99mTc-dimercaptosuccinic acid scan versus MRI in pyelonephritis: a meta-analysis

Affiliations


Abstract

Purpose: Tc-dimercaptosuccinic acid (DMSA) scan is the current gold standard in detecting parenchymal changes, particularly scarring, in pyelonephritis. Recently, magnetic resonance imaging (MRI) is gaining popularity in the diagnosis of pyelonephritis. The aim of this study is to perform a meta-analysis on studies directly comparing MRI to DMSA scan in patients with pyelonephritis.

Materials: Systematic searches of PUBMED and EMBASE databases were performed to extract studies comparing MRI and DMSA scan in patients with pyelonephritis. The relevance of articles was assessed by two authors according to predefined inclusion and exclusion criteria. The pooled estimates of the sensitivities of MRI and DMSA scan were computed using random-effects meta-analysis model following DerSimonian and Laird's method. Subgroup analysis and publication bias were performed.

Results: Seven studies were included (164 patients). Using random effect model, the pooled estimate of the sensitivities of MRI and DMSA scan were 0.62 (95%CI: 0.44 - 0.77) and 0.59 (95%CI: 0.48 - 0.70), respectively. The pooled estimates of sensitivities of MRI and DMSA scan for acute pyelonephritis were 0.73 (95%CI: 0.49- 0.89) and 0.66 (95%CI: 0.56 - 0.75), respectively, and for scar detection were 0.48 (95%CI: 0.31- 0.66), and 0.50 (95%CI: 0.30 - 0.71), respectively.

Conclusion: The overall sensitivities of MRI and DMSA scan were equivalent in detecting parenchymal changes in pyelonephritis. MRI and DMSA scan appeared to be equivalent to scar detection. In a small number of studies, MRI appeared to be better than the DMSA scan in acute pyelonephritis but this should be further studied in a larger number of patients.


Similar articles

Diffusion-weighted magnetic resonance imaging is more sensitive than dimercaptosuccinic acid scintigraphy in detecting parenchymal lesions in children with acute pyelonephritis: A prospective study.

Bosakova A, Salounova D, Havelka J, Kraft O, Sirucek P, Kocvara R, Hladik M.J Pediatr Urol. 2018 Jun;14(3):269.e1-269.e7. doi: 10.1016/j.jpurol.2018.02.014. Epub 2018 Mar 13.PMID: 29588142

Correlation of 99mTc-DMSA scan with radiological and laboratory examinations in childhood acute pyelonephritis: a time-series study.

Ghasemi K, Montazeri S, Pashazadeh AM, Javadi H, Assadi M.Int Urol Nephrol. 2013 Aug;45(4):925-32. doi: 10.1007/s11255-013-0479-y. Epub 2013 Jun 2.PMID: 23728908

Potential utility of MRI in the evaluation of children at risk of renal scarring.

Chan YL, Chan KW, Yeung CK, Roebuck DJ, Chu WC, Lee KH, Metreweli C.Pediatr Radiol. 1999 Nov;29(11):856-62. doi: 10.1007/s002470050713.PMID: 10552069

Renal cortical scintigraphy in the diagnosis of acute pyelonephritis.

Majd M, Rushton HG.Semin Nucl Med. 1992 Apr;22(2):98-111. doi: 10.1016/s0001-2998(05)80085-6.PMID: 1317065 Review.

Current Status of Radionuclide Renal Cortical Imaging in Pyelonephritis.

Sarikaya I, Sarikaya A.J Nucl Med Technol. 2019 Dec;47(4):309-312. doi: 10.2967/jnmt.119.227942. Epub 2019 Jun 10.PMID: 31182659 Review.


