Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Kainz K., Bauer M.A., Madeo F., Carmona-Gutierrez D. Fungal Infections in Humans: The Silent Crisis. Microb. Cell. 2020;7:143–145. doi: 10.15698/mic2020.06.718. - DOI - PMC - PubMed
Papon N., Bougnoux M.-E., d’Enfert C. Tracing the Origin of Invasive Fungal Infections. Trends Microbiol. 2020;28:240–242. doi: 10.1016/j.tim.2020.01.007. - DOI - PubMed
Firacative C. Invasive Fungal Disease in Humans: Are We Aware of the Real Impact? Memórias Do Inst. Oswaldo Cruz. 2020;115:e200430. doi: 10.1590/0074-02760200430. - DOI - PMC - PubMed
Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. - DOI - PubMed
Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. - DOI - PMC - PubMed
Prakash H., Chakrabarti A. Global Epidemiology of Mucormycosis. J. Fungi. 2019;5:26. doi: 10.3390/jof5010026. - DOI - PMC - PubMed
Verweij P.E., Lucas J.A., Arendrup M.C., Bowyer P., Brinkmann A.J.F., Denning D.W., Dyer P.S., Fisher M.C., Geenen P.L., Gisi U., et al. The One Health Problem of Azole Resistance in Aspergillus Fumigatus: Current Insights and Future Research Agenda. Fungal Biol. Rev. 2020;34:202–214. doi: 10.1016/j.fbr.2020.10.003. - DOI
Rhodes J., Fisher M.C. Global Epidemiology of Emerging Candida Auris. Curr. Opin. Microbiol. 2019;52:84–89. doi: 10.1016/j.mib.2019.05.008. - DOI - PubMed
Bilal H., Hou B., Shafiq M., Chen X., Shahid M.A., Zeng Y. Antifungal Susceptibility Pattern of Candida Isolated from Cutaneous Candidiasis Patients in Eastern Guangdong Region: A Retrospective Study of the Past 10 Years. Front. Microbiol. 2022;13:981181. doi: 10.3389/fmicb.2022.981181. - DOI - PMC - PubMed
Bilal H., Shafiq M., Hou B., Islam R., Khan M.N., Khan R.U., Zeng Y. Distribution and Antifungal Susceptibility Pattern of Candida Species from Mainland China: A Systematic Analysis. Virulence. 2022;13:1573–1589. doi: 10.1080/21505594.2022.2123325. - DOI - PMC - PubMed
Janbon G., Quintin J., Lanternier F., d’Enfert C. Studying Fungal Pathogens of Humans and Fungal Infections: Fungal Diversity and Diversity of Approaches. Microbes Infect. 2019;21:237–245. doi: 10.1016/j.micinf.2019.06.011. - DOI - PubMed
Enoch D.A., Yang H., Aliyu S.H., Micallef C. The Changing Epidemiology of Invasive Fungal Infections. In: Lion T., editor. Human Fungal Pathogen Identification: Methods and Protocols. Springer; New York, NY, USA: 2017. pp. 17–65. Methods in Molecular Biology. - PubMed
Song G., Liang G., Liu W. Fungal Co-Infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia. 2020;185:599–606. doi: 10.1007/s11046-020-00462-9. - DOI - PMC - PubMed
Pushparaj K., Kuchi Bhotla H., Arumugam V.A., Pappusamy M., Easwaran M., Liu W.-C., Issara U., Rengasamy K.R.R., Meyyazhagan A., Balasubramanian B. Mucormycosis (Black Fungus) Ensuing COVID-19 and Comorbidity Meets-Magnifying Global Pandemic Grieve and Catastrophe Begins. Sci. Total Environ. 2022;805:150355. doi: 10.1016/j.scitotenv.2021.150355. - DOI - PMC - PubMed
Drissi C. Black Fungus, the Darker Side of COVID-19. J. Neuroradiol. 2021;48:317–318. doi: 10.1016/j.neurad.2021.07.003. - DOI - PMC - PubMed
Shapiro R.S., Robbins N., Cowen L.E. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol. Mol. Biol. Rev. 2011;75:213–267. doi: 10.1128/MMBR.00045-10. - DOI - PMC - PubMed
Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The Global Problem of Antifungal Resistance: Prevalence, Mechanisms, and Management. Lancet Infect. Dis. 2017;17:e383–e392. doi: 10.1016/S1473-3099(17)30316-X. - DOI - PubMed
Robbins N., Caplan T., Cowen L.E. Molecular Evolution of Antifungal Drug Resistance. Annu. Rev. Microbiol. 2017;71:753–775. doi: 10.1146/annurev-micro-030117-020345. - DOI - PubMed
