The genetic regulatory signature of type 2 diabetes in human skeletal muscle

Affiliations

29 June 2016

-

doi: 10.1038/ncomms11764


Abstract

Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the >100 variants associated with T2D and related traits in genome-wide association studies (GWAS), >90% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants. In one such example, T2D risk alleles residing in a muscle stretch/super enhancer are linked to increased expression and alternative splicing of muscle-specific isoforms of ANK1.


Figures


Similar articles

Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.

Varshney A, Scott LJ, Welch RP, Erdos MR, Chines PS, Narisu N, Albanus RD, Orchard P, Wolford BN, Kursawe R, Vadlamudi S, Cannon ME, Didion JP, Hensley J, Kirilusha A; NISC Comparative Sequencing Program; Bonnycastle LL, Taylor DL, Watanabe R, Mohlke KL, Boehnke M, Collins FS, Parker SC, Stitzel ML.Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306. doi: 10.1073/pnas.1621192114. Epub 2017 Feb 13.PMID: 28193859 Free PMC article.

Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures.

Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, Zou LS, Didion JP, Guan Y, Shendure J, Parker SCJ, Collins FS.Mol Metab. 2020 Feb;32:109-121. doi: 10.1016/j.molmet.2019.12.006. Epub 2019 Dec 20.PMID: 32029221 Free PMC article.

A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene.

Yan R, Lai S, Yang Y, Shi H, Cai Z, Sorrentino V, Du H, Chen H.Sci Rep. 2016 Apr 28;6:25105. doi: 10.1038/srep25105.PMID: 27121283 Free PMC article.

Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes.

Hao K, Di Narzo AF, Ho L, Luo W, Li S, Chen R, Li T, Dubner L, Pasinetti GM.Mol Aspects Med. 2015 Jun-Oct;43-44:66-76. doi: 10.1016/j.mam.2015.06.006. Epub 2015 Jun 23.PMID: 26116273 Free PMC article. Review.

The Contribution of Low-Frequency and Rare Coding Variation to Susceptibility to Type 2 Diabetes.

Flannick J.Curr Diab Rep. 2019 Apr 8;19(5):25. doi: 10.1007/s11892-019-1142-5.PMID: 30957210 Free PMC article. Review.


Cited by

Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes.

Pierantozzi E, Raucci L, Buonocore S, Rubino EM, Ding Q, Laurino A, Fiore F, Soldaini M, Chen J, Rossi D, Vangheluwe P, Chen H, Sorrentino V.Sci Rep. 2023 May 20;13(1):8195. doi: 10.1038/s41598-023-35393-0.PMID: 37210436 Free PMC article.

Prioritization of genes associated with type 2 diabetes mellitus for functional studies.

Tan WX, Sim X, Khoo CM, Teo AKK.Nat Rev Endocrinol. 2023 May 11. doi: 10.1038/s41574-023-00836-1. Online ahead of print.PMID: 37169822 Review.

Effect of tissue-grouped regulatory variants associated to type 2 diabetes in related secondary outcomes.

Hemerich D, Smit RAJ, Preuss M, Stalbow L, van der Laan SW, Asselbergs FW, van Setten J, Tragante V.Sci Rep. 2023 Mar 2;13(1):3579. doi: 10.1038/s41598-023-30369-6.PMID: 36864090 Free PMC article.

Differential DNA methylation of steatosis and non-alcoholic fatty liver disease in adolescence.

Melton PE, Burton MA, Lillycrop KA, Godfrey KM, Rauschert S, Anderson D, Burdge GC, Mori TA, Beilin LJ, Ayonrinde OT, Craig JM, Olynyk JK, Holbrook JD, Pennell CE, Oddy WH, Moses EK, Adams LA, Huang RC.Hepatol Int. 2023 Jun;17(3):584-594. doi: 10.1007/s12072-022-10469-7. Epub 2023 Feb 3.PMID: 36737504 Free PMC article.

Loci for insulin processing and secretion provide insight into type 2 diabetes risk.

Broadaway KA, Yin X, Williamson A, Parsons VA, Wilson EP, Moxley AH, Vadlamudi S, Varshney A, Jackson AU, Ahuja V, Bornstein SR, Corbin LJ, Delgado GE, Dwivedi OP, Fernandes Silva L, Frayling TM, Grallert H, Gustafsson S, Hakaste L, Hammar U, Herder C, Herrmann S, Højlund K, Hughes DA, Kleber ME, Lindgren CM, Liu CT, Luan J, Malmberg A, Moissl AP, Morris AP, Perakakis N, Peters A, Petrie JR, Roden M, Schwarz PEH, Sharma S, Silveira A, Strawbridge RJ, Tuomi T, Wood AR, Wu P, Zethelius B, Baldassarre D, Eriksson JG, Fall T, Florez JC, Fritsche A, Gigante B, Hamsten A, Kajantie E, Laakso M, Lahti J, Lawlor DA, Lind L, März W, Meigs JB, Sundström J, Timpson NJ, Wagner R, Walker M, Wareham NJ, Watkins H, Barroso I, O'Rahilly S, Grarup N, Parker SC, Boehnke M, Langenberg C, Wheeler E, Mohlke KL.Am J Hum Genet. 2023 Feb 2;110(2):284-299. doi: 10.1016/j.ajhg.2023.01.002. Epub 2023 Jan 23.PMID: 36693378