KMEL References


References

  1.  
    1. Czaja CA, Scholes D, Hooton TM, Stamm WE. Population-based epidemiologic analysis of acute pyelonephritis. Clin Infect Dis. 2007; 45:273–280
  2.  
    1. Garcia-Roig ML, Kirsch AJ. Urinary tract infection in the setting of vesicoureteral reflux. F1000Res. 2016; 5:F1000 Faculty Rev-1552
  3.  
    1. Park YS. Renal scar formation after urinary tract infection in children. Korean J Pediatr. 2012; 55:367–370
  4.  
    1. Mandell GA, Eggli DF, Gilday DL, Heyman S, Leonard JC, Miller JH, et al. Procedure guideline for renal cortical scintigraphy in children. Society of Nuclear Medicine. J Nucl Med. 1997; 38:1644–1646
  5.  
    1. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Roca I, et al. Paediatric Committee of the European Association of Nuclear Medicine. Guidelines for 99mTc-DMSA scintigraphy in children. Eur J Nucl Med. 2001; 28:BP37-41
  6.  
    1. Bjorgvinsson E, Majd M, Eggli KD. Diagnosis of acute pyelonephritis in children: comparison of sonography and Tc-99m DMSA scintigraphy. Am J Roentgenol. 1991; 157:539–543
  7.  
    1. Craig JC, Wheeler DM, Irwig L, Howman-Giles RB. How accurate is dimercaptosuccinic acid scintigraphy for the diagnosis of acute pyelonephritis? A meta-analysis of experimental studies. J Nucl Med. 2000; 41:986–993
  8.  
    1. Majd M, Rushton HG. Renal cortical scintigraphy in the diagnosis of acute pyelonephritis. Semin Nucl Med. 1992; 22:98–111
  9.  
    1. Applegate KE, Connolly LP, Davis RT, Zurakowski D, Treves ST. A prospective comparison of high-resolution planar, pinhole, and triple-detector SPECT for the detection of renal cortical defects. Clin Nucl Med. 1997; 22:673–678
  10.  
    1. Yen TC, Chen WP, Chang SL, Liu RS, Yeh SH, Lin CY. Technetium-99m-DMSA renal SPECT in diagnosing and monitoring pediatric acute pyelonephritis. J Nucl Med. 1996; 37:1349–1353
  11.  
    1. Brenner M, Bonta D, Eslamy H, Ziessman HA. Comparison of 99m Tc-DMSA dual-head SPECT versus high-resolution parallel-hole planar imaging for the detection of renal cortical defects. AJR. 2009; 193:333–337
  12.  
    1. Bosakova A, Salounova D, Havelka J, Kraft O, Sirucek P, Kocvara R, Hladik M. Diffusion-weighted magnetic resonance imaging is more sensitive than dimercaptosuccinic acid scintigraphy in detecting parenchymal lesions in children with acute pyelonephritis: a prospective study. J Pediatr Urol. 2018; 14:269.e1–269.e7
  13.  
    1. Freeman CW, Altes TA, Rehm PK, de Lange EE, Lancaster L, Mugler JP 3rd, et al. Unenhanced MRI as an alternative to 99mTc-labeled dimercaptosuccinic acid scintigraphy in the detection of pediatric renal scarring. AJR Am J Roentgenol. 2018; 210:869–875
  14.  
    1. Aoyagi J, Kanai T, Odaka J, Ito T, Saito T, Betsui H, et al. Non-enhanced magnetic resonance imaging versus renal scintigraphy in acute pyelonephritis. Pediatr Int. 2018; 60:200–203
  15.  
    1. Cerwinka WH, Grattan-Smith JD, Jones RA, Haber M, Little SB, Blews DE, et al. Comparison of magnetic resonance urography to dimercaptosuccinic acid scan for the identification of renal parenchyma defects in children with vesicoureteral reflux. J Pediatr Urol. 2014; 10:344–351
  16.  
    1. Kavanagh EC, Ryan S, Awan A, McCourbrey S, O’Connor R, Donoghue V. Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol. 2005; 35:275–281
  17.  
    1. Lonergan GJ, Pennington DJ, Morrison JC, Haws RM, Grimley MS, Kao TC. Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology. 1998; 207:377–384
  18.  
    1. Kovanlikaya A, Okkay N, Cakmakci H, Ozdoğan O, Degirmenci B, Kavukcu S. Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol. 2004; 49:76–80
  19.  
    1. Lee CH, Yoo KH, Je BK, Kim IS, Kiefer B, Park YS, et al. Using intravoxel incoherent motion MR imaging to evaluate cortical defects in the first episode of upper urinary tract infections: preliminary results. J Magn Reson Imaging. 2014; 40:545–551
  20.  
    1. Koçyiğit A, Yüksel S, Bayram R, Yilmaz İ, Karabulut N. Efficacy of magnetic resonance urography in detecting renal scars in children with vesicoureteral reflux. Pediatr Nephrol. 2014; 29:1215–1220
  21.  
    1. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009; 151:264–9, W64
  22.  
    1. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003; 3:25
  23.  
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327:557–560
  24.  
    1. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50:1088–1101
  25.  
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629–634
  26.  
    1. R Core Team. A Language and Environment for Statistical Computing. 2018, Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  27.  
