Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals

Affiliations


Abstract

Introduction: The long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection.

Methods: Data were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded.

Results: Individuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions.

Discussion: These results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.

Keywords: COVID-19; brain function; fMRI; functional connectivity; symptoms.

Conflict of interest statement

SB reports payments for contract research to her institution from GE Healthcare, Eli Lilly and Company, Biogen, Genentech, Optina Diagnostics, and Roche; consulting fees and payments related to an advisory board from Roche; and payments related to an advisory board, a speaker panel, talks, and an educational session from Biogen. There were peer-reviewed grants to her institution from the Ontario Brain Institute, Canadian Institutes of Health Research, Leducq Foundation, Heart and Stroke Foundation of Canada, National Institutes of Health, Alzheimer’s Drug Discovery Foundation, Brain Canada, Weston Brain Institute, Canadian Partnership for Stroke Recovery, Canadian Foundation for Innovation, Focused Ultrasound Foundation, Alzheimer’s Association US, Department of National Defense, Montreal Medical International Kuwait, Queen’s University, Compute Canada Resources for Research Groups, CANARIE, and Networks of Centres of Excellence of Canada. She has participated on a data safety monitoring board or advisory board for the Conference Board of Canada, World Dementia Council, and University of Rochester. She has contributed to the mission and scientific leadership of the Small Vessel VCID Biomarker Validation Consortium, National Institute of Neurological Disorders and Stroke. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Figures


Similar articles

Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-acute COVID-19 Syndrome.

Matheson AM, McIntosh MJ, Kooner HK, Lee J, Desaigoudar V, Bier E, Driehuys B, Svenningsen S, Santyr GE, Kirby M, Albert MS, Shepelytskyi Y, Grynko V, Ouriadov A, Abdelrazek M, Dhaliwal I, Nicholson JM, Parraga G.Radiology. 2022 Nov;305(2):466-476. doi: 10.1148/radiol.220492. Epub 2022 Jun 28.PMID: 35762891 Free PMC article.

Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217.PMID: 36321557 Free PMC article.

Acute and Chronic Effects of Betel Quid Chewing on Brain Functional Connectivity.

Sariah A, Guo S, Zuo J, Pu W, Liu H, Rolls ET, Xue Z, Liu Z, Huang X.Front Psychiatry. 2020 Mar 17;11:198. doi: 10.3389/fpsyt.2020.00198. eCollection 2020.PMID: 32256411 Free PMC article.

Whole brain resting state functional connectivity abnormalities in schizophrenia.

Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M.Schizophr Res. 2012 Aug;139(1-3):7-12. doi: 10.1016/j.schres.2012.04.021. Epub 2012 May 26.PMID: 22633528 Free PMC article.

Functional Connectivity in Compulsive Sexual Behavior Disorder - Systematic Review of Literature and Study on Heterosexual Males.

Draps M, Adamus S, Wierzba M, Gola M.J Sex Med. 2022 Sep;19(9):1463-1471. doi: 10.1016/j.jsxm.2022.05.146. Epub 2022 Jul 10.PMID: 35831231 Review.