KMEL References


References

  1.  
    1. Scully T. Diabetes in numbers. Nature 485, S2–S3 (2012). - PubMed
  2.  
    1. Kahn S. E., Cooper M. E. & Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014). - PMC - PubMed
  3.  
    1. Keildson S. et al.. Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity. Diabetes 63, 1154–1165 (2014). - PMC - PubMed
  4.  
    1. Lindholm M. E. et al.. The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J. 28, 4571–4581 (2014). - PubMed
  5.  
    1. GTEx Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015). - PMC - PubMed
  6.  
    1. Lee C., Patil S. & Sartor M. A. RNA-Enrich: a cut-off free functional enrichment testing method for RNA-seq with improved detection power. Bioinformatics (Oxford, England) 32, 1100–1102 (2016). - PMC - PubMed
  7.  
    1. Mootha V. K. et al.. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003). - PubMed
  8.  
    1. Albert V. & Hall M. N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 33, 55–66 (2015). - PubMed
  9.  
    1. Lappalainen T. et al.. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013). - PMC - PubMed
  10.  
    1. Battle A. et al.. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 155192, 113 (2013). - PMC - PubMed
  11.  
    1. Ernst J. et al.. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011). - PMC - PubMed
  12.  
    1. Schmidt E. M. et al.. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 31, 2601–2606 (2015). - PMC - PubMed
  13.  
    1. Schug J. et al.. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 6, R33 (2005). - PMC - PubMed
  14.  
    1. He B., Chen C., Teng L. & Tan K. Global view of enhancer-promoter interactome in human cells. Proc. Natl Acad. Sci. USA 111, E2191–E2199 (2014). - PMC - PubMed
  15.  
    1. Parker S. C. J. et al.. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013). - PMC - PubMed
  16.  
    1. Quang D. X., Erdos M. R., Parker S. C. J. & Collins F. S. Motif signatures in stretch enhancers are enriched for disease-associated genetic variants. Epigenet. Chromatin 8, 23 (2015). - PMC - PubMed
  17.  
    1. Whyte W. A. et al.. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013). - PMC - PubMed
  18.  
    1. Lovén J. et al.. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013). - PMC - PubMed
  19.  
    1. Hnisz D. et al.. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013). - PMC - PubMed
  20.  
    1. Buenrostro J. D., Giresi P. G., Zaba L. C., Chang H. Y. & Greenleaf W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). - PMC - PubMed
  21.  
    1. Allum F. et al.. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat. Commun. 6, 7211 (2015). - PMC - PubMed
  22.  
    1. Pique-Regi R. et al.. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011). - PMC - PubMed
  23.  
    1. Fu Y., Sinha M., Peterson C. L. & Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4, e1000138 (2008). - PMC - PubMed
  24.  
    1. Farh K. K.-H. et al.. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015). - PMC - PubMed
  25.  
    1. Imamura M. et al.. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum. Mol. Genet. 21, 3042–3049 (2012). - PubMed
  26.  
    1. Morris A. P. et al.. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012). - PMC - PubMed
  27.  
    1. Ward L. D. & Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881 (2016). - PMC - PubMed
  28.  
    1. Tanabe O. et al.. The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev. 21, 2832–2844 (2007). - PMC - PubMed
  29.  
    1. Cui S. et al.. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol. Cell. Biol. 31, 3298–3311 (2011). - PMC - PubMed
  30.  
    1. Borzok M. A., Catino D. H., Nicholson J. D., Kontrogianni-Konstantopoulos A. & Bloch R. J. Mapping the binding site on small ankyrin 1 for obscurin. J. Biol. Chem. 282, 32384–32396 (2007). - PubMed
  31.  
    1. Willis C. D., Oashi T., Busby B., Mackerell A. D. & Bloch R. J. Hydrophobic residues in small ankyrin 1 participate in binding to obscurin. Mol. Membr. Biol. 29, 36–51 (2012). - PMC - PubMed
  32.  
    1. Bagnato P., Barone V., Giacomello E., Rossi D. & Sorrentino V. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J. Cell Biol. 160, 245–253 (2003). - PMC - PubMed
  33.  
    1. Ackermann M. A. et al.. Integrity of the network sarcoplasmic reticulum in skeletal muscle requires small ankyrin 1. J. Cell Sci. 124, 3619–3630 (2011). - PMC - PubMed
  34.  
    1. Contreras-Ferrat A., Lavandero S., Jaimovich E. & Klip A. Calcium signaling in insulin action on striated muscle. Cell Calcium 56, 390–396 (2014). - PubMed
  35.  
