Deep clinicopathological phenotyping identifies a previously unrecognized pathogenic EMD splice variant

Affiliations

01 October 2021

-

doi: 10.1002/acn3.51454


Abstract

Exome sequencing (ES) has revolutionized rare disease management, yet only ~25%-30% of patients receive a molecular diagnosis. A limiting factor is the quality of available phenotypic data. Here, we describe how deep clinicopathological phenotyping yielded a molecular diagnosis for a 19-year-old proband with muscular dystrophy and negative clinical ES. Deep phenotypic analysis identified two critical data points: (1) the absence of emerin protein in muscle biopsy and (2) clinical features consistent with Emery-Dreifuss muscular dystrophy. Sequencing data analysis uncovered an ultra-rare, intronic variant in EMD, the gene encoding emerin. The variant, NM_000117.3: c.188-6A > G, is predicted to impact splicing by in silico tools. This case thus illustrates how better integration of clinicopathologic data into ES analysis can enhance diagnostic yield with implications for clinical practice.

Conflict of interest statement

J.R.L. has stock ownership in 23andMe, is a paid consultant for Regeneron Genetics Center, and is a co‐inventor on multiple United States and European patents related to molecular diagnostics for inherited neuropathies, eye diseases, and bacterial genomic fingerprinting. The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing conducted at Baylor Genetics (BG) Laboratories; JRL is a member of the Scientific Advisory Board of BG. Other authors have no potential conflicts to report.


Figures


Similar articles

Partial deficiency of emerin caused by a splice site mutation in EMD.

Yuan J, Ando M, Higuchi I, Sakiyama Y, Matsuura E, Michizono K, Watanabe O, Nagano S, Inamori Y, Hashiguchi A, Higuchi Y, Yoshimura A, Takashima H.Intern Med. 2014;53(14):1563-8. doi: 10.2169/internalmedicine.53.8922. Epub 2014 Jul 15.PMID: 25030574

X-linked Emery-Dreifuss muscular dystrophy manifesting with adult onset axial weakness, camptocormia, and minimal joint contractures.

Brisset M, Ben Yaou R, Carlier RY, Chanut A, Nicolas G, Romero NB, Wahbi K, Decrocq C, Leturcq F, Laforêt P, Malfatti E.Neuromuscul Disord. 2019 Sep;29(9):678-683. doi: 10.1016/j.nmd.2019.06.009. Epub 2019 Jun 19.PMID: 31474437

[A case of Emery-Dreifuss muscular dystrophy with slight joint contracture].

Fujii S, Eguchi K, Sato C, Saito Y, Indrawati LA, Shirai S, Nishino I, Yabe I.Rinsho Shinkeigaku. 2020 Aug 7;60(8):554-559. doi: 10.5692/clinicalneurol.60.cn-001431. Epub 2020 Jul 7.PMID: 32641626 Japanese.

Emery-Dreifuss muscular dystrophy: focal point nuclear envelope.

Muchir A, Worman HJ.Curr Opin Neurol. 2019 Oct;32(5):728-734. doi: 10.1097/WCO.0000000000000741.PMID: 31460960 Free PMC article. Review.

Multiple roles for emerin: implications for Emery-Dreifuss muscular dystrophy.

Holaska JM, Wilson KL.Anat Rec A Discov Mol Cell Evol Biol. 2006 Jul;288(7):676-80. doi: 10.1002/ar.a.20334.PMID: 16761279 Free PMC article. Review.


