Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review

Affiliations


Abstract

Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.

Keywords: antifungal; antifungal resistance; fungal infections; fungal treatments.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Mechanisms of Antifungal Drug Resistance.

Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS.Cold Spring Harb Perspect Med. 2014 Nov 10;5(7):a019752. doi: 10.1101/cshperspect.a019752.PMID: 25384768 Free PMC article. Review.

Update on Antifungal Drug Resistance.

Perlin DS, Shor E, Zhao Y.Curr Clin Microbiol Rep. 2015 Jun 1;2(2):84-95. doi: 10.1007/s40588-015-0015-1.PMID: 26120512 Free PMC article.

Prescription of Controlled Substances: Benefits and Risks.

Preuss CV, Kalava A, King KC.2022 Sep 21. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.PMID: 30726003 Free Books & Documents.

Antifungals discovery: an insight into new strategies to combat antifungal resistance.

Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF.Lett Appl Microbiol. 2018 Jan;66(1):2-13. doi: 10.1111/lam.12820. Epub 2017 Dec 11.PMID: 29112282 Review.

Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management.

Perlin DS.Drugs. 2014 Sep;74(14):1573-85. doi: 10.1007/s40265-014-0286-5.PMID: 25255923 Free PMC article. Review.


KMEL References


References

  1.  
    1. Kainz K., Bauer M.A., Madeo F., Carmona-Gutierrez D. Fungal Infections in Humans: The Silent Crisis. Microb. Cell. 2020;7:143–145. doi: 10.15698/mic2020.06.718. - DOI - PMC - PubMed
  2.  
    1. Papon N., Bougnoux M.-E., d’Enfert C. Tracing the Origin of Invasive Fungal Infections. Trends Microbiol. 2020;28:240–242. doi: 10.1016/j.tim.2020.01.007. - DOI - PubMed
  3.  
    1. Firacative C. Invasive Fungal Disease in Humans: Are We Aware of the Real Impact? Memórias Do Inst. Oswaldo Cruz. 2020;115:e200430. doi: 10.1590/0074-02760200430. - DOI - PMC - PubMed
  4.  
    1. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. [(accessed on 2 March 2023)]. Available online: https://www.who.int/publications-detail-redirect/9789240060241.
  5.  
    1. Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. - DOI - PubMed
  6.  
    1. Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. - DOI - PMC - PubMed
  7.  
    1. Prakash H., Chakrabarti A. Global Epidemiology of Mucormycosis. J. Fungi. 2019;5:26. doi: 10.3390/jof5010026. - DOI - PMC - PubMed
  8.  
    1. Verweij P.E., Lucas J.A., Arendrup M.C., Bowyer P., Brinkmann A.J.F., Denning D.W., Dyer P.S., Fisher M.C., Geenen P.L., Gisi U., et al. The One Health Problem of Azole Resistance in Aspergillus Fumigatus: Current Insights and Future Research Agenda. Fungal Biol. Rev. 2020;34:202–214. doi: 10.1016/j.fbr.2020.10.003. - DOI
  9.  
    1. Rhodes J., Fisher M.C. Global Epidemiology of Emerging Candida Auris. Curr. Opin. Microbiol. 2019;52:84–89. doi: 10.1016/j.mib.2019.05.008. - DOI - PubMed
  10.  
    1. Bilal H., Hou B., Shafiq M., Chen X., Shahid M.A., Zeng Y. Antifungal Susceptibility Pattern of Candida Isolated from Cutaneous Candidiasis Patients in Eastern Guangdong Region: A Retrospective Study of the Past 10 Years. Front. Microbiol. 2022;13:981181. doi: 10.3389/fmicb.2022.981181. - DOI - PMC - PubMed
  11.  
    1. Bilal H., Shafiq M., Hou B., Islam R., Khan M.N., Khan R.U., Zeng Y. Distribution and Antifungal Susceptibility Pattern of Candida Species from Mainland China: A Systematic Analysis. Virulence. 2022;13:1573–1589. doi: 10.1080/21505594.2022.2123325. - DOI - PMC - PubMed
  12.  
    1. Janbon G., Quintin J., Lanternier F., d’Enfert C. Studying Fungal Pathogens of Humans and Fungal Infections: Fungal Diversity and Diversity of Approaches. Microbes Infect. 2019;21:237–245. doi: 10.1016/j.micinf.2019.06.011. - DOI - PubMed
  13.  
