Comparison of Radon and Thoron Concentration Measuring Systems Among Asian Countries


Figures


Similar articles

Intercomparisons for integrating the radon-thoron detector of NIRP, China with NIRS, Japan.

Wu Y, Cui H, Zhang Q, Shang B.Radiat Prot Dosimetry. 2015 Apr;164(3):398-401. doi: 10.1093/rpd/ncu286. Epub 2014 Sep 16.PMID: 25227443

The most recent international intercomparisons of radon and thoron monitors with the NIRS radon and thoron chambers.

Janik M, Yonehara H.Radiat Prot Dosimetry. 2015 Jun;164(4):595-600. doi: 10.1093/rpd/ncv318. Epub 2015 May 13.PMID: 25977355

Contribution from thoron on the response of passive radon detectors.

Tokonami S, Yang M, Sanada T.Health Phys. 2001 Jun;80(6):612-5. doi: 10.1097/00004032-200106000-00014.PMID: 11388733

REVIEW OF RADON AND THORON RESEARCH IN KENYA: 1997-2017.

Chege M, Nyambura C.Radiat Prot Dosimetry. 2019 Oct 1;184(3-4):479-481. doi: 10.1093/rpd/ncz065.PMID: 31330029 Review.

An overview of thoron and its progeny in the indoor environment.

McLaughlin J.Radiat Prot Dosimetry. 2010 Oct;141(4):316-21. doi: 10.1093/rpd/ncq234. Epub 2010 Sep 21.PMID: 20858677 Review.


Cited by

Identifying indoor radon sources in Pa Miang, Chiang Mai, Thailand.

Thumvijit T, Chanyotha S, Sriburee S, Hongsriti P, Tapanya M, Kranrod C, Tokonami S.Sci Rep. 2020 Oct 20;10(1):17723. doi: 10.1038/s41598-020-74721-6.PMID: 33082391 Free PMC article.

Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron.

Omori Y, Tamakuma Y, Nugraha ED, Suzuki T, Saputra MA, Hosoda M, Tokonami S.Int J Environ Res Public Health. 2020 May 2;17(9):3178. doi: 10.3390/ijerph17093178.PMID: 32370255 Free PMC article.


KMEL References

https://pubmed.ncbi.nlm.nih.gov/https://pubmed.ncbi.nlm.nih.gov/


References

  1.  
    1. European Council Directive 2013/59/Euratom on Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. [(accessed on 17 January 2014)]; Available online: https://eur-lex.europa.eu/eli/dir/2013/59/oj.
  2.  
    1. DURRIDGE Company Inc. The Natural Rock Sample: User Manual. [(accessed on 17 January 2018)]; Available online: https://durridge.com/products/natural-rock-sample/
  3.  
    1. Röttger A., Honig A., Schmidt V., Buchröder H., Rox A., Butterweck G., Schuler C., Maringer F.J., Jachs P., Edelmaier R., et al. Radon activity concentration-a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot. 2006;64:1102–1107. doi: 10.1016/j.apradiso.2006.02.086. - DOI - PubMed
  4.  
    1. Tokonami S., Yang M., Yonehara H., Yamada Y. Simple, discriminative measurement technique for radon and thoron concentrations with a single scintillation cell. Rev. Sci. Instrum. 2002;73:69. doi: 10.1063/1.1416121. - DOI
  5.  
    1. Iimoto T., Tokonami S., Kurosawa R. Estimation method for alpha particle counting efficiency for scintillation flasks. Radiat. Prot. Dosim. 1997;72:55–60. doi: 10.1093/oxfordjournals.rpd.a032078. - DOI
  6.  
    1. Tang F., Zhuo W., Zhao C., Chen B., Xu Y., He L. A theoretical study on accurate measurements of thoron with airflow-through scintillation cell method. Radiat. Prot. Dosim. 2010;141:448–451. doi: 10.1093/rpd/ncq252. - DOI - PubMed
  7.  
    1. Beck T.R., Buchröder H., Döring J., Foerster E., Schmidt V. The Radon Calibration Laboratory at the Federal Office for Radiation Protection (BfS); Proceedings of the International Intercomparison Exercise on Natural Radiation Measurements under Field Conditions; Saelices el Chico, Spain. 23–27 May 2011.
  8.  
    1. Beck T.R., Buchröder H., Schmidt V. Performance tests for instruments measuring radon activity concentration. Appl. Radiat. Isot. 2009;67:876–880. doi: 10.1016/j.apradiso.2009.01.049. - DOI - PubMed
  9.  
    1. Tykva R., Sabol J. Low-Level Environmental Radioactivity: Sources and Evaluation. CRC Press; Lancaster, PA, USA: 1995.
  10.  
    1. Röttger A., Honig A., Linzmaier D. Calibration of commercial radon and thoron monitors at stable activtiy concentrations. Appl. Radiat. Isot. 2014;87:44–47. doi: 10.1016/j.apradiso.2013.11.111. - DOI - PubMed
  11.  
    1. ISO. 13528:2015 . Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. ISO; Geneva, Switzerland: 2015. Technical Report.
  12.  
    1. Janik M., Yonehara H. The most recent international intercomparisons of radon and thoron monitors with the NIRS radon and thoron chambers. Radiat. Prot. Dosim. 2015;164:595–600. doi: 10.1093/rpd/ncv318. - DOI - PubMed
  13.  
    1. Kojima I., Kakita K. Comparative Study of Robustness of Statistical Methods for Laboratory Proficiency Testing. Anal. Sci. 2014;30:1165–1168. doi: 10.2116/analsci.30.1165. - DOI - PubMed
  14.  
    1. Daszykowski M., Kaczmarek K., Vander Heyden Y., Walczak B. Robust statistics in data analysis—A review, Basic concepts. Chemom. Intell. Lab. Syst. 2007;85:203–219. doi: 10.1016/j.chemolab.2006.06.016. - DOI
  15.  
    1. Lipinski S., Grabe N., Jacobs G., Billmann-Born S., Till A., Hasler R., Aden K., Paulsen M., Arlt A., Kraemer L., et al. RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition—Supporting Inofmation. Proc. Natl. Acad. Sci. USA. 2012;109:21426–21431. doi: 10.1073/pnas.1209673109. - DOI - PMC - PubMed