Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling

Affiliations

27 March 2023

-

doi: 10.3390/cells12071019


Abstract

Obesity is characterized by chronic low-grade inflammation. Obese people have higher levels of caveolin-1 (CAV1), a structural and functional protein present in adipose tissues (ATs). We aimed to define the inflammatory mediators that influence CAV1 gene regulation and the associated mechanisms in obesity. Using subcutaneous AT from 27 (7 lean and 20 obese) normoglycemic individuals, in vitro human adipocyte models, and in vivo mice models, we found elevated CAV1 expression in obese AT and a positive correlation between the gene expression of CAV1, tumor necrosis factor-alpha (TNF-α), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). CAV1 gene expression was associated with proinflammatory cytokines and chemokines and their cognate receptors (r ≥ 0.447, p ≤ 0.030), but not with anti-inflammatory markers. CAV1 expression was correlated with CD163, indicating a prospective role for CAV1 in the adipose inflammatory microenvironment. Unlike wild-type animals, mice lacking TNF-α exhibited reduced levels of CAV1 mRNA/proteins, which were elevated by administering exogenous TNF-α. Mechanistically, TNF-α induces CAV1 gene transcription by mediating NF-κB binding to its two regulatory elements located in the CAV1 proximal regulatory region. The interplay between CAV1 and the TNF-α signaling pathway is intriguing and has potential as a target for therapeutic interventions in obesity and metabolic syndromes.

Keywords: NF-κB; TNF-α; adipose tissue; caveolin-1; cytokines; metabolic inflammation; obesity.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Caveolin-1 prevents palmitate-induced NF-κB signaling by inhibiting GPRC5B-phosphorylation.

Kim YJ, Hirabayashi Y.Biochem Biophys Res Commun. 2018 Sep 18;503(4):2673-2677. doi: 10.1016/j.bbrc.2018.08.022. Epub 2018 Aug 4.PMID: 30086884

Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue.

Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM, Freedman J, Gokce N.Obesity (Silver Spring). 2008 May;16(5):932-7. doi: 10.1038/oby.2008.25. Epub 2008 Feb 21.PMID: 18292749 Free PMC article.

Chemokine Expression in Inflamed Adipose Tissue Is Mainly Mediated by NF-κB.

Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, Salles J, Malezet C, Astier J, Darmon P, Blouin E, Walrand S, Ye J, Landrier JF.PLoS One. 2013 Jun 18;8(6):e66515. doi: 10.1371/journal.pone.0066515. Print 2013.PMID: 23824685 Free PMC article.

[Effect of electroacupuncture on SIRT1/NF-κB signaling pathway in adipose tissue of obese rats].

Huang Q, Chen R, Peng M, Li L, Li T, Liang FX, Xu F.Zhongguo Zhen Jiu. 2020 Feb 12;40(2):185-91. doi: 10.13703/j.0255-2930.20190324-00054.PMID: 32100506 Chinese.

Cardioprotective and anti-inflammatory effects of Caveolin 1 in experimental diabetic cardiomyopathy.

Gong W, Jiao Q, Yuan J, Luo H, Liu Y, Zhang Y, Chen Z, Xu X, Bai L, Zhang X.Clin Sci (Lond). 2023 Mar 31;137(6):511-525. doi: 10.1042/CS20220874.PMID: 36929208