    1. Enoch D.A., Yang H., Aliyu S.H., Micallef C. The Changing Epidemiology of Invasive Fungal Infections. In: Lion T., editor. Human Fungal Pathogen Identification: Methods and Protocols. Springer; New York, NY, USA: 2017. pp. 17–65. Methods in Molecular Biology. - PubMed
  14.  
    1. Song G., Liang G., Liu W. Fungal Co-Infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia. 2020;185:599–606. doi: 10.1007/s11046-020-00462-9. - DOI - PMC - PubMed
  15.  
    1. Pushparaj K., Kuchi Bhotla H., Arumugam V.A., Pappusamy M., Easwaran M., Liu W.-C., Issara U., Rengasamy K.R.R., Meyyazhagan A., Balasubramanian B. Mucormycosis (Black Fungus) Ensuing COVID-19 and Comorbidity Meets-Magnifying Global Pandemic Grieve and Catastrophe Begins. Sci. Total Environ. 2022;805:150355. doi: 10.1016/j.scitotenv.2021.150355. - DOI - PMC - PubMed
  16.  
    1. Drissi C. Black Fungus, the Darker Side of COVID-19. J. Neuroradiol. 2021;48:317–318. doi: 10.1016/j.neurad.2021.07.003. - DOI - PMC - PubMed
  17.  
    1. Shapiro R.S., Robbins N., Cowen L.E. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol. Mol. Biol. Rev. 2011;75:213–267. doi: 10.1128/MMBR.00045-10. - DOI - PMC - PubMed
  18.  
    1. Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The Global Problem of Antifungal Resistance: Prevalence, Mechanisms, and Management. Lancet Infect. Dis. 2017;17:e383–e392. doi: 10.1016/S1473-3099(17)30316-X. - DOI - PubMed
  19.  
    1. Robbins N., Caplan T., Cowen L.E. Molecular Evolution of Antifungal Drug Resistance. Annu. Rev. Microbiol. 2017;71:753–775. doi: 10.1146/annurev-micro-030117-020345. - DOI - PubMed
  20.  
    1. Edlind Thomas D., Katiyar Santosh K. Mutational Analysis of Flucytosine Resistance in Candida Glabrata. Antimicrob. Agents Chemother. 2010;54:4733–4738. doi: 10.1128/AAC.00605-10. - DOI - PMC - PubMed
  21.  
    1. Berman J., Krysan D.J. Drug Resistance and Tolerance in Fungi. Nat. Rev. Microbiol. 2020;18:319–331. doi: 10.1038/s41579-019-0322-2. - DOI - PMC - PubMed
  22.  
    1. Shor E., Perlin D.S. Coping with Stress and the Emergence of Multidrug Resistance in Fungi. PLoS Pathog. 2015;11:e1004668. doi: 10.1371/journal.ppat.1004668. - DOI - PMC - PubMed
  23.  
    1. Meletiadis J., Antachopoulos C., Stergiopoulou T., Pournaras S., Roilides E., Walsh T.J. Differential Fungicidal Activities of Amphotericin B and Voriconazole against Aspergillus Species Determined by Microbroth Methodology. Antimicrob. Agents Chemother. 2007;51:3329–3337. doi: 10.1128/AAC.00345-07. - DOI - PMC - PubMed
  24.  
    1. Geißel B., Loiko V., Klugherz I., Zhu Z., Wagener N., Kurzai O., van den Hondel C.A.M.J.J., Wagener J. Azole-Induced Cell Wall Carbohydrate Patches Kill Aspergillus Fumigatus. Nat. Commun. 2018;9:3098. doi: 10.1038/s41467-018-05497-7. - DOI - PMC - PubMed
  25.  
    1. Patil A., Majumdar S. Echinocandins in Antifungal Pharmacotherapy. J. Pharm. Pharmacol. 2017;69:1635–1660. doi: 10.1111/jphp.12780. - DOI - PubMed
  26.  
    1. Carmona E.M., Limper A.H. Overview of Treatment Approaches for Fungal Infections. Clin. Chest Med. 2017;38:393–402. doi: 10.1016/j.ccm.2017.04.003. - DOI - PubMed
  27.  
    1. Fisher M.C., Hawkins N.J., Sanglard D., Gurr S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science. 2018;360:739–742. doi: 10.1126/science.aap7999. - DOI - PubMed
  28.  
    1. Fisher M.C., Alastruey-Izquierdo A., Berman J., Bicanic T., Bignell E.M., Bowyer P., Bromley M., Brüggemann R., Garber G., Cornely O.A., et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022;20:557–571. doi: 10.1038/s41579-022-00720-1. - DOI - PMC - PubMed
  29.  
    1. Revie N.M., Iyer K.R., Robbins N., Cowen L.E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018;45:70–76. doi: 10.1016/j.mib.2018.02.005. - DOI - PMC - PubMed
  30.  
    1. Zheng Y.-H., Ma Y.-Y., Ding Y., Chen X.-Q., Gao G.-X. An Insight into New Strategies to Combat Antifungal Drug Resistance. Drug Des. Dev. 2018;12:3807–3816. doi: 10.2147/DDDT.S185833. - DOI - PMC - PubMed