Edlind Thomas D., Katiyar Santosh K. Mutational Analysis of Flucytosine Resistance in Candida Glabrata. Antimicrob. Agents Chemother. 2010;54:4733–4738. doi: 10.1128/AAC.00605-10. - DOI - PMC - PubMed
Berman J., Krysan D.J. Drug Resistance and Tolerance in Fungi. Nat. Rev. Microbiol. 2020;18:319–331. doi: 10.1038/s41579-019-0322-2. - DOI - PMC - PubMed
Shor E., Perlin D.S. Coping with Stress and the Emergence of Multidrug Resistance in Fungi. PLoS Pathog. 2015;11:e1004668. doi: 10.1371/journal.ppat.1004668. - DOI - PMC - PubMed
Meletiadis J., Antachopoulos C., Stergiopoulou T., Pournaras S., Roilides E., Walsh T.J. Differential Fungicidal Activities of Amphotericin B and Voriconazole against Aspergillus Species Determined by Microbroth Methodology. Antimicrob. Agents Chemother. 2007;51:3329–3337. doi: 10.1128/AAC.00345-07. - DOI - PMC - PubMed
Geißel B., Loiko V., Klugherz I., Zhu Z., Wagener N., Kurzai O., van den Hondel C.A.M.J.J., Wagener J. Azole-Induced Cell Wall Carbohydrate Patches Kill Aspergillus Fumigatus. Nat. Commun. 2018;9:3098. doi: 10.1038/s41467-018-05497-7. - DOI - PMC - PubMed
Patil A., Majumdar S. Echinocandins in Antifungal Pharmacotherapy. J. Pharm. Pharmacol. 2017;69:1635–1660. doi: 10.1111/jphp.12780. - DOI - PubMed
Carmona E.M., Limper A.H. Overview of Treatment Approaches for Fungal Infections. Clin. Chest Med. 2017;38:393–402. doi: 10.1016/j.ccm.2017.04.003. - DOI - PubMed
Fisher M.C., Hawkins N.J., Sanglard D., Gurr S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science. 2018;360:739–742. doi: 10.1126/science.aap7999. - DOI - PubMed
Fisher M.C., Alastruey-Izquierdo A., Berman J., Bicanic T., Bignell E.M., Bowyer P., Bromley M., Brüggemann R., Garber G., Cornely O.A., et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022;20:557–571. doi: 10.1038/s41579-022-00720-1. - DOI - PMC - PubMed
Revie N.M., Iyer K.R., Robbins N., Cowen L.E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018;45:70–76. doi: 10.1016/j.mib.2018.02.005. - DOI - PMC - PubMed
Zheng Y.-H., Ma Y.-Y., Ding Y., Chen X.-Q., Gao G.-X. An Insight into New Strategies to Combat Antifungal Drug Resistance. Drug Des. Dev. 2018;12:3807–3816. doi: 10.2147/DDDT.S185833. - DOI - PMC - PubMed
Pathadka S., Yan V.K.C., Neoh C.F., Al-Badriyeh D., Kong D.C.M., Slavin M.A., Cowling B.J., Hung I.F.N., Wong I.C.K., Chan E.W. Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018: Data From 65 Middle- and High-Income Countries. Drugs. 2022;82:1193–1205. doi: 10.1007/s40265-022-01751-x. - DOI - PMC - PubMed
Hoenigl M., Sprute R., Egger M., Arastehfar A., Cornely O.A., Krause R., Lass-Flörl C., Prattes J., Spec A., Thompson G.R., et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs. 2021;81:1703–1729. doi: 10.1007/s40265-021-01611-0. - DOI - PMC - PubMed
Perfect J.R. The Antifungal Pipeline: A Reality Check. Nat. Rev. Drug Discov. 2017;16:603–616. doi: 10.1038/nrd.2017.46. - DOI - PMC - PubMed
Ostrosky-Zeichner L., Casadevall A., Galgiani J.N., Odds F.C., Rex J.H. An Insight into the Antifungal Pipeline: Selected New Molecules and Beyond. Nat. Rev. Drug Discov. 2010;9:719–727. doi: 10.1038/nrd3074. - DOI - PubMed
Odds F.C., Brown A.J.P., Gow N.A.R. Antifungal Agents: Mechanisms of Action. Trends Microbiol. 2003;11:272–279. doi: 10.1016/S0966-842X(03)00117-3. - DOI - PubMed
Zotchev S.B. Polyene Macrolide Antibiotics and Their Applications in Human Therapy. Curr. Med. Chem. 2003;10:211–223. doi: 10.2174/0929867033368448. - DOI - PubMed
Hamilton-Miller J.M. Chemistry and Biology of the Polyene Macrolide Antibiotics. Bacteriol. Rev. 1973;37:166–196. doi: 10.1128/br.37.2.166-196.1973. - DOI - PMC - PubMed
Kinsky S.C. Polyene Antibiotics. In: Gottlieb D., Shaw P.D., editors. Antibiotics: Volume I Mechanism of Action. Springer; Berlin/Heidelberg, Germany: 1967. pp. 122–141.
