Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer

Affiliations

01 December 2020

-

doi: 10.1111/jcmm.16079


Abstract

Breast cancer is the major type among the women population globally. The treatment of cancer metastasis has made modest progress due to multiple factors. Thidiazuron (TDZ) is a novel plant growth regulator that has been shown to have anticancer effects. Therefore, we explored the anti-metastatic potentials of TDZ in cell lines by assessing its potential to suppress the epithelial-mesenchymal transition (EMT). We pretreated the BEAS-2B and breast cancer (MDA-MB-231) cells with TDZ and deliberated alteration in a cell viability, mammosphere, migration, NF-кB signalling, PI3K/AKT signalling and matrix metalloproteinase (MMP) expression and analysed the EMT induction by TGF-β/TNF-α-stimulated BEAS-2B cells. Treatment with TDZ (5-50 μmol) diminished the migration and invasion of the extremely metastatic MDA-MB-231 cells. Additionally, TDZ treatment led to down-regulation of uPAR, uPA, VEGF and MMP-2/-9 expression and up-regulation of TIMP-1/2 expression in these cells. Furthermore, TDZ treatment blocked invasion and EMT in non-tumorigenic BEAS-2B epithelial cells stimulated with TGF-β/TNF-α.TDZ prevents EMT and may thus block metastasis of breast cancer cells.

Keywords: Thidiazuron; breast cancer; epithelial-mesenchymal transition; matrix metalloproteinase; metastasis.

Conflict of interest statement

No conflicting interest.


Figures


Similar articles

Thidiazuron suppresses breast cancer via targeting miR-132 and dysregulation of the PI3K-Akt signaling pathway mediated by the miR-202-5p-PTEN axis.

Ibrahim HM, Ismail MB, Ammar RB, Ahmed EA.Biochem Cell Biol. 2021 Jun;99(3):374-384. doi: 10.1139/bcb-2020-0377. Epub 2020 Oct 24.PMID: 33103467

Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition.

Sun Y, Zhou QM, Lu YY, Zhang H, Chen QL, Zhao M, Su SB.Molecules. 2019 Mar 21;24(6):1131. doi: 10.3390/molecules24061131.PMID: 30901941 Free PMC article.

Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis.

Yang HL, Thiyagarajan V, Shen PC, Mathew DC, Lin KY, Liao JW, Hseu YC.J Exp Clin Cancer Res. 2019 May 8;38(1):186. doi: 10.1186/s13046-019-1196-x.PMID: 31068208 Free PMC article.

Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells.

Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, Su M, Chen T.Cancer Biol Ther. 2015;16(8):1220-30. doi: 10.1080/15384047.2015.1056409. Epub 2015 Jun 29.PMID: 26121010 Free PMC article.

A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review).

Genenger B, Perry JR, Ashford B, Ranson M.Discov Oncol. 2022 Jun 6;13(1):42. doi: 10.1007/s12672-022-00510-4.PMID: 35666359 Free PMC article. Review.


Cited by

Comprehensive Analysis of the Prognostic Value and Molecular Function of CRNDE in Glioma at Bulk and Single-Cell Levels.

Song L, Li X, Xu X, Huo X, Zheng Y, Wang X, Li D, Zhang J, Wang K, Wang L, Wu Z.Cells. 2022 Nov 18;11(22):3669. doi: 10.3390/cells11223669.PMID: 36429098 Free PMC article.

Glioblastoma multiforme: Diagnosis, treatment, and invasion.

Li J, Feng L, Lu Y.J Biomed Res. 2022 Oct 28;37(1):47-58. doi: 10.7555/JBR.36.20220156.PMID: 36403983 Free PMC article.

Ginsenoside Rg5 Sensitizes Paclitaxel-Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel-And Enhances the Anticancer Effect of Paclitaxel.

Ramesh J, Thilakan RC, Gopalakrishnan RM, Vijayapoopathi S, Dorschel A, Venugopal B.Genes (Basel). 2022 Jun 24;13(7):1142. doi: 10.3390/genes13071142.PMID: 35885925 Free PMC article.

