Multiple Sclerosis (MS) is a complex chronic neurodegenerative disorder resulting from an autoimmune reaction against myelin. So far, many genetic variants have been reported to associate with MS risk however their association is inconsistent across different populations. Here we investigated the association of the most consistently reported genetic MS risk variants in the Kuwaiti MS population in a case-control study designs. Of the 94 reported MS risk variants four variants showed MS risk association in Arabs exome analysis (EVI5 rs11808092 p = 0.0002; TNFRSF1A rs1800693 p = 0.00003; MTHFR rs1801131 p = 0.038; and CD58 rs1414273 p = 0.00007). Replication analysis in Kuwaiti MS cases and healthy controls confirmed EVI5 rs11808092A (OR: 1.6, 95%CI: 1.19-2.16, p = 0.002) and MTHFR rs1801131G (OR: 1.79, 95%CI: 1.3-2.36, p = 0.001) as MS risk genetic factors, while TNFRSF1A rs1800693C had a marginal MS risk association (OR: 1.36, 95%CI: 1.04-1.78, p = 0.025) in the Kuwaiti population. CD58 rs1414273 did not sustain risk association (p = 0.37). In conclusion, EVI5 rs11808092A, TNFRSF1A rs1800693C and MTHFR rs1801131G are MS risk factors in the Kuwaiti population. Further investigations into their roles in MS pathogenesis and progression are merited.
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M.Front Cell Neurosci. 2022 Nov 10;16:985943. doi: 10.3389/fncel.2022.985943. eCollection 2022.PMID: 36439198 Free PMC article. Review.
Lu M, Peng K, Song L, Luo L, Liang P, Liang Y.Dis Markers. 2022 May 31;2022:4568145. doi: 10.1155/2022/4568145. eCollection 2022.PMID: 35686035 Free PMC article.
Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. The New England journal of medicine. 2000;343:938–952. doi: 10.1056/NEJM200009283431307. - DOI - PubMed
Collaborators GBDMS. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. Neurology. 2019;18:269–285. doi: 10.1016/S1474-4422(18)30443-5. - DOI - PMC - PubMed
Alroughani R, et al. The prevalence of multiple sclerosis continues to increase in Kuwait. Multiple sclerosis and related disorders. 2019;32:74–76. doi: 10.1016/j.msard.2019.04.033. - DOI - PubMed
Alshubaili AF, Alramzy K, Ayyad YM, Gerish Y. Epidemiology of multiple sclerosis in Kuwait: new trends in incidence and prevalence. European neurology. 2005;53:125–131. doi: 10.1159/000085556. - DOI - PubMed
Didonna, A. & Oksenberg, J. R. In Multiple Sclerosis: Perspectives in Treatment and Pathogenesis (eds. I. S. Zagon & P. J. McLaughlin) (2017).
Michel L. Environmental factors in the development of multiple sclerosis. Revue neurologique. 2018;174:372–377. doi: 10.1016/j.neurol.2018.03.010. - DOI - PubMed
Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature reviews. Neurology. 2017;13:25–36. doi: 10.1038/nrneurol.2016.187. - DOI - PubMed
Haines JL, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Human molecular genetics. 1998;7:1229–1234. doi: 10.1093/hmg/7.8.1229. - DOI - PubMed
Barcellos LF, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Human molecular genetics. 2006;15:2813–2824. doi: 10.1093/hmg/ddl223. - DOI - PubMed
Schmidt H, Williamson D, Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. American journal of epidemiology. 2007;165:1097–1109. doi: 10.1093/aje/kwk118. - DOI - PubMed
Zivadinov R, et al. HLA-DRB1*1501, -DQB1*0301, -DQB1*0302, -DQB1*0602, and -DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. International review of neurobiology. 2007;79:521–535. doi: 10.1016/S0074-7742(07)79023-2. - DOI - PubMed
Al-Shammri S, Nelson RF, Al-Muzairi I, Akanji AO. HLA determinants of susceptibility to multiple sclerosis in an Arabian Gulf population. Multiple sclerosis. 2004;10:381–386. doi: 10.1191/1352458504ms1065oa. - DOI - PubMed
AlFadhli S, Mohammed EM, Al Shubaili A. Association analysis of nitric oxide synthases: NOS1, NOS2A and NOS3 genes, with multiple sclerosis. Annals of human biology. 2013;40:368–375. doi: 10.3109/03014460.2013.786756. - DOI - PubMed