Bekersky I., Fielding R.M., Dressler D.E., Lee J.W., Buell D.N., Walsh T.J. Pharmacokinetics, Excretion, and Mass Balance of Liposomal Amphotericin B (AmBisome) and Amphotericin B Deoxycholate in Humans. Antimicrob. Agents Chemother. 2002;46:828–833. doi: 10.1128/AAC.46.3.828-833.2002. - DOI - PMC - PubMed
Mesa-Arango A.C., Scorzoni L., Zaragoza O. It Only Takes One to Do Many Jobs: Amphotericin B as Antifungal and Immunomodulatory Drug. Front. Microbiol. 2012;3:286. doi: 10.3389/fmicb.2012.00286. - DOI - PMC - PubMed
Kristanc L., Božič B., Jokhadar Š.Z., Dolenc M.S., Gomišček G. The Pore-Forming Action of Polyenes: From Model Membranes to Living Organisms. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2019;1861:418–430. doi: 10.1016/j.bbamem.2018.11.006. - DOI - PubMed
Quezada H., Martínez-Vázquez M., López-Jácome E., González-Pedrajo B., Andrade Á., Fernández-Presas A.M., Tovar-García A., García-Contreras R. Repurposed Anti-Cancer Drugs: The Future for Anti-Infective Therapy? Expert Rev. Anti Infect. 2020;18:609–612. doi: 10.1080/14787210.2020.1752665. - DOI - PubMed
Rojas E., Herrera L.A., Sordo M., Gonsebatt M.E., Montero R., Rodríguez R., Ostrosky-Wegman P. Mitotic Index and Cell Proliferation Kinetics for Identification of Antineoplastic Activity. Anticancer Drugs. 1993;4:637–640. doi: 10.1097/00001813-199312000-00005. - DOI - PubMed
Longley D.B., Harkin D.P., Johnston P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. - DOI - PubMed
Moudi M., Go R., Yien C.Y.S., Nazre M. Vinca Alkaloids. Int. J. Prev. Med. 2013;4:1231–1235. - PMC - PubMed
Weaver B.A. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell. 2014;25:2677–2681. doi: 10.1091/mbc.e14-04-0916. - DOI - PMC - PubMed
Perfect J.R., Dismukes W.E., Dromer F., Goldman D.L., Graybill J.R., Hamill R.J., Harrison T.S., Larsen R.A., Lortholary O., Nguyen M.-H., et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010;50:291–322. doi: 10.1086/649858. - DOI - PMC - PubMed
Cornely O.A., Bassetti M., Calandra T., Garbino J., Kullberg B.J., Lortholary O., Meersseman W., Akova M., Arendrup M.C., Arikan-Akdagli S., et al. ESCMID* Guideline for the Diagnosis and Management of Candida Diseases 2012: Non-Neutropenic Adult Patients. Clin. Microbiol. Infect. 2012;18((Suppl. 7)):19–37. doi: 10.1111/1469-0691.12039. - DOI - PubMed
Tobias J.S., Wrigley P.F., Shaw E. Combination Antifungal Therapy for Cryptococcal Meningitis. Postgrad. Med. J. 1976;52:305–308. doi: 10.1136/pgmj.52.607.305. - DOI - PMC - PubMed
Vermes A., Guchelaar H.-J., Dankert J. Flucytosine: A Review of Its Pharmacology, Clinical Indications, Pharmacokinetics, Toxicity and Drug Interactions. J. Antimicrob. Chemother. 2000;46:171–179. doi: 10.1093/jac/46.2.171. - DOI - PubMed
Heidemann H.T., Brune K.H., Sabra R., Branch R.A. Acute and Chronic Effects of Flucytosine on Amphotericin B Nephrotoxicity in Rats. Antimicrob. Agents Chemother. 1992;36:2670–2675. doi: 10.1128/AAC.36.12.2670. - DOI - PMC - PubMed
Schwarz P., Janbon G., Dromer F., Lortholary O., Dannaoui E. Combination of Amphotericin B with Flucytosine Is Active In Vitro against Flucytosine-Resistant Isolates of Cryptococcus Neoformans. Antimicrob. Agents Chemother. 2007;51:383–385. doi: 10.1128/AAC.00446-06. - DOI - PMC - PubMed
Houšť J., Spížek J., Havlíček V. Antifungal Drugs. Metabolites. 2020;10:106. doi: 10.3390/metabo10030106. - DOI - PMC - PubMed
Padda I.S., Parmar M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Flucytosine.
Gsaller F., Furukawa T., Carr P.D., Rash B., Jöchl C., Bertuzzi M., Bignell E.M., Bromley M.J. Mechanistic Basis of PH-Dependent 5-Flucytosine Resistance in Aspergillus Fumigatus. Antimicrob. Agents Chemother. 2018;62:e02593-17. doi: 10.1128/AAC.02593-17. - DOI - PMC - PubMed
García-García I., Borobia A.M. Current Approaches and Future Strategies for the Implementation of Pharmacogenomics in the Clinical Use of Azole Antifungal Drugs. Expert Opin. Drug Metab. Toxicol. 2021;17:509–514. doi: 10.1080/17425255.2021.1890715. - DOI - PubMed
Howard K.C., Dennis E.K., Watt D.S., Garneau-Tsodikova S. A Comprehensive Overview of the Medicinal Chemistry of Antifungal Drugs: Perspectives and Promise. Chem. Soc. Rev. 2020;49:2426–2480. doi: 10.1039/C9CS00556K. - DOI - PubMed