GBP5 Repression Suppresses the Metastatic Potential and PD-L1 Expression in Triple-Negative Breast Cancer.

Cheng SW, Chen PC, Lin MH, Ger TR, Chiu HW, Lin YF.Biomedicines. 2021 Apr 1;9(4):371. doi: 10.3390/biomedicines9040371.PMID: 33916322 Free PMC article.

GBP5 Serves as a Potential Marker to Predict a Favorable Response in Triple-Negative Breast Cancer Patients Receiving a Taxane-Based Chemotherapy.

Cheng SW, Chen PC, Ger TR, Chiu HW, Lin YF.J Pers Med. 2021 Mar 12;11(3):197. doi: 10.3390/jpm11030197.PMID: 33809079 Free PMC article.


KMEL References


References

  1.  
    1. Kotsakis A, Ardavanis A, Koumakis G, Samantas E, Psyrri A, Papadimitriou C. Epidemiological characteristics, clinical outcomes and management patterns of metastatic breast cancer patients in routine clinical care settings of Greece: Results from the EMERGE multicenter retrospective chart review study. BMC Cancer. 2019;19:88. - PMC - PubMed
  2.  
    1. Lee SB, Sohn G, Kim J, et al. Chronological improvement in survival of patients with breast Cancer: a large‐scale, single‐center study. Journal of breast cancer. 2018;21:70‐79. - PMC - PubMed
  3.  
    1. Deluche E, Onesti E, Andre F. Precision medicine for metastatic breast cancer. Am Soc Clin Oncol Educ Book. 2015;35:e2‐e7. - PubMed
  4.  
    1. Singh M, Yelle N, Venugopal C, Singh SK. EMT: mechanisms and therapeutic implications. Pharmacol Ther. 2018;182:80‐94. - PubMed
  5.  
    1. Kim J, Kang HS, Lee Y‐J, et al. EGR1‐dependent PTEN upregulation by 2‐benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett. 2014;349:35‐44. - PubMed
  6.  
    1. Stavrinou P, Mavrogiorgou M‐C, Polyzoidis K, et al. Expression profile of genes related to drug metabolism in human brain tumors. PLoS One. 2015;10:e0143285. - PMC - PubMed
  7.  
    1. Vuoriluoto K, Haugen H, Kiviluoto S, et al. Vimentin regulates EMT induction by Slug and oncogenic H‐Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30:1436‐1448. - PubMed
  8.  
    1. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF‐κB is required for inflammation‐induced cell migration and invasion. Cancer Cell. 2009;15:416‐428. - PMC - PubMed
  9.  
    1. Hseu Y‐C, Lin Y‐C, Rajendran P, et al. Antrodia salmonea suppresses invasion and metastasis in triple‐negative breast cancer cells by reversing EMT through the NF‐κB and Wnt/β‐catenin signaling pathway. Food Chem Toxicol. 2019;124:219‐230. - PubMed
  10.  
    1. Yang Z, Zhang X, Gang H, et al. Up‐regulation of gastric cancer cell invasion by Twist is accompanied by N‐cadherin and fibronectin expression. Biochem Biophys Res Comm. 2007;358:925‐930. - PubMed
  11.  
    1. Gilles C, Newgreen DF, Sato H, Thompson EW. Matrix Metalloproteases and Epithelial‐to‐Mesenchymal Transition. Rise and Fall of Epithelial Phenotype. Springer; 2005:297‐315.
  12.  
    1. Yang H‐L, Thiyagarajan V, Shen P‐C, et al. Anti‐EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP‐9 signaling pathway through ROS‐mediated apoptosis. J Exp Clin Cancer Res. 2019;38:186. - PMC - PubMed
  13.  
    1. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial‐mesenchymal transition. Cell Adh Migr. 2015;9:317‐324. - PMC - PubMed
  14.  
    1. Park J‐H, Cho YY, Yoon SW, Park B. Suppression of MMP‐9 and FAK expression by pomolic acid via blocking of NF‐κB/ERK/mTOR signaling pathways in growth factor‐stimulated human breast cancer cells. Int J Oncol. 2016;49:1230‐1240. - PubMed
  15.  
