI - PMC - PubMed
  332.  
    1. Qaradakhi T., Gadanec L.K., McSweeney K.R., Tacey A., Apostolopoulos V., Levinger I., Rimarova K., Egom E.E., Rodrigo L., Kruzliak P., Kubatka P., Zulli A. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin. Exp. Pharmacol. Physiol. 2020;47(5):751–758. doi: 10.1111/1440-1681.13251. - DOI - PubMed
  333.  
    1. Muchtaridi M., Fauzi M., Khairul Ikram N.K., Mohd Gazzali A., Wahab H.A. Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules. 2020;25(17) doi: 10.3390/molecules25173980. - DOI - PMC - PubMed
  334.  
    1. Senthil Kumar K.J., Gokila Vani M., Wang C.S., Chen C.C., Chen Y.C., Lu L.P., Huang C.H., Lai C.S., Wang S.Y. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants (Basel) 2020;9(6) doi: 10.3390/plants9060770. - DOI - PMC - PubMed
  335.  
    1. Takahashi S., Yoshiya T., Yoshizawa-Kumagaye K., Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed. Res. 2015;36(3):219–224. doi: 10.2220/biomedres.36.219. - DOI - PubMed
  336.  
    1. Thuy B.T.P., My T.T.A., Hai N.T.T., Hieu L.T., Hoa T.T., Thi Phuong Loan H., Triet N.T., Anh T.T.V., Quy P.T., Tat P.V., Hue N.V., Quang D.T., Trung N.T., Tung V.T., Huynh L.K., Nhung N.T.A. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega. 2020;5(14):8312–8320. doi: 10.1021/acsomega.0c00772. - DOI - PMC - PubMed
  337.  
    1. Shen L.W., Mao H.J., Wu Y.L., Tanaka Y., Zhang W. TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. Biochimie. 2017;142:1–10. doi: 10.1016/j.biochi.2017.07.016. - DOI - PMC - PubMed
  338.  
    1. Monteil V., Kwon H., Prado P., Hagelkrüys A., Wimmer R.A., Stahl M., Leopoldi A., Garreta E., Hurtado Del Pozo C., Prosper F., Romero J.P., Wirnsberger G., Zhang H., Slutsky A.S., Conder R., Montserrat N., Mirazimi A., Penninger J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913. doi: 10.1016/j.cell.2020.04.004. e7. - DOI - PMC - PubMed
  339.  
    1. Iwanaga N., Cooper L., Rong L., Beddingfield B., Crabtree J., Tripp R.A., Kolls J.K. Novel ACE2-IgG1 fusions with improved activity against SARS-CoV2. bioRxiv. 2020 doi: 10.1101/2020.06.15.152157. - DOI
  340.  
    1. Lei C., Qian K., Li T., Zhang S., Fu W., Ding M., Hu S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun. 2020;11(1):2070. doi: 10.1038/s41467-020-16048-4. - DOI - PMC - PubMed
  341.  
    1. Case J.B., Rothlauf P.W., Chen R.E., Liu Z., Zhao H., Kim A.S., Bloyet L.-M., Zeng Q., Tahan S., Droit L., Ilagan M.X.G., Tartell M.A., Amarasinghe G., Henderson J.P., Miersch S., Ustav M., Sidhu S., Virgin H.W., Wang D., Ding S., Corti D., Theel E.S., Fremont D.H., Diamond M.S., Whelan S.P.J. Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. Cell Host Microbe. 2020;28(3):475–485. doi: 10.1016/j.chom.2020.06.021. e5. - DOI - PMC - PubMed
  342.  
    1. Monteil V., Dyczynski M., Lauschke V.M., Kwon H., Wirnsberger G., Youhanna S., Zhang H., A S.S., Hurtado Del Pozo C., Horn M., Montserrat N., Penninger J.M., Mirazimi A. Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol. Med. 2020:e13426. doi: 10.15252/emmm.202013426. - DOI - PMC - PubMed
  343.  
    1. Karoyan P., Vieillard V., Odile E., Denis A., Gómez-Morales L., Grondin P., Lequin O. An hACE2 peptide mimic blocks SARS-CoV-2 pulmonary cell infection. bioRxiv. 2020 doi: 10.1101/2020.08.24.264077. 2020.08.24.264077. - DOI
  344.  