Brand S.R., Degenhardt T.P., Person K., Sobel J.D., Nyirjesy P., Schotzinger R.J., Tavakkol A. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Study to Evaluate the Efficacy and Safety of Orally Administered VT-1161 in the Treatment of Recurrent Vulvovaginal Candidiasis. Am. J. Obs. Gynecol. 2018;218:624.e1–624.e9. doi: 10.1016/j.ajog.2018.03.001. - DOI - PubMed
Cui X., Wang L., Lü Y., Yue C. Development and Research Progress of Anti-Drug Resistant Fungal Drugs. J. Infect. Public Health. 2022;15:986–1000. doi: 10.1016/j.jiph.2022.08.004. - DOI - PubMed
Neochoritis C.G., Zhao T., Dömling A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019;119:1970–2042. doi: 10.1021/acs.chemrev.8b00564. - DOI - PMC - PubMed
Monk Brian C., Keniya Mikhail V., Manya S., Wilson Rajni K., Graham Danyon O., Hassan Harith F., Danni C., Tyndall Joel D.A. Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161. Antimicrob. Agents Chemother. 2018;63:e02114-18. doi: 10.1128/AAC.02114-18. - DOI - PMC - PubMed
Hoekstra W.J., Garvey E.P., Moore W.R., Rafferty S.W., Yates C.M., Schotzinger R.J. Design and Optimization of Highly-Selective Fungal CYP51 Inhibitors. Bioorganic Med. Chem. Lett. 2014;24:3455–3458. doi: 10.1016/j.bmcl.2014.05.068. - DOI - PubMed
Warrilow A.G.S., Hull C.M., Parker J.E., Garvey E.P., Hoekstra W.J., Moore W.R., Schotzinger R.J., Kelly D.E., Kelly S.L. The Clinical Candidate VT-1161 Is a Highly Potent Inhibitor of Candida Albicans CYP51 but Fails To Bind the Human Enzyme. Antimicrob. Agents Chemother. 2014;58:7121–7127. doi: 10.1128/AAC.03707-14. - DOI - PMC - PubMed
Wiederhold N.P., Najvar L.K., Garvey E.P., Brand S.R., Xu X., Ottinger E.A., Alimardanov A., Cradock J., Behnke M., Hoekstra W.J., et al. The Fungal Cyp51 Inhibitor VT-1129 Is Efficacious in an Experimental Model of Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2018;62:e01071-18. doi: 10.1128/AAC.01071-18. - DOI - PMC - PubMed
Sobel J.D., Nyirjesy P. Oteseconazole: An Advance in Treatment of Recurrent Vulvovaginal Candidiasis. Future Microbiol. 2021;16:1453–1461. doi: 10.2217/fmb-2021-0173. - DOI - PubMed
Lockhart Shawn R., Fothergill Annette W., Naureen I., Bolden Carol B., Grossman Nina T., Garvey Edward P., Brand Stephen R., Hoekstra William J., Schotzinger Robert J., Elizabeth O., et al. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus Neoformans and Cryptococcus Gattii. Antimicrob. Agents Chemother. 2016;60:2528–2531. doi: 10.1128/AAC.02770-15. - DOI - PMC - PubMed
Kathiravan M.K., Salake A.B., Chothe A.S., Dudhe P.B., Watode R.P., Mukta M.S., Gadhwe S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorg. Med. Chem. 2012;20:5678–5698. doi: 10.1016/j.bmc.2012.04.045. - DOI - PubMed
Cadena J., Thompson G.R., Patterson T.F. Invasive Aspergillosis: Current Strategies for Diagnosis and Management. Infect. Dis. Clin. 2016;30:125–142. doi: 10.1016/j.idc.2015.10.015. - DOI - PubMed
Zhou C.-H., Wang Y. Recent Researches in Triazole Compounds as Medicinal Drugs. Curr. Med. Chem. 2012;19:239–280. doi: 10.2174/092986712803414213. - DOI - PubMed
Chang Y.-L., Yu S.-J., Heitman J., Wellington M., Chen Y.-L. New Facets of Antifungal Therapy. Virulence. 2017;8:222–236. doi: 10.1080/21505594.2016.1257457. - DOI - PMC - PubMed
Lass-Flörl C. Triazole Antifungal Agents in Invasive Fungal Infections. Drugs. 2011;71:2405–2419. doi: 10.2165/11596540-000000000-00000. - DOI - PubMed
Kernt M., Kampik A. Endophthalmitis: Pathogenesis, Clinical Presentation, Management, and Perspectives. Clin. Ophthalmol. 2010;4:121–135. doi: 10.2147/OPTH.S6461. - DOI - PMC - PubMed
Kofla G., Ruhnke M. Pharmacology and Metabolism of Anidulafungin, Caspofungin and Micafungin in the Treatment of Invasive Candidosis—Review of the Literature. Eur. J. Med. Res. 2011;16:159. doi: 10.1186/2047-783X-16-4-159. - DOI - PMC - PubMed
Stover K.R., Farley J.M., Kyle P.B., Cleary J.D. Cardiac Toxicity of Some Echinocandin Antifungals. Expert Opin. Drug Saf. 2014;13:5–14. doi: 10.1517/14740338.2013.829036. - DOI - PubMed
Denning D.W. Echinocandins: A New Class of Antifungal. J. Antimicrob. Chemother. 2002;49:889–891. doi: 10.1093/jac/dkf045. - DOI - PubMed
Bachmann S.P., Patterson T.F., López-Ribot J.L. In Vitro Activity of Caspofungin (MK-0991) against Candida Albicans Clinical Isolates Displaying Different Mechanisms of Azole Resistance. J. Clin. Microbiol. 2002;40:2228–2230. doi: 10.1128/JCM.40.6.2228-2230.2002. - DOI - PMC - PubMed