    1. Ko HS, Lee H‐J, Kim S‐H, Lee E‐O. Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP‐9: involvement of PI3K/AKT and NF‐κB pathways. J Agric Food Chem. 2012;60:4083‐4089. - PubMed
  16.  
    1. Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett. 2015;359:20‐35. - PMC - PubMed
  17.  
    1. Peng B, He R, Xu Q, et al. Ginsenoside 20 (S)‐protopanaxadiol inhibits triple‐negative breast cancer metastasis in vivo by targeting EGFR‐mediated MAPK pathway. Pharmacol Res. 2019;142:1‐13. - PubMed
  18.  
    1. Mamaghani MS, Assareh MH, Omidi M, et al. The effect of thidiazuron level on in vitro regeneration type and peroxidase profile in Eucalyptus microtheca F. Muell. Plant Growth Regul. 2009;59:199.
  19.  
    1. Schulze J. Improvements in cereal tissue culture by thidiazuron: a review. Fruit Vegetable Cereal Sci Biotechnol. 2007;1:64‐79.
  20.  
    1. Guo B, Abbasi BH, Zeb A, Xu L, Wei Y. Thidiazuron: a multi‐dimensional plant growth regulator. Afr J Biotech. 2011;10:8984‐9000.
  21.  
    1. Enkhtaivan G, Kim DH, Pandurangan M. Cytotoxic effect of TDZ on human cervical cancer cells. J Photochem Photobiol, B. 2017;173:493‐498. - PubMed
  22.  
    1. Shanmugam MK, Rajendran P, Li F, et al. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model. Mol Carcinog. 2015;54:971‐985. - PubMed
  23.  
    1. Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315:1650‐1659. - PubMed
  24.  
    1. Roomi MW, Kalinovsky T, Niedzwiecki A, Rath M. Modulation of uPA, MMPs and their inhibitors by a novel nutrient mixture in human glioblastoma cell lines. Int J Oncol. 2014;45:887‐894. - PubMed
  25.  
    1. Vasko V, Saji M, Hardy E, et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 2004;41:161‐170. - PMC - PubMed
  26.  
    1. Kamitani S, Yamauchi Y, Kawasaki S, et al. Simultaneous stimulation with TGF‐β1 and TNF‐α induces epithelial mesenchymal transition in bronchial epithelial cells. Int Archives All Immunol. 2011;155:119‐128. - PubMed
  27.  
    1. Manuel Iglesias J, Beloqui I, Garcia‐Garcia F, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E‐cadherin. PLoS One. 2013;8:e77281. - PMC - PubMed
  28.  
    1. Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X. Breast cancer lung metastasis: molecular biology and therapeutic implications. Cancer Biol Ther. 2018;19:858‐868. - PMC - PubMed
  29.  
    1. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial–mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234:14535‐14555. - PubMed
  30.  
    1. Vincent‐Salomon A, Thiery JP. Host microenvironment in breast cancer development: epithelial–mesenchymal transition in breast cancer development. Breast Cancer Res. 2003;5:101. - PMC - PubMed
  31.  
    1. Thiery J, Sim W, Chua K, et al. Epithelial‐mesenchymal transition as a mechanism for the progression of breast carcinoma. Breast Cancer Res. 2011;13:O5.
  32.  
    1. Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2019;20:74‐88. - PMC - PubMed
  33.  
    1. Weng C‐J, Yen G‐C. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin Exp Metas. 2010;27:361‐369. - PubMed
  34.  
    1. Banys‐Paluchowski M, Witzel I, Aktas B, et al. The prognostic relevance of urokinase‐type plasminogen activator (uPA) in the blood of patients with metastatic breast cancer. Sci Rep. 2019;9:1‐10. - PMC - PubMed
  35.  
    1. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor–host cell communication. Differentiation: Rev. 2002;70:561‐573. - PubMed
  36.  