  31.  
    1. Pathadka S., Yan V.K.C., Neoh C.F., Al-Badriyeh D., Kong D.C.M., Slavin M.A., Cowling B.J., Hung I.F.N., Wong I.C.K., Chan E.W. Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018: Data From 65 Middle- and High-Income Countries. Drugs. 2022;82:1193–1205. doi: 10.1007/s40265-022-01751-x. - DOI - PMC - PubMed
  32.  
    1. Hoenigl M., Sprute R., Egger M., Arastehfar A., Cornely O.A., Krause R., Lass-Flörl C., Prattes J., Spec A., Thompson G.R., et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs. 2021;81:1703–1729. doi: 10.1007/s40265-021-01611-0. - DOI - PMC - PubMed
  33.  
    1. Perfect J.R. The Antifungal Pipeline: A Reality Check. Nat. Rev. Drug Discov. 2017;16:603–616. doi: 10.1038/nrd.2017.46. - DOI - PMC - PubMed
  34.  
    1. Ostrosky-Zeichner L., Casadevall A., Galgiani J.N., Odds F.C., Rex J.H. An Insight into the Antifungal Pipeline: Selected New Molecules and Beyond. Nat. Rev. Drug Discov. 2010;9:719–727. doi: 10.1038/nrd3074. - DOI - PubMed
  35.  
    1. Campoy S., Adrio J.L. Antifungals. Biochem. Pharmacol. 2017;133:86–96. doi: 10.1016/j.bcp.2016.11.019. - DOI - PubMed
  36.  
    1. Odds F.C., Brown A.J.P., Gow N.A.R. Antifungal Agents: Mechanisms of Action. Trends Microbiol. 2003;11:272–279. doi: 10.1016/S0966-842X(03)00117-3. - DOI - PubMed
  37.  
    1. Zotchev S.B. Polyene Macrolide Antibiotics and Their Applications in Human Therapy. Curr. Med. Chem. 2003;10:211–223. doi: 10.2174/0929867033368448. - DOI - PubMed
  38.  
    1. Hamilton-Miller J.M. Chemistry and Biology of the Polyene Macrolide Antibiotics. Bacteriol. Rev. 1973;37:166–196. doi: 10.1128/br.37.2.166-196.1973. - DOI - PMC - PubMed
  39.  
    1. Kinsky S.C. Polyene Antibiotics. In: Gottlieb D., Shaw P.D., editors. Antibiotics: Volume I Mechanism of Action. Springer; Berlin/Heidelberg, Germany: 1967. pp. 122–141.
  40.  
    1. Bekersky I., Fielding R.M., Dressler D.E., Lee J.W., Buell D.N., Walsh T.J. Pharmacokinetics, Excretion, and Mass Balance of Liposomal Amphotericin B (AmBisome) and Amphotericin B Deoxycholate in Humans. Antimicrob. Agents Chemother. 2002;46:828–833. doi: 10.1128/AAC.46.3.828-833.2002. - DOI - PMC - PubMed
  41.  
    1. Mesa-Arango A.C., Scorzoni L., Zaragoza O. It Only Takes One to Do Many Jobs: Amphotericin B as Antifungal and Immunomodulatory Drug. Front. Microbiol. 2012;3:286. doi: 10.3389/fmicb.2012.00286. - DOI - PMC - PubMed
  42.  
    1. Kristanc L., Božič B., Jokhadar Š.Z., Dolenc M.S., Gomišček G. The Pore-Forming Action of Polyenes: From Model Membranes to Living Organisms. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2019;1861:418–430. doi: 10.1016/j.bbamem.2018.11.006. - DOI - PubMed
  43.  
    1. Quezada H., Martínez-Vázquez M., López-Jácome E., González-Pedrajo B., Andrade Á., Fernández-Presas A.M., Tovar-García A., García-Contreras R. Repurposed Anti-Cancer Drugs: The Future for Anti-Infective Therapy? Expert Rev. Anti Infect. 2020;18:609–612. doi: 10.1080/14787210.2020.1752665. - DOI - PubMed
  44.  
    1. Rojas E., Herrera L.A., Sordo M., Gonsebatt M.E., Montero R., Rodríguez R., Ostrosky-Wegman P. Mitotic Index and Cell Proliferation Kinetics for Identification of Antineoplastic Activity. Anticancer Drugs. 1993;4:637–640. doi: 10.1097/00001813-199312000-00005. - DOI - PubMed
  45.  
    1. Longley D.B., Harkin D.P., Johnston P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. - DOI - PubMed
  46.  
    1. Moudi M., Go R., Yien C.Y.S., Nazre M. Vinca Alkaloids. Int. J. Prev. Med. 2013;4:1231–1235. - PMC - PubMed
  47.  
    1. Weaver B.A. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell. 2014;25:2677–2681. doi: 10.1091/mbc.e14-04-0916. - DOI - PMC - PubMed
  48.  