Gil-Lamaignere C., Salvenmoser S., Hess R., Müller F.-M.C. Micafungin Enhances Neutrophil Fungicidal Functions against Candida Pseudohyphae. Antimicrob. Agents Chemother. 2004;48:2730–2732. doi: 10.1128/AAC.48.7.2730-2732.2004. - DOI - PMC - PubMed
Pontón J. [The fungal cell wall and the mechanism of action of anidulafungin] Rev. Iberoam. Micol. 2008;25:78–82. doi: 10.1016/S1130-1406(08)70024-X. - DOI - PubMed
Sucher A.J., Chahine E.B., Balcer H.E. Echinocandins: The Newest Class of Antifungals. Ann. Pharm. 2009;43:1647–1657. doi: 10.1345/aph.1M237. - DOI - PubMed
Chandrasekar P.H., Sobel J.D. Micafungin: A New Echinocandin. Clin. Infect. Dis. 2006;42:1171–1178. doi: 10.1086/501020. - DOI - PubMed
Bowman J.C., Hicks P.S., Kurtz M.B., Rosen H., Schmatz D.M., Liberator P.A., Douglas C.M. The Antifungal Echinocandin Caspofungin Acetate Kills Growing Cells of Aspergillus Fumigatus in Vitro. Antimicrob. Agents Chemother. 2002;46:3001–3012. doi: 10.1128/AAC.46.9.3001-3012.2002. - DOI - PMC - PubMed
Kurtz M.B., Heath I.B., Marrinan J., Dreikorn S., Onishi J., Douglas C. Morphological Effects of Lipopeptides against Aspergillus Fumigatus Correlate with Activities against (1,3)-Beta-D-Glucan Synthase. Antimicrob. Agents Chemother. 1994;38:1480–1489. doi: 10.1128/AAC.38.7.1480. - DOI - PMC - PubMed
Sanglard D. Resistance of Human Fungal Pathogens to Antifungal Drugs. Curr. Opin. Microbiol. 2002;5:379–385. doi: 10.1016/S1369-5274(02)00344-2. - DOI - PubMed
Hull C.M., Bader O., Parker J.E., Weig M., Gross U., Warrilo A.G.S., Kelly D.E., Kelly S.L. Two Clinical Isolates of Candida Glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2. Antimicrob. Agents Chemother. 2012;56:6417–6421. doi: 10.1128/AAC.01145-12. - DOI - PMC - PubMed
Carolus H., Pierson S., Muñoz J.F., Subotić A., Cruz R.B., Cuomo C.A., Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida Auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio. 2021;12:e03333-20. doi: 10.1128/mBio.03333-20. - DOI - PMC - PubMed
Blatzer M., Blum G., Jukic E., Posch W., Gruber P., Nagl M., Binder U., Maurer E., Sarg B., Lindner H., et al. Blocking Hsp70 Enhances the Efficiency of Amphotericin B Treatment against Resistant Aspergillus Terreus Strains. Antimicrob. Agents Chemother. 2015;59:3778–3788. doi: 10.1128/AAC.05164-14. - DOI - PMC - PubMed
Posch W., Blatzer M., Wilflingseder D., Lass-Flörl C. Aspergillus Terreus: Novel Lessons Learned on Amphotericin B Resistance. Med. Mycol. 2018;56:S73–S82. doi: 10.1093/mmy/myx119. - DOI - PubMed
Carolus H., Pierson S., Lagrou K., Van Dijck P. Amphotericin B and Other Polyenes—Discovery, Clinical Use, Mode of Action and Drug Resistance. J. Fungi. 2020;6:321. doi: 10.3390/jof6040321. - DOI - PMC - PubMed
Delma F.Z., Al-Hatmi A.M.S., Brüggemann R.J.M., Melchers W.J.G., de Hoog S., Verweij P.E., Buil J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi. 2021;7:909. doi: 10.3390/jof7110909. - DOI - PMC - PubMed
Papon N., Noël T., Florent M., Gibot-Leclerc S., Jean D., Chastin C., Villard J., Chapeland-Leclerc F. Molecular Mechanism of Flucytosine Resistance in Candida Lusitaniae: Contribution of the FCY2, FCY1, and FUR1 Genes to 5-Fluorouracil and Fluconazole Cross-Resistance. Antimicrob. Agents Chemother. 2007;51:369–371. doi: 10.1128/AAC.00824-06. - DOI - PMC - PubMed
Burks C., Darby A., Gómez Londoño L., Momany M., Brewer M.T. Azole-Resistant Aspergillus Fumigatus in the Environment: Identifying Key Reservoirs and Hotspots of Antifungal Resistance. PLoS Pathog. 2021;17:e1009711. doi: 10.1371/journal.ppat.1009711. - DOI - PMC - PubMed
Sharma C., Chowdhary A. Molecular Bases of Antifungal Resistance in Filamentous Fungi. Int. J. Antimicrob. Agents. 2017;50:607–616. doi: 10.1016/j.ijantimicag.2017.06.018. - DOI - PubMed
Cowen L.E., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014;5:a019752. doi: 10.1101/cshperspect.a019752. - DOI - PMC - PubMed
Whaley S.G., Rogers P.D. Azole Resistance in Candida Glabrata. Curr. Infect. Dis. Rep. 2016;18:41. doi: 10.1007/s11908-016-0554-5. - DOI - PubMed
Pinjon E., Moran G.P., Coleman D.C., Sullivan D.J. Azole Susceptibility and Resistance in Candida Dubliniensis. Biochem. Soc. Trans. 2005;33:1210–1214. doi: 10.1042/BST0331210. - DOI - PubMed
Pfaller M.A., Diekema D.J., Turnidge J.D., Castanheira M., Jones R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect. Dis. 2019;6:S79–S94. doi: 10.1093/ofid/ofy358. - DOI - PMC - PubMed