KMEL References


References

  1.  
    1. Eldomery MK, Coban‐Akdemir Z, Harel T, et al. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017;9:26. - PMC - PubMed
  2.  
    1. Liu P, Meng L, Normand EA, et al. Reanalysis of clinical exome sequencing data. N Engl J Med. 2019;380:2478‐2480. - PMC - PubMed
  3.  
    1. Helman G, Lajoie BR, Crawford J, et al. Genome sequencing in persistently unsolved white matter disorders. Ann Clin Transl Neurol. 2020;7:144‐152. - PMC - PubMed
  4.  
    1. Herman I, Lopez MA, Marafi D, et al. Clinical exome sequencing in the diagnosis of pediatric neuromuscular disease. Muscle Nerve. 2021;63:304‐310. - PubMed
  5.  
    1. Ngo KJ, Rexach JE, Lee H, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020;41:487‐501. - PMC - PubMed
  6.  
    1. Yavarna T, Al‐Dewik N, Al‐Mureikhi M, et al. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet. 2015;134:967‐980. - PubMed
  7.  
    1. Bayram Y, Karaca E, Coban Akdemir Z, et al. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest. 2016;126:762‐778. - PMC - PubMed
  8.  
    1. Posey JE, Rosenfeld JA, James RA, et al. Molecular diagnostic experience of whole‐exome sequencing in adult patients. Genet Med. 2016;18:678‐685. - PMC - PubMed
  9.  
    1. Fromer M, Moran J, Chambert K, et al. Discovery and statistical genotyping of copy‐number variation from whole‐exome sequencing depth. Am J Hum Genet. 2012;91:597‐607. - PMC - PubMed
  10.  
    1. Gambin T, Akdemir ZC, Yuan B, et al. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res. 2017;45:1633‐1648. - PMC - PubMed
  11.  
    1. Farek J, Hughes D, Mansfield A, et al. xAtlas: scalable small variant calling across heterogeneous next‐generation sequencing experiments. bioRxiv, 295071. 10.1101/295071 - DOI
  12.  
    1. Estrella EA, Kang PB. Hunting for the perfect test: neuromuscular diagnosis in the age of genomic bounty. Muscle Nerve. 2021;63:282‐284. - PubMed
  13.  
    1. Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis. 2019;14:153. - PMC - PubMed
  14.  
    1. Basel‐Salmon L, Orenstein N, Markus‐Bustani K, et al. Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of the individuals tested. Genet Med. 2019;21:1443‐1451. - PubMed
  15.  
    1. Pena LDM, Jiang Y‐H, Schoch K, et al. Looking beyond the exome: a phenotype‐first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet Med. 2018;20:464‐469. - PMC - PubMed
  16.  
    1. Aarabi M, Sniezek O, Jiang H, et al. Importance of complete phenotyping in prenatal whole exome sequencing. Hum Genet. 2018;137:175‐181. - PubMed
  17.  
    1. Karaca E, Harel T, Pehlivan D, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88:499‐513. - PMC - PubMed
  18.  
    1. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD‐Splice‐improving genome‐wide variant effect prediction using deep learning‐derived splice scores. Genome Med. 2021;13:31. - PMC - PubMed
  19.  
    1. Cheng J, Nguyen TYD, Cygan KJ, et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48. - PMC - PubMed
  20.  
    1. Desmet FO, Hamroun D, Lalande M, Collod‐Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. - PMC - PubMed
  21.  
    1. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(3):535‐548.e24. - PubMed
  22.  
    1. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434‐443. - PMC - PubMed
  23.  
    1. Alfares A, Aloraini T, Subaie LA, et al. Whole‐genome sequencing offers additional but limited clinical utility compared with reanalysis of whole‐exome sequencing. Genet Med. 2018;20:1328‐1333. - PubMed
  24.  
    1. Logsdon GA, Vollger MR, Eichler EE. Long‐read human genome sequencing and its applications. Nat Rev Genet. 2020;21:597‐614. - PMC - PubMed
  25.  
    1. Beck CR, Carvalho CMB, Akdemir ZC, et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell. 2019;176:1310‐1324 e1310. - PMC - PubMed
  26.  
    1. Murdock DR, Dai H, Burrage LC. Transcriptome‐directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest 2021;131(1): e141500. 10.1172/jci141500 - DOI - PMC - PubMed
  27.  
    1. Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386):eaal5209. - PMC - PubMed
  28.  
    1. Pehlivan D, Bayram Y, Gunes N, et al. The genomics of arthrogryposis, a complex trait: candidate genes and further evidence for oligogenic inheritance. Am J Hum Genet. 2019;105:132‐150. - PMC - PubMed
  29.  
    1. Gonzaga‐Jauregui C, Yesil G, Nistala H, et al. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet. 2020;28:1243‐1264. - PMC - PubMed
  30.  
    1. Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83:610‐615. - PMC - PubMed
  31.  
    1. Wright CF, Quaife NM, Ramos‐Hernández L, et al. Non‐coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss‐of‐function mechanisms. Am J Hum Genet. 2021;108:1083‐1084. - PMC - PubMed
  32.  
    1. Kim J, Hu C, Moufawad El Achkar C, et al. Patient‐customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 2019;381:1644‐1652. - PMC - PubMed
  33.  
    1. Buckley AE, Dean J, Mahy IR. Cardiac involvement in Emery Dreifuss muscular dystrophy: a case series. Heart. 1999;82:105‐108. - PMC - PubMed
  34.  
    1. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007;8:749‐761. - PubMed
  35.  
    1. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102:11‐26. - PMC - PubMed
  36.  
    1. Calame DG, Fatih J, Herman I, et al. Biallelic pathogenic variants in TNNT3 associated with congenital myopathy. Neurol Genet. 2021;7:e589. - PMC - PubMed
  37.  
    1. Bryen SJ, Joshi H, Evesson FJ, et al. Pathogenic abnormal splicing due to intronic deletions that induce biophysical space constraint for spliceosome assembly. Am J Hum Genet. 2019;105:573‐587. - PMC - PubMed
  38.  
    1. Wang LL, Worley K, Gannavarapu A, Chintagumpala MM, Levy ML, Plon SE. Intron‐size constraint as a mutational mechanism in Rothmund‐Thomson syndrome. Am J Hum Genet. 2002;71:165‐167. - PMC - PubMed