    1. Perfect J.R., Dismukes W.E., Dromer F., Goldman D.L., Graybill J.R., Hamill R.J., Harrison T.S., Larsen R.A., Lortholary O., Nguyen M.-H., et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010;50:291–322. doi: 10.1086/649858. - DOI - PMC - PubMed
  49.  
    1. Cornely O.A., Bassetti M., Calandra T., Garbino J., Kullberg B.J., Lortholary O., Meersseman W., Akova M., Arendrup M.C., Arikan-Akdagli S., et al. ESCMID* Guideline for the Diagnosis and Management of Candida Diseases 2012: Non-Neutropenic Adult Patients. Clin. Microbiol. Infect. 2012;18((Suppl. 7)):19–37. doi: 10.1111/1469-0691.12039. - DOI - PubMed
  50.  
    1. Tobias J.S., Wrigley P.F., Shaw E. Combination Antifungal Therapy for Cryptococcal Meningitis. Postgrad. Med. J. 1976;52:305–308. doi: 10.1136/pgmj.52.607.305. - DOI - PMC - PubMed
  51.  
    1. Vermes A., Guchelaar H.-J., Dankert J. Flucytosine: A Review of Its Pharmacology, Clinical Indications, Pharmacokinetics, Toxicity and Drug Interactions. J. Antimicrob. Chemother. 2000;46:171–179. doi: 10.1093/jac/46.2.171. - DOI - PubMed
  52.  
    1. Heidemann H.T., Brune K.H., Sabra R., Branch R.A. Acute and Chronic Effects of Flucytosine on Amphotericin B Nephrotoxicity in Rats. Antimicrob. Agents Chemother. 1992;36:2670–2675. doi: 10.1128/AAC.36.12.2670. - DOI - PMC - PubMed
  53.  
    1. Schwarz P., Janbon G., Dromer F., Lortholary O., Dannaoui E. Combination of Amphotericin B with Flucytosine Is Active In Vitro against Flucytosine-Resistant Isolates of Cryptococcus Neoformans. Antimicrob. Agents Chemother. 2007;51:383–385. doi: 10.1128/AAC.00446-06. - DOI - PMC - PubMed
  54.  
    1. Houšť J., Spížek J., Havlíček V. Antifungal Drugs. Metabolites. 2020;10:106. doi: 10.3390/metabo10030106. - DOI - PMC - PubMed
  55.  
    1. Padda I.S., Parmar M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Flucytosine.
  56.  
    1. Gsaller F., Furukawa T., Carr P.D., Rash B., Jöchl C., Bertuzzi M., Bignell E.M., Bromley M.J. Mechanistic Basis of PH-Dependent 5-Flucytosine Resistance in Aspergillus Fumigatus. Antimicrob. Agents Chemother. 2018;62:e02593-17. doi: 10.1128/AAC.02593-17. - DOI - PMC - PubMed
  57.  
    1. García-García I., Borobia A.M. Current Approaches and Future Strategies for the Implementation of Pharmacogenomics in the Clinical Use of Azole Antifungal Drugs. Expert Opin. Drug Metab. Toxicol. 2021;17:509–514. doi: 10.1080/17425255.2021.1890715. - DOI - PubMed
  58.  
    1. Howard K.C., Dennis E.K., Watt D.S., Garneau-Tsodikova S. A Comprehensive Overview of the Medicinal Chemistry of Antifungal Drugs: Perspectives and Promise. Chem. Soc. Rev. 2020;49:2426–2480. doi: 10.1039/C9CS00556K. - DOI - PubMed
  59.  
    1. Brand S.R., Degenhardt T.P., Person K., Sobel J.D., Nyirjesy P., Schotzinger R.J., Tavakkol A. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Study to Evaluate the Efficacy and Safety of Orally Administered VT-1161 in the Treatment of Recurrent Vulvovaginal Candidiasis. Am. J. Obs. Gynecol. 2018;218:624.e1–624.e9. doi: 10.1016/j.ajog.2018.03.001. - DOI - PubMed
  60.  
    1. Cui X., Wang L., Lü Y., Yue C. Development and Research Progress of Anti-Drug Resistant Fungal Drugs. J. Infect. Public Health. 2022;15:986–1000. doi: 10.1016/j.jiph.2022.08.004. - DOI - PubMed
  61.  
    1. Neochoritis C.G., Zhao T., Dömling A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019;119:1970–2042. doi: 10.1021/acs.chemrev.8b00564. - DOI - PMC - PubMed
  62.  
    1. Monk Brian C., Keniya Mikhail V., Manya S., Wilson Rajni K., Graham Danyon O., Hassan Harith F., Danni C., Tyndall Joel D.A. Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161. Antimicrob. Agents Chemother. 2018;63:e02114-18. doi: 10.1128/AAC.02114-18. - DOI - PMC - PubMed
  63.  
    1. Hoekstra W.J., Garvey E.P., Moore W.R., Rafferty S.W., Yates C.M., Schotzinger R.J. Design and Optimization of Highly-Selective Fungal CYP51 Inhibitors. Bioorganic Med. Chem. Lett. 2014;24:3455–3458. doi: 10.1016/j.bmcl.2014.05.068. - DOI - PubMed