Rodrigues C.F., Rodrigues M.E., Henriques M. Susceptibility of Candida Glabrata Biofilms to Echinocandins: Alterations in the Matrix Composition. Biofouling. 2018;34:569–578. doi: 10.1080/08927014.2018.1472244. - DOI - PubMed
Liu C., Shi C., Mao F., Xu Y., Liu J., Wei B., Zhu J., Xiang M., Li J. Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity. Molecules. 2014;19:15653–15672. doi: 10.3390/molecules191015653. - DOI - PMC - PubMed
Nishimoto Andrew T., Wiederhold Nathan P., Flowers Stephanie A., Zhang Q., Kelly Steven L., Joachim M., Yates Christopher M., Hoekstra William J., Schotzinger Robert J., Garvey Edward P., et al. In Vitro Activities of the Novel Investigational Tetrazoles VT-1161 and VT-1598 Compared to the Triazole Antifungals against Azole-Resistant Strains and Clinical Isolates of Candida Albicans. Antimicrob. Agents Chemother. 2019;63:e00341-19. doi: 10.1128/AAC.00341-19. - DOI - PMC - PubMed
Desai J.V., Mitchell A.P., Andes D.R. Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harb. Perspect. Med. 2014;4:a019729. doi: 10.1101/cshperspect.a019729. - DOI - PMC - PubMed
Gebreyohannes G., Nyerere A., Bii C., Sbhatu D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon. 2019;5:e02192. doi: 10.1016/j.heliyon.2019.e02192. - DOI - PMC - PubMed
Rajendran R., Sherry L., Deshpande A., Johnson E.M., Hanson M.F., Williams C., Munro C.A., Jones B.L., Ramage G. A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Front. Microbiol. 2016;7:915. doi: 10.3389/fmicb.2016.00915. - DOI - PMC - PubMed
Rajendran R., Sherry L., Nile C.J., Sherriff A., Johnson E.M., Hanson M.F., Williams C., Munro C.A., Jones B.J., Ramage G. Biofilm Formation Is a Risk Factor for Mortality in Patients with Candida Albicans Bloodstream Infection-Scotland, 2012–2013. Clin. Microbiol. Infect. 2016;22:87–93. doi: 10.1016/j.cmi.2015.09.018. - DOI - PMC - PubMed
Sherry L., Ramage G., Kean R., Borman A., Johnson E.M., Richardson M.D., Rautemaa-Richardson R. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida Auris. Emerg. Infect. Dis. 2017;23:328–331. doi: 10.3201/eid2302.161320. - DOI - PMC - PubMed
Ramage G., Rajendran R., Sherry L., Williams C. Fungal Biofilm Resistance. Int. J. Microbiol. 2012;2012:528521. doi: 10.1155/2012/528521. - DOI - PMC - PubMed
Perlin D.S., Shor E., Zhao Y. Update on Antifungal Drug Resistance. Curr. Clin. Microbiol. Rep. 2015;2:84–95. doi: 10.1007/s40588-015-0015-1. - DOI - PMC - PubMed
Niimi K., Maki K., Ikeda F., Holmes A.R., Lamping E., Niimi M., Monk B.C., Cannon R.D. Overexpression of Candida Albicans CDR1, CDR2, or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility. Antimicrob. Agents Chemother. 2006;50:1148–1155. doi: 10.1128/AAC.50.4.1148-1155.2006. - DOI - PMC - PubMed
Garcia-Effron G., Lee S., Park S., Cleary J.D., Perlin D.S. Effect of Candida Glabrata FKS1 and FKS2 Mutations on Echinocandin Sensitivity and Kinetics of 1,3-β-d-Glucan Synthase: Implication for the Existing Susceptibility Breakpoint. Antimicrob. Agents Chemother. 2009;53:3690–3699. doi: 10.1128/AAC.00443-09. - DOI - PMC - PubMed
Perlin D.S. Current Perspectives on Echinocandin Class Drugs. Future Microbiol. 2011;6:441–457. doi: 10.2217/fmb.11.19. - DOI - PMC - PubMed
Morio F., Loge C., Besse B., Hennequin C., Le Pape P. Screening for Amino Acid Substitutions in the Candida Albicans Erg11 Protein of Azole-Susceptible and Azole-Resistant Clinical Isolates: New Substitutions and a Review of the Literature. Diagn. Microbiol. Infect. Dis. 2010;66:373–384. doi: 10.1016/j.diagmicrobio.2009.11.006. - DOI - PubMed
Sanglard D., Coste A.T. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Antimicrob. Agents Chemother. 2015;60:229–238. doi: 10.1128/AAC.02157-15. - DOI - PMC - PubMed
Prasad R., Banerjee A., Shah A.H. Resistance to Antifungal Therapies. Essays Biochem. 2017;61:157–166. doi: 10.1042/EBC20160067. - DOI - PubMed
Holmes A.R., Cardno T.S., Strouse J.J., Ivnitski-Steele I., Keniya M.V., Lackovic K., Monk B.C., Sklar L.A., Cannon R.D. Targeting Efflux Pumps to Overcome Antifungal Drug Resistance. Future Med. Chem. 2016;8:1485–1501. doi: 10.4155/fmc-2016-0050. - DOI - PMC - PubMed
Chang W., Liu J., Zhang M., Shi H., Zheng S., Jin X., Gao Y., Wang S., Ji A., Lou H. Efflux Pump-Mediated Resistance to Antifungal Compounds Can Be Prevented by Conjugation with Triphenylphosphonium Cation. Nat. Commun. 2018;9:5102. doi: 10.1038/s41467-018-07633-9. - DOI - PMC - PubMed