    1. Guo L., Bi W., Wang X., Xu W., Yan R., Zhang Y., Zhao K., Li Y., Zhang M., Cai X., Jiang S., Xie Y., Zhou Q., Lu L., Dang B. Engineered trimeric ACE2 binds viral spike protein and locks it in “Three-up” conformation to potently inhibit SARS-CoV-2 infection. Cell Res. 2020 doi: 10.1038/s41422-020-00438-w. - DOI - PMC - PubMed
  345.  
    1. Linsky T.W., Vergara R., Codina N., Nelson J.W., Walker M.J., Su W., Barnes C.O., Hsiang T.-Y., Esser-Nobis K., Yu K., Reneer Z.B., Hou Y.J., Priya T., Mitsumoto M., Pong A., Lau U.Y., Mason M.L., Chen J., Chen A., Berrocal T., Peng H., Clairmont N.S., Castellanos J., Lin Y.-R., Josephson-Day A., Baric R.S., Fuller D.H., Walkey C.D., Ross T.M., Swanson R., Bjorkman P.J., Gale M., Blancas-Mejia L.M., Yen H.-L., Silva D.-A. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science. 2020:eabe0075. doi: 10.1126/science.abe0075. - DOI - PMC - PubMed
  346.  
    1. Glasgow A., Glasgow J., Limonta D., Solomon P., Lui I., Zhang Y., Nix M.A., Rettko N.J., Lim S.A., Zha S., Yamin R., Kao K., Rosenberg O.S., Ravetch J.V., Wiita A.P., Leung K.K., Zhou X.X., Hobman T.C., Kortemme T., Wells J.A. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.07.31.231746. - DOI - PMC - PubMed
  347.  
    1. Li Y., Wang H., Tang X., Fang S., Ma D., Du C., Wang Y., Pan H., Yao W., Zhang R., Zou X., Zheng J., Xu L., Farzan M., Zhong G. SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. J. Virol. 2020 doi: 10.1128/jvi.01283-20. - DOI - PMC - PubMed
  348.  
    1. Higuchi Y., Suzuki T., Arimori T., Ikemura N., Kirita Y., Ohgitani E., Mazda O., Motooka D., Nakamura S., Matsuura Y., Matoba S., Okamoto T., Takagi J., Hoshino A. High affinity modified ACE2 receptors prevent SARS-CoV-2 infection. bioRxiv. 2020 doi: 10.1101/2020.09.16.299891. 2020.09.16.299891. - DOI
  349.  
    1. Sui J., Li W., Roberts A., Matthews L.J., Murakami A., Vogel L., Wong S.K., Subbarao K., Farzan M., Marasco W.A. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J. Virol. 2005;79(10):5900–5906. doi: 10.1128/jvi.79.10.5900-5906.2005. - DOI - PMC - PubMed
  350.  
    1. Chen X., Li R., Pan Z., Qian C., Yang Y., You R., Zhao J., Liu P., Gao L., Li Z., Huang Q., Xu L., Tang J., Tian Q., Yao W., Hu L., Yan X., Zhou X., Wu Y., Deng K., Zhang Z., Qian Z., Chen Y., Ye L. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell. Mol. Immunol. 2020;17(6):647–649. doi: 10.1038/s41423-020-0426-7. - DOI - PMC - PubMed
  351.  
    1. Ejemel M., Li Q., Hou S., Schiller Z.A., Tree J.A., Wallace A., Amcheslavsky A., Kurt Yilmaz N., Buttigieg K.R., Elmore M.J., Godwin K., Coombes N., Toomey J.R., Schneider R., Ramchetty A.S., Close B.J., Chen D.Y., Conway H.L., Saeed M., Ganesa C., Carroll M.W., Cavacini L.A., Klempner M.S., Schiffer C.A., Wang Y. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nat. Commun. 2020;11(1):4198. doi: 10.1038/s41467-020-18058-8. - DOI - PMC - PubMed
  352.  
    1. Wu Y., Wang F., Shen C., Peng W., Li D., Zhao C., Li Z., Li S., Bi Y., Yang Y., Gong Y., Xiao H., Fan Z., Tan S., Wu G., Tan W., Lu X., Fan C., Wang Q., Liu Y., Zhang C., Qi J., Gao G.F., Gao F., Liu L. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020;368(6496):1274–1278. doi: 10.1126/science.abc2241. - DOI - PMC - PubMed
  353.  