  64.  
    1. Warrilow A.G.S., Hull C.M., Parker J.E., Garvey E.P., Hoekstra W.J., Moore W.R., Schotzinger R.J., Kelly D.E., Kelly S.L. The Clinical Candidate VT-1161 Is a Highly Potent Inhibitor of Candida Albicans CYP51 but Fails To Bind the Human Enzyme. Antimicrob. Agents Chemother. 2014;58:7121–7127. doi: 10.1128/AAC.03707-14. - DOI - PMC - PubMed
  65.  
    1. Wiederhold N.P., Najvar L.K., Garvey E.P., Brand S.R., Xu X., Ottinger E.A., Alimardanov A., Cradock J., Behnke M., Hoekstra W.J., et al. The Fungal Cyp51 Inhibitor VT-1129 Is Efficacious in an Experimental Model of Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2018;62:e01071-18. doi: 10.1128/AAC.01071-18. - DOI - PMC - PubMed
  66.  
    1. Sobel J.D., Nyirjesy P. Oteseconazole: An Advance in Treatment of Recurrent Vulvovaginal Candidiasis. Future Microbiol. 2021;16:1453–1461. doi: 10.2217/fmb-2021-0173. - DOI - PubMed
  67.  
    1. Lockhart Shawn R., Fothergill Annette W., Naureen I., Bolden Carol B., Grossman Nina T., Garvey Edward P., Brand Stephen R., Hoekstra William J., Schotzinger Robert J., Elizabeth O., et al. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus Neoformans and Cryptococcus Gattii. Antimicrob. Agents Chemother. 2016;60:2528–2531. doi: 10.1128/AAC.02770-15. - DOI - PMC - PubMed
  68.  
    1. Kathiravan M.K., Salake A.B., Chothe A.S., Dudhe P.B., Watode R.P., Mukta M.S., Gadhwe S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorg. Med. Chem. 2012;20:5678–5698. doi: 10.1016/j.bmc.2012.04.045. - DOI - PubMed
  69.  
    1. Cadena J., Thompson G.R., Patterson T.F. Invasive Aspergillosis: Current Strategies for Diagnosis and Management. Infect. Dis. Clin. 2016;30:125–142. doi: 10.1016/j.idc.2015.10.015. - DOI - PubMed
  70.  
    1. Zhou C.-H., Wang Y. Recent Researches in Triazole Compounds as Medicinal Drugs. Curr. Med. Chem. 2012;19:239–280. doi: 10.2174/092986712803414213. - DOI - PubMed
  71.  
    1. Chang Y.-L., Yu S.-J., Heitman J., Wellington M., Chen Y.-L. New Facets of Antifungal Therapy. Virulence. 2017;8:222–236. doi: 10.1080/21505594.2016.1257457. - DOI - PMC - PubMed
  72.  
    1. Lass-Flörl C. Triazole Antifungal Agents in Invasive Fungal Infections. Drugs. 2011;71:2405–2419. doi: 10.2165/11596540-000000000-00000. - DOI - PubMed
  73.  
    1. Kernt M., Kampik A. Endophthalmitis: Pathogenesis, Clinical Presentation, Management, and Perspectives. Clin. Ophthalmol. 2010;4:121–135. doi: 10.2147/OPTH.S6461. - DOI - PMC - PubMed
  74.  
    1. Kofla G., Ruhnke M. Pharmacology and Metabolism of Anidulafungin, Caspofungin and Micafungin in the Treatment of Invasive Candidosis—Review of the Literature. Eur. J. Med. Res. 2011;16:159. doi: 10.1186/2047-783X-16-4-159. - DOI - PMC - PubMed
  75.  
    1. Stover K.R., Farley J.M., Kyle P.B., Cleary J.D. Cardiac Toxicity of Some Echinocandin Antifungals. Expert Opin. Drug Saf. 2014;13:5–14. doi: 10.1517/14740338.2013.829036. - DOI - PubMed
  76.  
    1. Denning D.W. Echinocandins: A New Class of Antifungal. J. Antimicrob. Chemother. 2002;49:889–891. doi: 10.1093/jac/dkf045. - DOI - PubMed
  77.  
    1. Bachmann S.P., Patterson T.F., López-Ribot J.L. In Vitro Activity of Caspofungin (MK-0991) against Candida Albicans Clinical Isolates Displaying Different Mechanisms of Azole Resistance. J. Clin. Microbiol. 2002;40:2228–2230. doi: 10.1128/JCM.40.6.2228-2230.2002. - DOI - PMC - PubMed
  78.  
    1. Gil-Lamaignere C., Salvenmoser S., Hess R., Müller F.-M.C. Micafungin Enhances Neutrophil Fungicidal Functions against Candida Pseudohyphae. Antimicrob. Agents Chemother. 2004;48:2730–2732. doi: 10.1128/AAC.48.7.2730-2732.2004. - DOI - PMC - PubMed
  79.  