Al-Temaimi RA, Al-Enezi A, Al-Serri A, Alroughani R, Al-Mulla F. The Association of Vitamin D Receptor Polymorphisms with Multiple Sclerosis in a Case-Control Study from Kuwait. PloS one. 2015;10:e0142265. doi: 10.1371/journal.pone.0142265. - DOI - PMC - PubMed
Dashti M, Alroughani R, Jacob S, Al-Temaimi R. Leptin rs7799039 polymorphism is associated with multiple sclerosis risk in Kuwait. Multiple sclerosis and related disorders. 2019;36:101409. doi: 10.1016/j.msard.2019.101409. - DOI - PubMed
Cotsapas C, Mitrovic M. Genome-wide association studies of multiple sclerosis. Clinical & translational immunology. 2018;7:e1018. doi: 10.1002/cti2.1018. - DOI - PMC - PubMed
Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends in genetics: TIG. 2017;33:960–970. doi: 10.1016/j.tig.2017.09.004. - DOI - PMC - PubMed
Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine. 2018;101:26–32. doi: 10.1016/j.cyto.2016.08.035. - DOI - PubMed
Gregory AP, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488:508–511. doi: 10.1038/nature11307. - DOI - PMC - PubMed
International Multiple Sclerosis Genetics, C The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: a multicenter case-control study. PloS one. 2011;6:e18813. doi: 10.1371/journal.pone.0018813. - DOI - PMC - PubMed
Martin D, et al. Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature structural & molecular biology. 2011;18:708–714. doi: 10.1038/nsmb.2059. - DOI - PMC - PubMed
Mowry EM, et al. Multiple sclerosis susceptibility genes: associations with relapse severity and recovery. PloS one. 2013;8:e75416. doi: 10.1371/journal.pone.0075416. - DOI - PMC - PubMed
Didonna A, et al. A non-synonymous single-nucleotide polymorphism associated with multiple sclerosis risk affects the EVI5 interactome. Human molecular genetics. 2015;24:7151–7158. doi: 10.1093/hmg/ddv412. - DOI - PMC - PubMed
Russo C, et al. Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. Journal of neurology. 2008;255:64–69. doi: 10.1007/s00415-007-0668-7. - DOI - PubMed
Oliveira SR, et al. Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis. Metabolic brain disease. 2018;33:1393–1399. doi: 10.1007/s11011-018-0224-4. - DOI - PubMed
Spencer JI, Bell JS, DeLuca GC. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. Journal of neurology, neurosurgery, and psychiatry. 2018;89:42–52. doi: 10.1136/jnnp-2017-316011. - DOI - PubMed
Reich D, et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nature genetics. 2005;37:1113–1118. doi: 10.1038/ng1646. - DOI - PubMed
Arthur AT, et al. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC medical genetics. 2008;9:17. doi: 10.1186/1471-2350-9-17. - DOI - PMC - PubMed
Handel AE, et al. The effect of single nucleotide polymorphisms from genome wide association studies in multiple sclerosis on gene expression. PloS one. 2010;5:e10142. doi: 10.1371/journal.pone.0010142. - DOI - PMC - PubMed
Hecker M, Fitzner B, Blaschke J, Blaschke P, Zettl UK. Susceptibility variants in the CD58 gene locus point to a role of microRNA-548ac in the pathogenesis of multiple sclerosis. Mutation research. Reviews in mutation research. 2015;763:161–167. doi: 10.1016/j.mrrev.2014.10.002. - DOI - PubMed
Hecker M, et al. A genetic variant associated with multiple sclerosis inversely affects the expression of CD58 and microRNA-548ac from the same gene. PLoS genetics. 2019;15:e1007961. doi: 10.1371/journal.pgen.1007961. - DOI - PMC - PubMed
Rowold DJ, Luis JR, Terreros MC, Herrera RJ, Mitochondrial DNA. geneflow indicates preferred usage of the Levant Corridor over the Horn of Africa passageway. Journal of human genetics. 2007;52:436–447. doi: 10.1007/s10038-007-0132-7. - DOI - PubMed
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. - DOI - PMC - PubMed
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. - DOI - PMC - PubMed
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. - DOI - PMC - PubMed
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics. 2011;43:491–498. doi: 10.1038/ng.806. - DOI - PMC - PubMed