KMEL References


References

  1.  
    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. . A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. (2020) 382:727–33. doi: 10.1056/NEJMoa2001017, PMID: - DOI - PMC - PubMed
  2.  
    1. Fernández-De-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Florencio LL, Cuadrado ML, Plaza-Manzano G, et al. . Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: a systematic review and meta-analysis. Eur J Intern Med. (2021) 92:55–70. doi: 10.1016/j.ejim.2021.06.009, PMID: - DOI - PMC - PubMed
  3.  
    1. Gulko E, Oleksk M, Gomes W, Ali S, Mehta H, Overby P, et al. . MRI brain findings in 126 patients with COVID-19: initial observations from a descriptive literature review. Am J Neuroradiol. (2020) 41:2199–203. doi: 10.3174/ajnr.A6805, PMID: - DOI - PMC - PubMed
  4.  
    1. Manca R, De Marco M, Ince PG, Venneri A. Heterogeneity in regional damage detected by neuroimaging and neuropathological studies in older adults with COVID-19: a cognitive-neuroscience systematic review to inform the long-term impact of the virus on neurocognitive trajectories. Front Aging Neurosci. (2021) 13:646908. doi: 10.3389/fnagi.2021.646908, PMID: - DOI - PMC - PubMed
  5.  
    1. Ho C-Y, Salimian M, Hegert J, O’Brien J, Choi SG, Ames H, et al. . Postmortem assessment of olfactory tissue degeneration and microvasculopathy in patients with COVID-19. JAMA Neurol. (2022) 79:544–53. doi: 10.1001/jamaneurol.2022.0154, PMID: - DOI - PMC - PubMed
  6.  
    1. Jaunmuktane Z, Mahadeva U, Green A, Sekhawat V, Barrett NA, Childs L, et al. . Microvascular injury and hypoxic damage: emerging neuropathological signatures in COVID-19. Acta Neuropathol. (2020) 140:397–400. doi: 10.1007/s00401-020-02190-2, PMID: - DOI - PMC - PubMed
  7.  
    1. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. . Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. (2020) 19:919–29. doi: 10.1016/S1474-4422(20)30308-2, PMID: - DOI - PMC - PubMed
  8.  
    1. Wierzba-Bobrowicz T, Krajewski P, Tarka S, Acewicz A, Felczak P, Stępień T, et al. . Neuropathological analysis of the brains of fifty-two patients with COVID-19. Folia Neuropathol. (2021) 59:219–31. doi: 10.5114/fn.2021.108829, PMID: - DOI - PubMed
  9.  
    1. Beckman D, Bonillas A, Diniz GB, Ott S, Roh JW, Elizaldi SR, et al. . SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. (2022) 41:111573. doi: 10.1016/j.celrep.2022.111573, PMID: - DOI - PMC - PubMed
  10.  
    1. Philippens IH, Böszörményi KP, Wubben JA, Fagrouch ZC, Van Driel N, Mayenburg AQ, et al. . Brain inflammation and intracellular α-Synuclein aggregates in macaques after SARS-CoV-2 infection. Viruses. (2022) 14:776. doi: 10.3390/v14040776, PMID: - DOI - PMC - PubMed
  11.  
    1. Rutkai I, Mayer MG, Hellmers LM, Ning B, Huang Z, Monjure CJ, et al. . Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat Commun. (2022) 13:1745. doi: 10.1038/s41467-022-29440-z, PMID: - DOI - PMC - PubMed
  12.  
    1. Shah W, Heightman M, O'brien S. UK guidelines for managing long-term effects of COVID-19. Lancet. (2021) 397:1706. doi: 10.1016/S0140-6736(21)00847-3, PMID: - DOI - PMC - PubMed
  13.  
    1. World Health Organization (2021). A clinical case definition of post COVID-19 condition by a Delphi consensus , 6 October 2021 [Online]. World Health Organization. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_cond... (Accessed Oct 30, 2022).
  14.  
    1. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, Mcgroder C, Stevens JS, et al. . Post-acute COVID-19 syndrome. Nat Med. (2021) 27:601–15. doi: 10.1038/s41591-021-01283-z, PMID: - DOI - PMC - PubMed
  15.  
    1. Macintosh BJ, Ji X, Chen JJ, Gilboa A, Roudaia E, Sekuler AB, et al. . Brain structure and function in people recovering from COVID-19 after hospital discharge or self-isolation: a longitudinal observational study protocol. Can Med Assoc Open Access J. (2021) 9:e1114–9. doi: 10.9778/cmajo.20210023 - DOI - PMC - PubMed
  16.  