KMEL References


References

  1.  
    1. Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015;33:673–689. doi: 10.1007/s40273-014-0243-x. - DOI - PMC - PubMed
  2.  
    1. Landman G.W., van Hateren K.J., Kleefstra N., Groenier K.H., Gans R.O., Bilo H.J. Health-related quality of life and mortality in a general and elderly population of patients with type 2 diabetes (ZODIAC-18) Diabetes Care. 2010;33:2378–2382. doi: 10.2337/dc10-0979. - DOI - PMC - PubMed
  3.  
    1. Oguoma V.M., Coffee N.T., Alsharrah S., Abu-Farha M., Al-Refaei F.H., Al-Mulla F., Daniel M. Prevalence of overweight and obesity, and associations with socio-demographic factors in Kuwait. BMC Public Health. 2021;21:667. doi: 10.1186/s12889-021-10692-1. - DOI - PMC - PubMed
  4.  
    1. Weiderpass E., Botteri E., Longenecker J.C., Alkandari A., Al-Wotayan R., Al Duwairi Q., Tuomilehto J. The Prevalence of Overweight and Obesity in an Adult Kuwaiti Population in 2014. Front. Endocrinol. 2019;10:449. doi: 10.3389/fendo.2019.00449. - DOI - PMC - PubMed
  5.  
    1. Waki H., Tontonoz P. Endocrine functions of adipose tissue. Annu. Rev. Pathol. 2007;2:31–56. doi: 10.1146/annurev.pathol.2.010506.091859. - DOI - PubMed
  6.  
    1. Pellegrinelli V., Carobbio S., Vidal-Puig A. Adipose tissue plasticity: How fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075–1088. doi: 10.1007/s00125-016-3933-4. - DOI - PMC - PubMed
  7.  
    1. Ahmad R., Al-Roub A., Kochumon S., Akther N., Thomas R., Kumari M., Koshy M.S., Tiss A., Hannun Y.A., Tuomilehto J., et al. The Synergy between Palmitate and TNF-alpha for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J. Immunol. 2018;200:3599–3611. doi: 10.4049/jimmunol.1701552. - DOI - PMC - PubMed
  8.  
    1. Pilch P.F., Meshulam T., Ding S., Liu L. Caveolae and lipid trafficking in adipocytes. Clin. Lipidol. 2011;6:49–58. doi: 10.2217/clp.10.80. - DOI - PMC - PubMed
  9.  
    1. Song K.S., Tang Z., Li S., Lisanti M.P. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J. Biol. Chem. 1997;272:4398–4403. doi: 10.1074/jbc.272.7.4398. - DOI - PubMed
  10.  
    1. Shvets E., Ludwig A., Nichols B.J. News from the caves: Update on the structure and function of caveolae. Curr. Opin. Cell Biol. 2014;29:99–106. doi: 10.1016/j.ceb.2014.04.011. - DOI - PubMed
  11.  
    1. Haddad D., Al Madhoun A., Nizam R., Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. Oxidative Med. Cell. Longev. 2020;2020:9761539. doi: 10.1155/2020/9761539. - DOI - PMC - PubMed
  12.  
    1. Fielding C.J., Fielding P.E. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta (BBA) Biomembr. 2003;1610:219–228. doi: 10.1016/S0005-2736(03)00020-8. - DOI - PubMed
  13.  
    1. Catalan V., Gomez-Ambrosi J., Rodriguez A., Silva C., Rotellar F., Gil M.J., Cienfuegos J.A., Salvador J., Fruhbeck G. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin. Endocrinol. 2008;68:213–219. doi: 10.1111/j.1365-2265.2007.03021.x. - DOI - PubMed
  14.  
    1. Popko K., Gorska E., Stelmaszczyk-Emmel A., Plywaczewski R., Stoklosa A., Gorecka D., Pyrzak B., Demkow U. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010;15((Suppl. S2)):120–122. doi: 10.1186/2047-783X-15-S2-120. - DOI - PMC - PubMed
  15.  
    1. Palacios-Ortega S., Varela-Guruceaga M., Algarabel M., Milagro F.I., Martínez J.A., De Miguel C. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling during Adipocyte Differentiation and in Mature Adipocytes. Cell. Physiol. Biochem. 2015;36:1499–1516. doi: 10.1159/000430314. - DOI - PubMed
  16.  
    1. Matsui Y., Tomaru U., Miyoshi A., Ito T., Fukaya S., Miyoshi H., Atsumi T., Ishizu A. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet. Exp. Mol. Pathol. 2014;97:354–358. doi: 10.1016/j.yexmp.2014.09.017. - DOI - PubMed
  17.  