    1. Pontón J. [The fungal cell wall and the mechanism of action of anidulafungin] Rev. Iberoam. Micol. 2008;25:78–82. doi: 10.1016/S1130-1406(08)70024-X. - DOI - PubMed
  80.  
    1. Felton T., Troke P.F., Hope W.W. Tissue Penetration of Antifungal Agents. Clin. Microbiol. Rev. 2014;27:68–88. doi: 10.1128/CMR.00046-13. - DOI - PMC - PubMed
  81.  
    1. Sucher A.J., Chahine E.B., Balcer H.E. Echinocandins: The Newest Class of Antifungals. Ann. Pharm. 2009;43:1647–1657. doi: 10.1345/aph.1M237. - DOI - PubMed
  82.  
    1. Chandrasekar P.H., Sobel J.D. Micafungin: A New Echinocandin. Clin. Infect. Dis. 2006;42:1171–1178. doi: 10.1086/501020. - DOI - PubMed
  83.  
    1. Bowman J.C., Hicks P.S., Kurtz M.B., Rosen H., Schmatz D.M., Liberator P.A., Douglas C.M. The Antifungal Echinocandin Caspofungin Acetate Kills Growing Cells of Aspergillus Fumigatus in Vitro. Antimicrob. Agents Chemother. 2002;46:3001–3012. doi: 10.1128/AAC.46.9.3001-3012.2002. - DOI - PMC - PubMed
  84.  
    1. Kurtz M.B., Heath I.B., Marrinan J., Dreikorn S., Onishi J., Douglas C. Morphological Effects of Lipopeptides against Aspergillus Fumigatus Correlate with Activities against (1,3)-Beta-D-Glucan Synthase. Antimicrob. Agents Chemother. 1994;38:1480–1489. doi: 10.1128/AAC.38.7.1480. - DOI - PMC - PubMed
  85.  
    1. Sanglard D. Resistance of Human Fungal Pathogens to Antifungal Drugs. Curr. Opin. Microbiol. 2002;5:379–385. doi: 10.1016/S1369-5274(02)00344-2. - DOI - PubMed
  86.  
    1. Hull C.M., Bader O., Parker J.E., Weig M., Gross U., Warrilo A.G.S., Kelly D.E., Kelly S.L. Two Clinical Isolates of Candida Glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2. Antimicrob. Agents Chemother. 2012;56:6417–6421. doi: 10.1128/AAC.01145-12. - DOI - PMC - PubMed
  87.  
    1. Carolus H., Pierson S., Muñoz J.F., Subotić A., Cruz R.B., Cuomo C.A., Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida Auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio. 2021;12:e03333-20. doi: 10.1128/mBio.03333-20. - DOI - PMC - PubMed
  88.  
    1. Blatzer M., Blum G., Jukic E., Posch W., Gruber P., Nagl M., Binder U., Maurer E., Sarg B., Lindner H., et al. Blocking Hsp70 Enhances the Efficiency of Amphotericin B Treatment against Resistant Aspergillus Terreus Strains. Antimicrob. Agents Chemother. 2015;59:3778–3788. doi: 10.1128/AAC.05164-14. - DOI - PMC - PubMed
  89.  
    1. Posch W., Blatzer M., Wilflingseder D., Lass-Flörl C. Aspergillus Terreus: Novel Lessons Learned on Amphotericin B Resistance. Med. Mycol. 2018;56:S73–S82. doi: 10.1093/mmy/myx119. - DOI - PubMed
  90.  
    1. Carolus H., Pierson S., Lagrou K., Van Dijck P. Amphotericin B and Other Polyenes—Discovery, Clinical Use, Mode of Action and Drug Resistance. J. Fungi. 2020;6:321. doi: 10.3390/jof6040321. - DOI - PMC - PubMed
  91.  
    1. Delma F.Z., Al-Hatmi A.M.S., Brüggemann R.J.M., Melchers W.J.G., de Hoog S., Verweij P.E., Buil J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi. 2021;7:909. doi: 10.3390/jof7110909. - DOI - PMC - PubMed
  92.  
    1. Papon N., Noël T., Florent M., Gibot-Leclerc S., Jean D., Chastin C., Villard J., Chapeland-Leclerc F. Molecular Mechanism of Flucytosine Resistance in Candida Lusitaniae: Contribution of the FCY2, FCY1, and FUR1 Genes to 5-Fluorouracil and Fluconazole Cross-Resistance. Antimicrob. Agents Chemother. 2007;51:369–371. doi: 10.1128/AAC.00824-06. - DOI - PMC - PubMed
  93.  
    1. Burks C., Darby A., Gómez Londoño L., Momany M., Brewer M.T. Azole-Resistant Aspergillus Fumigatus in the Environment: Identifying Key Reservoirs and Hotspots of Antifungal Resistance. PLoS Pathog. 2021;17:e1009711. doi: 10.1371/journal.ppat.1009711. - DOI - PMC - PubMed
  94.  
    1. Sharma C., Chowdhary A. Molecular Bases of Antifungal Resistance in Filamentous Fungi. Int. J. Antimicrob. Agents. 2017;50:607–616. doi: 10.1016/j.ijantimicag.2017.06.018. - DOI - PubMed
  95.  