    1. Kim WS, Ji X, Roudaia E, Chen JJ, Gilboa A, Sekuler A, et al. . MRI assessment of cerebral blood flow in nonhospitalized adults who self-isolated due to COVID-19. J Magn Reson Imaging. (2022) 1:1–11. doi: 10.1002/jmri.28555 - DOI - PMC - PubMed
  17.  
    1. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, Mccarthy P, et al. . SARS-CoV-2 is associated with changes in brain structure in UK biobank. Nature. (2022) 604:697–707. doi: 10.1038/s41586-022-04569-5, PMID: - DOI - PMC - PubMed
  18.  
    1. Lu Y, Li X, Geng D, Mei N, Wu P-Y, Huang C-C, et al. . Cerebral micro-structural changes in COVID-19 patients–an MRI-based 3-month follow-up study. EClinicalMedicine. (2020) 25:100484. doi: 10.1016/j.eclinm.2020.100484, PMID: - DOI - PMC - PubMed
  19.  
    1. Donegani MI, Miceli A, Pardini M, Bauckneht M, Chiola S, Pennone M, et al. . Brain metabolic correlates of persistent olfactory dysfunction after SARS-Cov2 infection. Biomedicine. (2021) 9:287. doi: 10.3390/biomedicines9030287, PMID: - DOI - PMC - PubMed
  20.  
    1. Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. . Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. (2021) 144:1263–76. doi: 10.1093/brain/awab009, PMID: - DOI - PMC - PubMed
  21.  
    1. Public Health Ontario (2021). Coronavirus disease 2019 (COVID-19) – PCR [online]. Available from: https://www.publichealthontario.ca/en/laboratory-services/%20test-inform... (Accessed Sept 30, 2022).
  22.  
    1. Churchill NW, Madsen K, Mørup M. The functional segregation and integration model: mixture model representations of consistent and variable group-level connectivity in fMRI. Neural Comput. (2016) 28:2250–90. doi: 10.1162/NECO_a_00877, PMID: - DOI - PubMed
  23.  
    1. Asken BM, Houck ZM, Bauer RM, Clugston JR. SCAT5 vs. SCAT3 symptom reporting differences and convergent validity in collegiate athletes. Arch Clin Neuropsychol. (2020) 35:291–301. doi: 10.1093/arclin/acz007, PMID: - DOI - PubMed
  24.  
    1. Ismail Z, Agüera-Ortiz L, Brodaty H, Cieslak A, Cummings J, Fischer CE, et al. . The mild behavioral impairment checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis. (2017) 56:929–38. doi: 10.3233/JAD-160979, PMID: - DOI - PMC - PubMed
  25.  
    1. Mallo SC, Ismail Z, Pereiro AX, Facal D, Lojo-Seoane C, Campos-Magdaleno M, et al. . Assessing mild behavioral impairment with the mild behavioral impairment-checklist in people with mild cognitive impairment. J Alzheimers Dis. (2018) 66:83–95. doi: 10.3233/JAD-180131, PMID: - DOI - PubMed
  26.  
    1. Sadooghi-Alvandi S, Jafari AA. A parametric bootstrap approach for one-way ANCOVA with unequal variances. Commun StatTheory Methods. (2013) 42:2473–98. doi: 10.1080/03610926.2011.625486 - DOI
  27.  
    1. Chippa V., Aleem A., Anjum F. (2021). Post Acute Coronavirus (COVID-19) Syndrome. Treasure Island, FL: StatPearls Publishing. - PubMed
  28.  
    1. Esposito F, Cirillo M, De Micco R, Caiazzo G, Siciliano M, Russo AG, et al. . Olfactory loss and brain connectivity after COVID-19. Hum Brain Mapp. (2022) 43:1548–60. doi: 10.1002/hbm.25741, PMID: - DOI - PMC - PubMed
  29.  
    1. Zhang H, Chung TW-H, Wong FK-C, Hung IF-N, Mak HK-F. Changes in the intranetwork and internetwork connectivity of the default mode network and olfactory network in patients with COVID-19 and olfactory dysfunction. Brain Sci. (2022) 12:511. doi: 10.3390/brainsci12040511, PMID: - DOI - PMC - PubMed
  30.  
    1. Cattarinussi G, Miola A, Trevisan N, Valeggia S, Tramarin E, Mucignat C, et al. . Altered brain regional homogeneity is associated with depressive symptoms in COVID-19. J Affect Disord. (2022) 313:36–42. doi: 10.1016/j.jad.2022.06.061, PMID: - DOI - PMC - PubMed
  31.  
    1. Qin Y, Wu J, Chen T, Li J, Zhang G, Wu D, et al. . Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest. (2021) 131:e147329. doi: 10.1172/JCI147329, PMID: - DOI - PMC - PubMed
  32.  
    1. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. . Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. (2021) 24:168–75. doi: 10.1038/s41593-020-00758-5, PMID: - DOI - PubMed
  33.  