    1. Ruan H., Hacohen N., Golub T.R., Van Parijs L., Lodish H.F. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002;51:1319–1336. doi: 10.2337/diabetes.51.5.1319. - DOI - PubMed
  18.  
    1. Serrano-Marco L., Chacón M.R., Maymó-Masip E., Barroso E., Salvadó L., Wabitsch M., Garrido-Sánchez L., Tinahones F.J., Palomer X., Vendrell J., et al. TNF-α inhibits PPARβ/δ activity and SIRT1 expression through NF-κB in human adipocytes. Biochim. Biophys. Acta. 2012;1821:1177–1185. doi: 10.1016/j.bbalip.2012.05.006. - DOI - PubMed
  19.  
    1. Sekimoto J., Kabayama K., Gohara K., Inokuchi J. Dissociation of the insulin receptor from caveolae during TNFα-induced insulin resistance and its recovery by D-PDMP. FEBS Lett. 2012;586:191–195. doi: 10.1016/j.febslet.2011.12.019. - DOI - PubMed
  20.  
    1. Kochumon S., Al-Rashed F., Abu-Farha M., Devarajan S., Tuomilehto J., Ahmad R. Adipose tissue expression of CCL19 chemokine is positively associated with insulin resistance. Diabetes Metab. Res. Rev. 2019;35:e3087. doi: 10.1002/dmrr.3087. - DOI - PMC - PubMed
  21.  
    1. Al Madhoun A., Kochumon S., Al-Rashed F., Sindhu S., Thomas R., Miranda L., Al-Mulla F., Ahmad R. Dectin-1 as a Potential Inflammatory Biomarker for Metabolic Inflammation in Adipose Tissue of Individuals with Obesity. Cells. 2022;11:2879. doi: 10.3390/cells11182879. - DOI - PMC - PubMed
  22.  
    1. Akhter N., Kochumon S., Hasan A., Wilson A., Nizam R., Al Madhoun A., Al-Rashed F., Arefanian H., Alzaid F., Sindhu S., et al. IFN-γ and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. J. Inflamm. Res. 2022;15:4291–4302. doi: 10.2147/JIR.S368352. - DOI - PMC - PubMed
  23.  
    1. Kochumon S., Hasan A., Al-Rashed F., Sindhu S., Thomas R., Jacob T., Al-Sayyar A., Arefanian H., Al Madhoun A., Al-Ozairi E., et al. Increased Adipose Tissue Expression of IL-23 Associates with Inflammatory Markers in People with High LDL Cholesterol. Cells. 2022;11:3072. doi: 10.3390/cells11193072. - DOI - PMC - PubMed
  24.  
    1. Ahmad R., Shihab P.K., Thomas R., Alghanim M., Hasan A., Sindhu S., Behbehani K. Increased expression of the interleukin-1 receptor-associated kinase (IRAK)-1 is associated with adipose tissue inflammatory state in obesity. Diabetol. Metab. Syndr. 2015;7:71. doi: 10.1186/s13098-015-0067-7. - DOI - PMC - PubMed
  25.  
    1. Al Madhoun A., Haddad D., Nizam R., Miranda L., Kochumon S., Thomas R., Thanaraj T.A., Ahmad R., Bitar M.S., Al-Mulla F. Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells. 2022;11:3937. doi: 10.3390/cells11233937. - DOI - PMC - PubMed
  26.  
    1. Al Madhoun A., Marafie S.K., Haddad D., Melhem M., Abu-Farha M., Ali H., Sindhu S., Atari M., Al-Mulla F. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton’s Jelly-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020;21:6437. doi: 10.3390/ijms21176437. - DOI - PMC - PubMed
  27.  
    1. Sindhu S., Akhter N., Wilson A., Thomas R., Arefanian H., Al Madhoun A., Al-Mulla F., Ahmad R. MIP-1alpha Expression Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-alpha Involves the TLR4-IRF3 Pathway and Is Amplified by Oxidative Stress. Cells. 2020;9:1799. doi: 10.3390/cells9081799. - DOI - PMC - PubMed
  28.  
    1. Maher A., Nunez-Toldra R., Carrio N., Ferres-Padro E., Ali H., Montori S., Al Madhoun A. The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells. Dent. J. 2018;6:48. doi: 10.3390/dj6040048. - DOI - PMC - PubMed
  29.  
    1. Voronova A., Fischer A., Ryan T., Al Madhoun A., Skerjanc I.S. Ascl1/Mash1 is a novel target of Gli2 during Gli2-induced neurogenesis in P19 EC cells. PLoS ONE. 2011;6:e19174. doi: 10.1371/journal.pone.0019174. - DOI - PMC - PubMed
  30.  
    1. Voronova A., Coyne E., Al Madhoun A., Fair J.V., Bosiljcic N., St-Louis C., Li G., Thurig S., Wallace V.A., Wiper-Bergeron N., et al. Hedgehog signaling regulates MyoD expression and activity. J. Biol. Chem. 2013;288:4389–4404. doi: 10.1074/jbc.M112.400184. - DOI - PMC - PubMed