    1. Schwarzer G. An R package for meta-analysis. R News. 2007; 7:40–45
  28.  
    1. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011; 343:d4002
  29.  
    1. Arnold AJ, Brownless SM, Carty HM, Rickwood AM. Detection of renal scarring by DMSA scanning – an experimental study. J Pediatr Surg. 1990; 25:391–393
  30.  
    1. Shaikh N, Ewing AL, Bhatnagar S, Hoberman A. Risk of renal scarring in children with a first urinary tract infection: a systematic review. Pediatrics. 2010; 126:1084–1091
  31.  
    1. Faust WC, Diaz M, Pohl HG. Incidence of post-pyelonephritic renal scarring: a meta-analysis of the dimercapto-succinic acid literature. J Urol. 2009; 181:290–297
  32.  
    1. Benador D, Benador N, Slosman DO, Nusslé D, Mermillod B, Girardin E. Cortical scintigraphy in the evaluation of renal parenchymal changes in children with pyelonephritis. J Pediatr. 1994; 124:17–20
  33.  
    1. Jakobsson B, Nolstedt L, Svensson L, Söderlundh S, Berg U. 99mTechnetium-dimercaptosuccinic acid scan in the diagnosis of acute pyelonephritis in children: relation to clinical and radiological findings. Pediatr Nephrol. 1992; 6:328–334
  34.  
    1. Kass EJ, Fink-Bennett D, Cacciarelli AA, Balon H, Pavlock S. The sensitivity of renal scintigraphy and sonography in detecting nonobstructive acute pyelonephritis. J Urol. 1992; 148:606–608
  35.  
    1. Sattari A, Kampouridis S, Damry N, Hainaux B, Ham HR, Vandewalle JC, Mols P. CT and 99mTc-DMSA scintigraphy in adult acute pyelonephritis: a comparative study. J Comput Assist Tomogr. 2000; 24:600–604
  36.  
    1. Montgomery P, Kuhn JP, Afshani E. CT evaluation of severe renal inflammatory disease in children. Pediatr Radiol. 1987; 17:216–222
  37.  
    1. Sfakianaki E, Sfakianakis GN, Georgiou M, Hsiao B. Renal scintigraphy in the acute care setting. Semin Nucl Med. 2013; 43:114–128
  38.  
    1. De Pascale A, Piccoli GB, Priola SM, Rognone D, Consiglio V, Garetto I, et al. Diffusion-weighted magnetic resonance imaging: new perspectives in the diagnostic pathway of non-complicated acute pyelonephritis. Eur Radiol. 2013; 23:3077–3086
  39.  
    1. Faletti R, Cassinis MC, Fonio P, Grasso A, Battisti G, Bergamasco L, Gandini G. Diffusion-weighted imaging and apparent diffusion coefficient values versus contrast-enhanced MR imaging in the identification and characterisation of acute pyelonephritis. Eur Radiol. 2013; 23:3501–3508
  40.  
    1. Vivier PH, Sallem A, Beurdeley M, Lim RP, Leroux J, Caudron J, et al. MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol. 2014; 24:19–25
  41.  
    1. Rathod SB, Kumbhar SS, Nanivadekar A, Aman K. Role of diffusion-weighted MRI in acute pyelonephritis: a prospective study. Acta Radiol. 2015; 56:244–249
  42.  
    1. Cruz J, Figueiredo F, Matos AP, Duarte S, Guerra A, Ramalho M. Infectious and inflammatory diseases of the urinary tract: role of MR imaging. Magn Reson Imaging Clin N Am. 2019; 27:59–75
  43.  
    1. Sarikaya I, Sarikaya A. Current status of radionuclide renal cortical imaging in pyelonephritis. J Nucl Med Technol. 2019; 47:309–312
  44.  
    1. Lim R, Bar-Sever Z, Treves ST. Is availability of 99mTc-DMSA insufficient to meet clinical needs in the United States? A survey. J Nucl Med. 2019; 60:14N–16N
  45.  
    1. Shaikh N, Hoberman A, Keren R, Ivanova A, Ziessman HA, Cui G, et al. Utility of sedation for young children undergoing dimercaptosuccinic acid renal scans. Pediatr Radiol. 2016; 46:1573–1578
  46.  
    1. Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014; 29:1927–1937
  47.  
    1. Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller ER 3rd, Semelka RC. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy – report from two U.S. universities. Radiology. 2009; 253:689–696
  48.  
    1. Pasquini L, Napolitano A, Visconti E, Longo D, Romano A, Tomà P, Rossi Espagnet MC. Gadolinium-based contrast agent-related toxicities. CNS Drugs. 2018; 32:229–240
  49.  
    1. Song R, Tipirneni A, Johnson P, Loeffler RB, Hillenbrand CM. Evaluation of respiratory liver and kidney movements for MRI navigator gating. J Magn Reson Imaging. 2011; 33:143–148
  50.  
    1. Eustace S, Tello R, DeCarvalho V, Carey J, Wroblicka JT, Melhem ER, Yucel EK. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol. 1997; 169:1655–1661
  51.  
    1. Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol. 2007; 36:1109–1119
  52.  
    1. Abbaspour S, Mahmoudian B, Islamian JP. Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging. World J Nucl Med. 2017; 16:101–107