    1. Guedj E, Campion J, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, et al. . 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. (2021) 48:2823–33. doi: 10.1007/s00259-021-05215-4, PMID: - DOI - PMC - PubMed
  34.  
    1. Sollini M, Morbelli S, Ciccarelli M, Cecconi M, Aghemo A, Morelli P, et al. . Long COVID hallmarks on [18F] FDG-PET/CT: a case-control study. Eur J Nucl Med Mol Imaging. (2021) 48:3187–97. doi: 10.1007/s00259-021-05294-3, PMID: - DOI - PMC - PubMed
  35.  
    1. Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, et al. . Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci. (2022) 119:e2200960119. doi: 10.1073/pnas.2200960119, PMID: - DOI - PMC - PubMed
  36.  
    1. Leisman G, Melillo R. The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci. (2013) 24:9–25. doi: 10.1515/revneuro-2012-0067, PMID: - DOI - PubMed
  37.  
    1. Rikhye RV, Wimmer RD, Halassa MM. Toward an integrative theory of thalamic function. Annu Rev Neurosci. (2018) 41:163–83. doi: 10.1146/annurev-neuro-080317-062144, PMID: - DOI - PubMed
  38.  
    1. Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol. (2012) 33:315–27. doi: 10.1016/j.yfrne.2012.09.003, PMID: - DOI - PMC - PubMed
  39.  
    1. Reddan MC, Wager TD. Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull. (2018) 34:208–15. doi: 10.1007/s12264-017-0150-1, PMID: - DOI - PMC - PubMed
  40.  
    1. Martelletti P, Bentivegna E, Spuntarelli V, Luciani M. Long-COVID headache. SN Compr Clin Med. (2021) 3:1704–6. doi: 10.1007/s42399-021-00964-7 - DOI - PMC - PubMed
  41.  
    1. Cai X, Hu X, Ekumi IO, Wang J, An Y, Li Z, et al. . Psychological distress and its correlates among COVID-19 survivors during early convalescence across age groups. Am J Geriatr Psychiatry. (2020) 28:1030–9. doi: 10.1016/j.jagp.2020.07.003, PMID: - DOI - PMC - PubMed
  42.  
    1. Janiri D, Carfì A, Kotzalidis GD, Bernabei R, Landi F, Sani G. Posttraumatic stress disorder in patients after severe COVID-19 infection. JAMA Psychiat. (2021) 78:567–9. doi: 10.1001/jamapsychiatry.2021.0109, PMID: - DOI - PMC - PubMed
  43.  
    1. Roozendaal B, Mcewen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. (2009) 10:423–33. doi: 10.1038/nrn2651 - DOI - PubMed
  44.  
    1. Ward AM, Schultz AP, Huijbers W, Van Dijk KR, Hedden T, Sperling RA. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp. (2014) 35:1061–73. doi: 10.1002/hbm.22234, PMID: - DOI - PMC - PubMed
  45.  
    1. Llana T, Zorzo C, Mendez-Lopez M, Mendez M. Memory alterations after COVID-19 infection: a systematic review. Appl Neuropsychol Adult. (2022) 1:1–14. doi: 10.1080/23279095.2022.2123739 - DOI - PubMed
  46.  
    1. Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, et al. . Superior temporal gyrus, language function, and autism. Dev Neuropsychol. (2007) 31:217–38. doi: 10.1080/87565640701190841 - DOI - PubMed
  47.  
    1. Schuller BW, Schuller DM, Qian K, Liu J, Zheng H, Li X. Covid-19 and computer audition: An overview on what speech & sound analysis could contribute in the sars-cov-2 corona crisis. Front Digit Health. (2021) 3:564906. doi: 10.3389/fdgth.2021.564906, PMID: - DOI - PMC - PubMed
  48.  
    1. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. (2011) 32:1825–35. doi: 10.1002/hbm.21151, PMID: - DOI - PMC - PubMed
  49.  
    1. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. . Default-mode network disruption in mild traumatic brain injury. Radiology. (2012) 265:882–92. doi: 10.1148/radiol.12120748, PMID: - DOI - PMC - PubMed
  50.  
    1. Messé A, Caplain S, Pélégrini-Issac M, Blancho S, Lévy R, Aghakhani N, et al. . Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One. (2013) 8:e65470. doi: 10.1371/journal.pone.0065470, PMID: - DOI - PMC - PubMed
  51.  
    1. Hillary F, Roman C, Venkatesan U, Rajtmajer S, Bajo R, Castellanos N. Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology. (2015) 29:59–75. doi: 10.1037/neu0000110, PMID: - DOI - PubMed
  52.  
    1. Brouqui P, Colson P, Melenotte C, Houhamdi L, Bedotto M, Devaux C, et al. . COVID-19 re-infection. Eur J Clin Investig. (2021) 51:e13537. doi: 10.1111/eci.13537 - DOI - PMC - PubMed