    1. Zost S.J., Gilchuk P., Case J.B., Binshtein E., Chen R.E., Nkolola J.P., Schäfer A., Reidy J.X., Trivette A., Nargi R.S., Sutton R.E., Suryadevara N., Martinez D.R., Williamson L.E., Chen E.C., Jones T., Day S., Myers L., Hassan A.O., Kafai N.M., Winkler E.S., Fox J.M., Shrihari S., Mueller B.K., Meiler J., Chandrashekar A., Mercado N.B., Steinhardt J.J., Ren K., Loo Y.M., Kallewaard N.L., McCune B.T., Keeler S.P., Holtzman M.J., Barouch D.H., Gralinski L.E., Baric R.S., Thackray L.B., Diamond M.S., Carnahan R.H., Crowe J.E., Jr. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–449. doi: 10.1038/s41586-020-2548-6. - DOI - PMC - PubMed
  354.  
    1. Byrnes J.R., Zhou X.X., Lui I., Elledge S.K., Glasgow J.E., Lim S.A., Loudermilk R.P., Chiu C.Y., Wang T.T., Wilson M.R., Leung K.K., Wells J.A. Competitive SARS-CoV-2 serology reveals most antibodies targeting the spike receptor-binding domain compete for ACE2 binding. mSphere. 2020;5(5) doi: 10.1128/mSphere.00802-20. - DOI - PMC - PubMed
  355.  
    1. Wang C., Li W., Drabek D., Okba N.M.A., van Haperen R., Osterhaus A., van Kuppeveld F.J.M., Haagmans B.L., Grosveld F., Bosch B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020;11(1):2251. doi: 10.1038/s41467-020-16256-y. - DOI - PMC - PubMed
  356.  
    1. Wang N., Han S., Liu R., Meng L., He H., Zhang Y., Wang C., Lv Y., Wang J., Li X., Ding Y., Fu J., Hou Y., Lu W., Ma W., Zhan Y., Dai B., Zhang J., Pan X., Hu S., Gao J., Jia Q., Zhang L., Ge S., Wang S., Liang P., Hu T., Lu J., Wang X., Zhou H., Ta W., Wang Y., Lu S., He L. Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus. bioRxiv. 2020 doi: 10.1101/2020.06.22.164665. 2020.06.22.164665. - DOI - PMC - PubMed
  357.  
    1. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G., Seidah N.G., Nichol S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005;2:69. doi: 10.1186/1743-422x-2-69. - DOI - PMC - PubMed
  358.  
    1. Al-Bari M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 2017;5(1):e00293. doi: 10.1002/prp2.293. - DOI - PMC - PubMed
  359.  
    1. Keyaerts E., Vijgen L., Chen L., Maes P., Hedenstierna G., Van Ranst M. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int. J. Infect. Dis. 2004;8(4):223–226. doi: 10.1016/j.ijid.2004.04.012. - DOI - PMC - PubMed
  360.  
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., Liu X., Zhao L., Dong E., Song C., Zhan S., Lu R., Li H., Tan W., Liu D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin. Infect. Dis. 2020;71(15):732–739. doi: 10.1093/cid/ciaa237. - DOI - PMC - PubMed
  361.  
    1. Ho T.Y., Wu S.L., Chen J.C., Li C.C., Hsiang C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74(2):92–101. doi: 10.1016/j.antiviral.2006.04.014. - DOI - PMC - PubMed
  362.  
    1. Haga S., Nagata N., Okamura T., Yamamoto N., Sata T., Yamamoto N., Sasazuki T., Ishizaka Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res. 2010;85(3):551–555. doi: 10.1016/j.antiviral.2009.12.001. - DOI - PMC - PubMed
  363.  
    1. Davidson A.M., Wysocki J., Batlle D. The interaction of SARS-CoV-2 and other coronavirus with Angiotensin converting Enzyme 2 (ACE2) as their main receptor: therapeutic implications. Hypertension. 2020;0(0) doi: 10.1161/HYPERTENSIONAHA.120.15256. - DOI - PMC - PubMed