  31.  
    1. Al Madhoun A.S., Voronova A., Ryan T., Zakariyah A., McIntire C., Gibson L., Shelton M., Ruel M., Skerjanc I.S. Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J. Mol. Cell. Cardiol. 2013;60:164–171. doi: 10.1016/j.yjmcc.2013.04.003. - DOI - PubMed
  32.  
    1. Al Madhoun A.S., Mehta V., Li G., Figeys D., Wiper-Bergeron N., Skerjanc I.S. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C. EMBO J. 2011;30:2477–2489. doi: 10.1038/emboj.2011.153. - DOI - PMC - PubMed
  33.  
    1. Al-Roub A., Al Madhoun A., Akhter N., Thomas R., Miranda L., Jacob T., Al-Ozairi E., Al-Mulla F., Sindhu S., Ahmad R. IL-1β and TNFα Cooperativity in Regulating IL-6 Expression in Adipocytes Depends on CREB Binding and H3K14 Acetylation. Cells. 2021;10:3228. doi: 10.3390/cells10113228. - DOI - PMC - PubMed
  34.  
    1. Sindhu S., Kochumon S., Thomas R., Bennakhi A., Al-Mulla F., Ahmad R. Enhanced Adipose Expression of Interferon Regulatory Factor (IRF)-5 Associates with the Signatures of Metabolic Inflammation in Diabetic Obese Patients. Cells. 2020;9:730. doi: 10.3390/cells9030730. - DOI - PMC - PubMed
  35.  
    1. Kochumon S., Al Madhoun A., Al-Rashed F., Thomas R., Sindhu S., Al-Ozairi E., Al-Mulla F., Ahmad R. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-73347-y. - DOI - PMC - PubMed
  36.  
    1. Ahmad R., Al-Mass A., Atizado V., Al-Hubail A., Al-Ghimlas F., Al-Arouj M., Bennakhi A., Dermime S., Behbehani K. Elevated expression of the toll like receptors 2 and 4 in obese individuals: Its significance for obesity-induced inflammation. J. Inflamm. 2012;9:48. doi: 10.1186/1476-9255-9-48. - DOI - PMC - PubMed
  37.  
    1. Akhter N., Wilson A., Thomas R., Al-Rashed F., Kochumon S., Al-Roub A., Arefanian H., Al-Madhoun A., Al-Mulla F., Ahmad R., et al. ROS/TNF-α Crosstalk Triggers the Expression of IL-8 and MCP-1 in Human Monocytic THP-1 Cells via the NF-κB and ERK1/2 Mediated Signaling. Int. J. Mol. Sci. 2021;22:10519. doi: 10.3390/ijms221910519. - DOI - PMC - PubMed
  38.  
    1. Banisor I., Leist T.P., Kalman B. Involvement of beta-chemokines in the development of inflammatory demyelination. J. Neuroinflamm. 2005;2:7. doi: 10.1186/1742-2094-2-7. - DOI - PMC - PubMed
  39.  
    1. Kopp A., Buechler C., Neumeier M., Weigert J., Aslanidis C., Scholmerich J., Schaffler A. Innate immunity and adipocyte function: Ligand-specific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity. 2009;17:648–656. doi: 10.1038/oby.2008.607. - DOI - PubMed
  40.  
    1. Schaeffler A., Gross P., Buettner R., Bollheimer C., Buechler C., Neumeier M., Kopp A., Schoelmerich J., Falk W. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 2009;126:233–245. doi: 10.1111/j.1365-2567.2008.02892.x. - DOI - PMC - PubMed
  41.  
    1. Thomalla M., Schmid A., Neumann E., Pfefferle P.I., Muller-Ladner U., Schaffler A., Karrasch T. Evidence of an anti-inflammatory toll-like receptor 9 (TLR 9) pathway in adipocytes. J. Endocrinol. 2019;240:325–343. doi: 10.1530/JOE-18-0326. - DOI - PubMed
  42.  
    1. Berg A.H., Lin Y., Lisanti M.P., Scherer P.E. Adipocyte differentiation induces dynamic changes in NF-kappaB expression and activity. Am. J. Physiol. Endocrinol. Metab. 2004;287:E1178–E1188. doi: 10.1152/ajpendo.00002.2004. - DOI - PubMed
  43.  
    1. Remels A.H., Gosker H.R., Schrauwen P., Hommelberg P.P., Sliwinski P., Polkey M., Galdiz J., Wouters E.F., Langen R.C., Schols A.M. TNF-alpha impairs regulation of muscle oxidative phenotype: Implications for cachexia? Fed. Am. Soc. Exp. Biol. J. 2010;24:5052–5062. doi: 10.1096/fj.09-150714. - DOI - PubMed
  44.  
    1. Ouchi N., Kihara S., Arita Y., Okamoto Y., Maeda K., Kuriyama H., Hotta K., Nishida M., Takahashi M., Muraguchi M., et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296–1301. doi: 10.1161/01.CIR.102.11.1296. - DOI - PubMed