Abbotsford J., Foley D.A., Goff Z., Bowen A.C., Blyth C.C., Yeoh D.K. Clinical Experience with SUBA-Itraconazole at a Tertiary Paediatric Hospital. J. Antimicrob. Chemother. 2021;76:249–252. doi: 10.1093/jac/dkaa382. - DOI - PubMed
Gintjee T.J., Donnelley M.A., Thompson G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi. 2020;6:28. doi: 10.3390/jof6010028. - DOI - PMC - PubMed
Hargrove T.Y., Garvey E.P., Hoekstra W.J., Yates C.M., Wawrzak Z., Rachakonda G., Villalta F., Lepesheva G.I. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus Fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity. Antimicrob. Agents Chemother. 2017;61:e00570-17. doi: 10.1128/AAC.00570-17. - DOI - PMC - PubMed
Van Daele R., Spriet I., Wauters J., Maertens J., Mercier T., Van Hecke S., Brüggemann R. Antifungal Drugs: What Brings the Future? Med. Mycol. 2019;57:S328–S343. doi: 10.1093/mmy/myz012. - DOI - PubMed
Davis M.R., Donnelley M.A., Thompson G.R., III Ibrexafungerp: A Novel Oral Glucan Synthase Inhibitor. Med. Mycol. 2020;58:579–592. doi: 10.1093/mmy/myz083. - DOI - PubMed
Rivero-Menendez O., Cuenca-Estrella M., Alastruey-Izquierdo A. In Vitro Activity of Olorofim (F901318) against Clinical Isolates of Cryptic Species of Aspergillus by EUCAST and CLSI Methodologies. J. Antimicrob. Chemother. 2019;74:1586–1590. doi: 10.1093/jac/dkz078. - DOI - PubMed
Santangelo R., Paderu P., Delmas G., Chen Z.-W., Mannino R., Zarif L., Perlin D.S. Efficacy of Oral Cochleate-Amphotericin B in a Mouse Model of Systemic Candidiasis. Antimicrob. Agents Chemother. 2000;44:2356–2360. doi: 10.1128/AAC.44.9.2356-2360.2000. - DOI - PMC - PubMed
Alkhazraji S., Gebremariam T., Alqarihi A., Gu Y., Mamouei Z., Singh S., Wiederhold N.P., Shaw K.J., Ibrahim A.S. Fosmanogepix (APX001) Is Effective in the Treatment of Immunocompromised Mice Infected with Invasive Pulmonary Scedosporiosis or Disseminated Fusariosis. Antimicrob. Agents Chemother. 2020;64:e01735-19. doi: 10.1128/AAC.01735-19. - DOI - PMC - PubMed
Shaw K.J., Ibrahim A.S. Fosmanogepix: A Review of the First-in-Class Broad Spectrum Agent for the Treatment of Invasive Fungal Infections. J. Fungi. 2020;6:239. doi: 10.3390/jof6040239. - DOI - PMC - PubMed
McCarthy M.W., Kontoyiannis D.P., Cornely O.A., Perfect J.R., Walsh T.J. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J. Infect. Dis. 2017;216:S474–S483. doi: 10.1093/infdis/jix130. - DOI - PubMed
Kovanda Laura L., Sullivan Sean M., Smith Larry R., Desai Amit V., Bonate Pete L., Hope William W. Population Pharmacokinetic Modeling of VL-2397, a Novel Systemic Antifungal Agent: Analysis of a Single- and Multiple-Ascending-Dose Study in Healthy Subjects. Antimicrob. Agents Chemother. 2019;63:e00163-19. doi: 10.1128/AAC.00163-19. - DOI - PMC - PubMed
Anna-Maria D., Matthias M., Aguiar Mario M., Vasyl I., David T., Joachim P., Clemens D., Martin H., Sullivan Sean M., Smith Larry R., et al. The Siderophore Transporter Sit1 Determines Susceptibility to the Antifungal VL-2397. Antimicrob. Agents Chemother. 2019;63:e00807-19. doi: 10.1128/AAC.00807-19. - DOI - PMC - PubMed
Nishikawa H., Yamada E., Shibata T., Uchihashi S., Fan H., Hayakawa H., Nomura N., Mitsuyama J. Uptake of T-2307, a Novel Arylamidine, in Candida Albicans. J. Antimicrob. Chemother. 2010;65:1681–1687. doi: 10.1093/jac/dkq177. - DOI - PubMed
Mitsuyama J., Nomura N., Hashimoto K., Yamada E., Nishikawa H., K M., Kimura A., Todo Y., Narita H. In Vitro and In Vivo Antifungal Activities of T-2307, a Novel Arylamidine. Antimicrob. Agents Chemother. 2008;52:1318–1324. doi: 10.1128/AAC.01159-07. - DOI - PMC - PubMed
Wiederhold N.P. Review of T-2307, an Investigational Agent That Causes Collapse of Fungal Mitochondrial Membrane Potential. J. Fungi. 2021;7:130. doi: 10.3390/jof7020130. - DOI - PMC - PubMed
Campione E., Gaziano R., Marino D., Orlandi A. Fungistatic Activity of All-Trans Retinoic Acid against Aspergillus Fumigatus and Candida Albicans. Drug Des. Dev. 2016;10:1551–1555. doi: 10.2147/DDDT.S93985. - DOI - PMC - PubMed
Cosio T., Gaziano R., Zuccari G., Costanza G., Grelli S., Di Francesco P., Bianchi L., Campione E. Retinoids in Fungal Infections: From Bench to Bedside. Pharmaceuticals. 2021;14:962. doi: 10.3390/ph14100962. - DOI - PMC - PubMed