    1. Osaki M, Ma O, Ito H. PI3K‐Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667‐676. - PubMed
  37.  
    1. Park K‐R, Nam D, Yun H‐M, et al. β‐Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS‐mediated MAPKs activation. Cancer Lett. 2011;312:178‐188. - PubMed
  38.  
    1. Lee W‐J, Chen W‐K, Wang C‐J, Lin W‐L, Tseng T‐H. Apigenin inhibits HGF‐promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA‐MB‐231 breast cancer cells. Toxicol Appl Pharmacol. 2008;226:178‐191. - PubMed
  39.  
    1. Arunasree K. Anti‐proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA‐MB 231. Phytomedicine. 2010;17:581‐588. - PubMed
  40.  
    1. Fakai MI, Abd Malek SN, Karsani SA. Induction of apoptosis by chalepin through phosphatidylserine externalisations and DNA fragmentation in breast cancer cells (MCF7). Life Sci. 2019;220:186‐193. - PubMed
  41.  
    1. Xie L, Chen Y, Chen J, et al. Anti‐tumor effects and mechanism of GA‐13315, a novel gibberellin derivative, in human lung adenocarcinoma: an in vitro and in vivo study. Cell Mol Biol Lett. 2019;24:1‐12. - PMC - PubMed
  42.  
    1. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18:1135. - PubMed
  43.  
    1. Agliano A, Calvo A, Box C. The Challenge of Targeting Cancer Stem Cells to Halt Metastasis. Seminars in Cancer Biology. Elsevier; 2017:25‐42. - PubMed
  44.  
    1. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192‐2206. - PMC - PubMed
  45.  
    1. Wang W, Yi M, Zhang R, et al. Vimentin is a crucial target for anti‐metastasis therapy of nasopharyngeal carcinoma. Mol Cell Biochem. 2018;438:47‐57. - PubMed
  46.  
    1. Wang Y, Shi J, Chai K, Ying X, P Zhou B. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963‐972. - PMC - PubMed
  47.  
    1. Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial‐mesenchymal transition. Clin Cancer Res. 2006;12:5369‐5376. - PubMed
  48.  
    1. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E‐cadherin promotes metastasis via multiple downstream transcriptional pathways. Can Res. 2008;68:3645‐3654. - PubMed
  49.  
    1. Loh C‐Y, Chai JY, Tang TF, et al. The E‐cadherin and N‐cadherin switch in epithelial‐to‐mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8:1118. - PMC - PubMed
  50.  
    1. Soini Y, Tuhkanen H, Sironen R, et al. Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer. 2011;11:73. - PMC - PubMed
  51.  
    1. Hao Y, Baker D, ten Dijke P. TGF‐β‐mediated epithelial‐mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20:2767. - PMC - PubMed
  52.  
    1. Davis FM, Azimi I, Faville RA, et al. Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene. 2014;33:2307. - PMC - PubMed
  53.  
    1. Méndez‐García LA, Nava‐Castro KE, Ochoa‐Mercado TDL, et al. Breast cancer metastasis: are cytokines important players during its development and progression? J Interferon Cytokine Res. 2019;39:39‐55. - PubMed
  54.  
    1. Saito T, Yoshida K, Matsumoto K, et al. Inflammatory cytokines induce a reduction in E‐cadherin expression and morphological changes in MDCK cells. Res Vet Sci. 2014;96:288‐291. - PubMed
  55.  
    1. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253‐1270. - PMC - PubMed
  56.  
    1. Chen Y‐F, Day CH, Lee N‐H, et al. Tanshinone IIA inhibits β‐catenin nuclear translocation and IGF‐2R activation via estrogen receptors to suppress angiotensin II‐induced H9c2 cardiomyoblast cell apoptosis. Int J Med Sci. 2017;14:1284. - PMC - PubMed