  45.  
    1. Famulla S., Horrighs A., Cramer A., Sell H., Eckel J. Hypoxia reduces the response of human adipocytes towards TNFα resulting in reduced NF-κB signaling and MCP-1 secretion. Int. J. Obes. 2012;36:986–992. doi: 10.1038/ijo.2011.200. - DOI - PubMed
  46.  
    1. Choe S.S., Huh J.Y., Hwang I.J., Kim J.I., Kim J.B. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front. Endocrinol. 2016;7:30. doi: 10.3389/fendo.2016.00030. - DOI - PMC - PubMed
  47.  
    1. Briand N., Prado C., Mabilleau G., Lasnier F., Le Lièpvre X., Covington J.D., Ravussin E., Le Lay S., Dugail I. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation. Diabetes. 2014;63:4032–4044. doi: 10.2337/db13-1961. - DOI - PMC - PubMed
  48.  
    1. Hube F., Birgel M., Lee Y.M., Hauner H. Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: Role of obesity and non-insulin-dependent diabetes mellitus. Eur. J. Clin. Investig. 1999;29:672–678. doi: 10.1046/j.1365-2362.1999.00520.x. - DOI - PubMed
  49.  
    1. Cawthorn W.P., Sethi J.K. TNF-α and adipocyte biology. FEBS Lett. 2008;582:117–131. doi: 10.1016/j.febslet.2007.11.051. - DOI - PMC - PubMed
  50.  
    1. Sathish V., Abcejo A.J., VanOosten S.K., Thompson M.A., Prakash Y.S., Pabelick C.M. Caveolin-1 in cytokine-induced enhancement of intracellular Ca2+ in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011;301:L607–L614. doi: 10.1152/ajplung.00019.2011. - DOI - PMC - PubMed
  51.  
    1. Zhu T., Meng Q., Ji J., Zhang L., Lou X. TLR4 and Caveolin-1 in Monocytes Are Associated With Inflammatory Conditions in Diabetic Neuropathy. Clin. Transl. Sci. 2017;10:178–184. doi: 10.1111/cts.12434. - DOI - PMC - PubMed
  52.  
    1. Bae G.D., Park E.Y., Kim K., Jang S.E., Jun H.S., Oh Y.S. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci. Rep. 2019;9:16785. doi: 10.1038/s41598-019-53278-z. - DOI - PMC - PubMed
  53.  
    1. Surmi B.K., Hasty A.H. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc. Pharmacol. 2010;52:27–36. doi: 10.1016/j.vph.2009.12.004. - DOI - PMC - PubMed
  54.  
    1. Tourniaire F., Romier-Crouzet B., Lee J.H., Marcotorchino J., Gouranton E., Salles J., Malezet C., Astier J., Darmon P., Blouin E., et al. Chemokine Expression in Inflamed Adipose Tissue Is Mainly Mediated by NF-κB. PLoS ONE. 2013;8:e66515. doi: 10.1371/journal.pone.0066515. - DOI - PMC - PubMed
  55.  
    1. Kochumon S., Madhoun A.A., Al-Rashed F., Azim R., Al-Ozairi E., Al-Mulla F., Ahmad R. Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: Implications for metabolic inflammation and insulin resistance. Ther. Adv. Endocrinol. Metab. 2020;11:2042018820930902. doi: 10.1177/2042018820930902. - DOI - PMC - PubMed
  56.  
    1. Al-Rashed F., Sindhu S., Arefanian H., Al Madhoun A., Kochumon S., Thomas R., Al-Kandari S., Alghaith A., Jacob T., Al-Mulla F., et al. Repetitive Intermittent Hyperglycemia Drives the M1 Polarization and Inflammatory Responses in THP-1 Macrophages Through the Mechanism Involving the TLR4-IRF5 Pathway. Cells. 2020;9:1892. doi: 10.3390/cells9081892. - DOI - PMC - PubMed
  57.  
    1. Ahmad R., Kochumon S., Thomas R., Atizado V., Sindhu S. Increased adipose tissue expression of TLR8 in obese individuals with or without type-2 diabetes: Significance in metabolic inflammation. J. Inflamm. 2016;13:38. doi: 10.1186/s12950-016-0147-y. - DOI - PMC - PubMed
  58.  
    1. Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress. Cell. Physiol. Biochem. 2018;45:572–590. doi: 10.1159/000487034. - DOI - PubMed
  59.  
    1. Nakajima S., Koh V., Kua L.F., So J., Davide L., Lim K.S., Petersen S.H., Yong W.P., Shabbir A., Kono K. Accumulation of CD11c+CD163+ Adipose Tissue Macrophages through Upregulation of Intracellular 11beta-HSD1 in Human Obesity. J. Immunol. 2016;197:3735–3745. doi: 10.4049/jimmunol.1600895. - DOI - PubMed