    1. Cowen L.E., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014;5:a019752. doi: 10.1101/cshperspect.a019752. - DOI - PMC - PubMed
  96.  
    1. Whaley S.G., Rogers P.D. Azole Resistance in Candida Glabrata. Curr. Infect. Dis. Rep. 2016;18:41. doi: 10.1007/s11908-016-0554-5. - DOI - PubMed
  97.  
    1. Pinjon E., Moran G.P., Coleman D.C., Sullivan D.J. Azole Susceptibility and Resistance in Candida Dubliniensis. Biochem. Soc. Trans. 2005;33:1210–1214. doi: 10.1042/BST0331210. - DOI - PubMed
  98.  
    1. Whaley S.G., Berkow E.L., Rybak J.M., Nishimoto A.T., Barker K.S., Rogers P.D. Azole Antifungal Resistance in Candida Albicans and Emerging Non-Albicans Candida Species. Front. Microbiol. 2017;7:2173. doi: 10.3389/fmicb.2016.02173. - DOI - PMC - PubMed
  99.  
    1. Pfaller M.A., Diekema D.J., Turnidge J.D., Castanheira M., Jones R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect. Dis. 2019;6:S79–S94. doi: 10.1093/ofid/ofy358. - DOI - PMC - PubMed
  100.  
    1. Rodrigues C.F., Rodrigues M.E., Henriques M. Susceptibility of Candida Glabrata Biofilms to Echinocandins: Alterations in the Matrix Composition. Biofouling. 2018;34:569–578. doi: 10.1080/08927014.2018.1472244. - DOI - PubMed
  101.  
    1. Liu C., Shi C., Mao F., Xu Y., Liu J., Wei B., Zhu J., Xiang M., Li J. Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity. Molecules. 2014;19:15653–15672. doi: 10.3390/molecules191015653. - DOI - PMC - PubMed
  102.  
    1. Nishimoto Andrew T., Wiederhold Nathan P., Flowers Stephanie A., Zhang Q., Kelly Steven L., Joachim M., Yates Christopher M., Hoekstra William J., Schotzinger Robert J., Garvey Edward P., et al. In Vitro Activities of the Novel Investigational Tetrazoles VT-1161 and VT-1598 Compared to the Triazole Antifungals against Azole-Resistant Strains and Clinical Isolates of Candida Albicans. Antimicrob. Agents Chemother. 2019;63:e00341-19. doi: 10.1128/AAC.00341-19. - DOI - PMC - PubMed
  103.  
    1. Desai J.V., Mitchell A.P., Andes D.R. Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harb. Perspect. Med. 2014;4:a019729. doi: 10.1101/cshperspect.a019729. - DOI - PMC - PubMed
  104.  
    1. Gebreyohannes G., Nyerere A., Bii C., Sbhatu D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon. 2019;5:e02192. doi: 10.1016/j.heliyon.2019.e02192. - DOI - PMC - PubMed
  105.  
    1. Rajendran R., Sherry L., Deshpande A., Johnson E.M., Hanson M.F., Williams C., Munro C.A., Jones B.L., Ramage G. A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Front. Microbiol. 2016;7:915. doi: 10.3389/fmicb.2016.00915. - DOI - PMC - PubMed
  106.  
    1. Rajendran R., Sherry L., Nile C.J., Sherriff A., Johnson E.M., Hanson M.F., Williams C., Munro C.A., Jones B.J., Ramage G. Biofilm Formation Is a Risk Factor for Mortality in Patients with Candida Albicans Bloodstream Infection-Scotland, 2012–2013. Clin. Microbiol. Infect. 2016;22:87–93. doi: 10.1016/j.cmi.2015.09.018. - DOI - PMC - PubMed
  107.  
    1. Sherry L., Ramage G., Kean R., Borman A., Johnson E.M., Richardson M.D., Rautemaa-Richardson R. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida Auris. Emerg. Infect. Dis. 2017;23:328–331. doi: 10.3201/eid2302.161320. - DOI - PMC - PubMed
  108.  
    1. Ramage G., Rajendran R., Sherry L., Williams C. Fungal Biofilm Resistance. Int. J. Microbiol. 2012;2012:528521. doi: 10.1155/2012/528521. - DOI - PMC - PubMed
  109.  
    1. Perlin D.S., Shor E., Zhao Y. Update on Antifungal Drug Resistance. Curr. Clin. Microbiol. Rep. 2015;2:84–95. doi: 10.1007/s40588-015-0015-1. - DOI - PMC - PubMed
  110.  
    1. Niimi K., Maki K., Ikeda F., Holmes A.R., Lamping E., Niimi M., Monk B.C., Cannon R.D. Overexpression of Candida Albicans CDR1, CDR2, or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility. Antimicrob. Agents Chemother. 2006;50:1148–1155. doi: 10.1128/AAC.50.4.1148-1155.2006. - DOI - PMC - PubMed