    1. Caruso M. et al.. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. Diabetes 63, 1933–1947 (2014). - PMC - PubMed
  36.  
    1. Bouzakri K. et al.. siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab. 4, 89–96 (2006). - PubMed
  37.  
    1. Valle T. et al.. Mapping genes for NIDDM. Design of the Finland-United States Investigation of NIDDM Genetics (FUSION) Study. Diabetes Care 21, 949–958 (1998). - PubMed
  38.  
    1. Väätäinen S. et al.. Quality of life along the diabetes continuum: a cross-sectional view of health-related quality of life and general health status in middle-aged and older Finns. Qual. Life Res. 23, 1935–1944 (2014). - PubMed
  39.  
    1. Kouki R. et al.. Diet, fitness and metabolic syndrome--the DR's EXTRA study. Nutr. Metab. Cardiovasc. Dis. 22, 553–560 (2012). - PubMed
  40.  
    1. Stančáková A. et al.. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58, 2129–2136 (2009). - PMC - PubMed
  41.  
    1. World Health Organization (WHO) & International Diabetes Federation (IDF). Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. (WHO, Geneva, Switzerland, 2006).
  42.  
    1. Dobin A. et al.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). - PMC - PubMed
  43.  
    1. Harrow J. et al.. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). - PMC - PubMed
  44.  
    1. Hartley S. W. & Mullikin J. C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics 16, 224 (2015). - PMC - PubMed
  45.  
    1. Jiang L. et al.. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011). - PMC - PubMed
  46.  
    1. Stegle O., Parts L., Durbin R. & Winn J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6, e1000770 (2010). - PMC - PubMed
  47.  
    1. Jun G. et al.. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012). - PMC - PubMed
  48.  
    1. Anders S., Pyl P. T. & Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England) 31, 166–169 (2015). - PMC - PubMed
  49.  
    1. Anders S., Reyes A. & Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008–2017 (2012). - PMC - PubMed
  50.  
    1. Salzman J., Jiang H. & Wong W. H. Statistical modeling of RNA-seq data. Stat. Sci. 26, 62–83 (2011). - PMC - PubMed
  51.  
    1. Storey J. D. & Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003). - PMC - PubMed
  52.  
    1. Stegle O., Parts L., Piipari M., Winn J. & Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012). - PMC - PubMed
  53.  
    1. Gong T. & Szustakowski J. D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29, 1083–1085 (2013). - PubMed
  54.  
    1. Supek F., Bošnjak M., Škunca N. & Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011). - PMC - PubMed
  55.  
    1. Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754–1760 (2009). - PMC - PubMed
  56.  
    1. Patterson N., Price A. L. & Reich D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). - PMC - PubMed
  57.  
    1. Price A. L. et al.. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 author reply 135–9 (2008). - PMC - PubMed
  58.  
    1. Howie B., Fuchsberger C., Stephens M., Marchini J. & Abecasis G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012). - PMC - PubMed
  59.  
    1. Fuchsberger C., Abecasis G. R. & Hinds D. A minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015). - PMC - PubMed
  60.  
    1. Shabalin A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012). - PMC - PubMed
  61.  
    1. Welter D. et al.. The NHGRI GWAS Catalogue, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014). - PMC - PubMed
  62.  
    1. Consortium, T. E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). - PMC - PubMed
  63.  
    1. Roadmap Epigenomics Consortium. et al.. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015). - PMC - PubMed
  64.  
    1. Mikkelsen T. S. et al.. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010). - PMC - PubMed
  65.  
    1. Kheradpour P. & Kellis M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 42, 2976–2987 (2014). - PMC - PubMed
  66.  
    1. Mathelier A. et al.. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016). - PMC - PubMed
  67.  
    1. Jolma A. et al.. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013). - PubMed
  68.  
    1. Bailey T. L., Johnson J., Grant C. E. & Noble W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015). - PMC - PubMed
  69.  
    1. Pacis A. et al.. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 25, 1801–1811 (2015). - PMC - PubMed
  70.  
    1. Fogarty M. P., Cannon M. E., Vadlamudi S., Gaulton K. J. & Mohlke K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the qCDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 10, e1004633 (2014). - PMC - PubMed