Campione E., Cosio T., Lanna C., Mazzilli S., Ventura A., Dika E., Gaziano R., Dattola A., Candi E., Bianchi L. Predictive Role of Vitamin A Serum Concentration in Psoriatic Patients Treated with IL-17 Inhibitors to Prevent Skin and Systemic Fungal Infections. J. Pharmacol. Sci. 2020;144:52–56. doi: 10.1016/j.jphs.2020.06.003. - DOI - PubMed
Hill J.A., Cowen L.E. Using Combination Therapy to Thwart Drug Resistance. Future Microbiol. 2015;10:1719–1726. doi: 10.2217/fmb.15.68. - DOI - PubMed
Evans E.G.V. The Rationale for Combination Therapy. Br. J. Dermatol. 2001;145:9–13. doi: 10.1046/j.1365-2133.2001.00047.x. - DOI - PubMed
Ruhnke M. Antifungal Stewardship in Invasive Candida Infections. Clin. Microbiol. Infect. 2014;20:11–18. doi: 10.1111/1469-0691.12622. - DOI - PubMed
Johnson M.D., Lewis R.E., Dodds Ashley E.S., Ostrosky-Zeichner L., Zaoutis T., Thompson G.R., III, Andes D.R., Walsh T.J., Pappas P.G., Cornely O.A., et al. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J. Infect. Dis. 2020;222:S175–S198. doi: 10.1093/infdis/jiaa394. - DOI - PMC - PubMed
Valerio M., Muñoz P., Rodríguez-González C., Sanjurjo M., Guinea J., Bouza E. Training Should Be the First Step toward an Antifungal Stewardship Program. Enferm. Infecc. Y Microbiol. Clínica. 2015;33:221–227. doi: 10.1016/j.eimc.2014.04.016. - DOI - PubMed
Urbancic K.F., Thursky K., Kong D.C.M., Johnson P.D.R., Slavin M.A. Antifungal Stewardship: Developments in the Field. Curr. Opin. Infect. Dis. 2018;31:490–498. doi: 10.1097/QCO.0000000000000497. - DOI - PubMed
Micallef C., Aliyu S.H., Santos R., Brown N.M., Rosembert D., Enoch D.A. Introduction of an Antifungal Stewardship Programme Targeting High-Cost Antifungals at a Tertiary Hospital in Cambridge, England. J. Antimicrob. Chemother. 2015;70:1908–1911. doi: 10.1093/jac/dkv040. - DOI - PubMed
Valerio M., Muñoz P., Rodríguez C.G., Caliz B., Padilla B., Fernández-Cruz A., Sánchez-Somolinos M., Gijón P., Peral J., Gayoso J., et al. Antifungal Stewardship in a Tertiary-Care Institution: A Bedside Intervention. Clin. Microbiol. Infect. 2015;21:492.e1–492.e9. doi: 10.1016/j.cmi.2015.01.013. - DOI - PubMed
Leach M.D., Klipp E., Cowen L.E., Brown A.J.P. Fungal Hsp90: A Biological Transistor That Tunes Cellular Outputs to Thermal Inputs. Nat. Rev. Microbiol. 2012;10:693–704. doi: 10.1038/nrmicro2875. - DOI - PMC - PubMed
Singh S.D., Robbins N., Zaas A.K., Schell W.A., Perfect J.R., Cowen L.E. Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida Albicans via Calcineurin. PLoS Pathog. 2009;5:e1000532. doi: 10.1371/journal.ppat.1000532. - DOI - PMC - PubMed
Lamoth F., Juvvadi P.R., Gehrke C., Steinbach W.J. In Vitro Activity of Calcineurin and Heat Shock Protein 90 Inhibitors against Aspergillus Fumigatus Azole- and Echinocandin-Resistant Strains. Antimicrob. Agents Chemother. 2013;57:1035–1039. doi: 10.1128/AAC.01857-12. - DOI - PMC - PubMed
Chen Y.-L., Lehman V.N., Lewit Y., Averette A.F., Heitman J. Calcineurin Governs Thermotolerance and Virulence of Cryptococcus Gattii. G3 (Bethesda) 2013;3:527–539. doi: 10.1534/g3.112.004242. - DOI - PMC - PubMed
Chen Y.-L., Brand A., Morrison E.L., Silao F.G.S., Bigol U.G., Malbas F.F., Nett J.E., Andes D.R., Solis N.V., Filler S.G., et al. Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida Dubliniensis. Eukaryot. Cell. 2011;10:803–819. doi: 10.1128/EC.00310-10. - DOI - PMC - PubMed
One Health: Fungal Pathogens of Humans, Animals, and Plants: Report on an American Academy of Microbiology Colloquium Held in Washington, DC, on 18 October 2017. American Society for Microbiology; Washington, DC, USA: 2019. American Academy of Microbiology Colloquia Reports. - PubMed
Schneider M.C., Munoz-Zanzi C., Min K., Aldighieri S. “One Health” From Concept to Application in the Global World; Oxford Research Encyclopedia, Global Public Health. Oxford University Press; Oxford, UK: 2018.
Chowdhary A., Meis J. Emergence of Azole Resistant Aspergillus Fumigatus and One Health: Time to Implement Environmental Stewardship. Environ. Microbiol. 2018;20:1299–1301. doi: 10.1111/1462-2920.14055. - DOI - PubMed
Banerjee S., Denning D.W., Chakrabarti A. One Health Aspects & Priority Roadmap for Fungal Diseases: A Mini-Review. Indian J. Med. Res. 2021;153:311–319. doi: 10.4103/ijmr.IJMR_768_21. - DOI - PMC - PubMed