  111.  
    1. Garcia-Effron G., Lee S., Park S., Cleary J.D., Perlin D.S. Effect of Candida Glabrata FKS1 and FKS2 Mutations on Echinocandin Sensitivity and Kinetics of 1,3-β-d-Glucan Synthase: Implication for the Existing Susceptibility Breakpoint. Antimicrob. Agents Chemother. 2009;53:3690–3699. doi: 10.1128/AAC.00443-09. - DOI - PMC - PubMed
  112.  
    1. Perlin D.S. Current Perspectives on Echinocandin Class Drugs. Future Microbiol. 2011;6:441–457. doi: 10.2217/fmb.11.19. - DOI - PMC - PubMed
  113.  
    1. Morio F., Loge C., Besse B., Hennequin C., Le Pape P. Screening for Amino Acid Substitutions in the Candida Albicans Erg11 Protein of Azole-Susceptible and Azole-Resistant Clinical Isolates: New Substitutions and a Review of the Literature. Diagn. Microbiol. Infect. Dis. 2010;66:373–384. doi: 10.1016/j.diagmicrobio.2009.11.006. - DOI - PubMed
  114.  
    1. Sanglard D., Coste A.T. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Antimicrob. Agents Chemother. 2015;60:229–238. doi: 10.1128/AAC.02157-15. - DOI - PMC - PubMed
  115.  
    1. Prasad R., Banerjee A., Shah A.H. Resistance to Antifungal Therapies. Essays Biochem. 2017;61:157–166. doi: 10.1042/EBC20160067. - DOI - PubMed
  116.  
    1. Holmes A.R., Cardno T.S., Strouse J.J., Ivnitski-Steele I., Keniya M.V., Lackovic K., Monk B.C., Sklar L.A., Cannon R.D. Targeting Efflux Pumps to Overcome Antifungal Drug Resistance. Future Med. Chem. 2016;8:1485–1501. doi: 10.4155/fmc-2016-0050. - DOI - PMC - PubMed
  117.  
    1. Chang W., Liu J., Zhang M., Shi H., Zheng S., Jin X., Gao Y., Wang S., Ji A., Lou H. Efflux Pump-Mediated Resistance to Antifungal Compounds Can Be Prevented by Conjugation with Triphenylphosphonium Cation. Nat. Commun. 2018;9:5102. doi: 10.1038/s41467-018-07633-9. - DOI - PMC - PubMed
  118.  
    1. Abbotsford J., Foley D.A., Goff Z., Bowen A.C., Blyth C.C., Yeoh D.K. Clinical Experience with SUBA-Itraconazole at a Tertiary Paediatric Hospital. J. Antimicrob. Chemother. 2021;76:249–252. doi: 10.1093/jac/dkaa382. - DOI - PubMed
  119.  
    1. Gintjee T.J., Donnelley M.A., Thompson G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi. 2020;6:28. doi: 10.3390/jof6010028. - DOI - PMC - PubMed
  120.  
    1. Hargrove T.Y., Garvey E.P., Hoekstra W.J., Yates C.M., Wawrzak Z., Rachakonda G., Villalta F., Lepesheva G.I. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus Fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity. Antimicrob. Agents Chemother. 2017;61:e00570-17. doi: 10.1128/AAC.00570-17. - DOI - PMC - PubMed
  121.  
    1. Van Daele R., Spriet I., Wauters J., Maertens J., Mercier T., Van Hecke S., Brüggemann R. Antifungal Drugs: What Brings the Future? Med. Mycol. 2019;57:S328–S343. doi: 10.1093/mmy/myz012. - DOI - PubMed
  122.  
    1. Davis M.R., Donnelley M.A., Thompson G.R., III Ibrexafungerp: A Novel Oral Glucan Synthase Inhibitor. Med. Mycol. 2020;58:579–592. doi: 10.1093/mmy/myz083. - DOI - PubMed
  123.  
    1. Rivero-Menendez O., Cuenca-Estrella M., Alastruey-Izquierdo A. In Vitro Activity of Olorofim (F901318) against Clinical Isolates of Cryptic Species of Aspergillus by EUCAST and CLSI Methodologies. J. Antimicrob. Chemother. 2019;74:1586–1590. doi: 10.1093/jac/dkz078. - DOI - PubMed
  124.  
    1. Santangelo R., Paderu P., Delmas G., Chen Z.-W., Mannino R., Zarif L., Perlin D.S. Efficacy of Oral Cochleate-Amphotericin B in a Mouse Model of Systemic Candidiasis. Antimicrob. Agents Chemother. 2000;44:2356–2360. doi: 10.1128/AAC.44.9.2356-2360.2000. - DOI - PMC - PubMed
  125.  
    1. Alkhazraji S., Gebremariam T., Alqarihi A., Gu Y., Mamouei Z., Singh S., Wiederhold N.P., Shaw K.J., Ibrahim A.S. Fosmanogepix (APX001) Is Effective in the Treatment of Immunocompromised Mice Infected with Invasive Pulmonary Scedosporiosis or Disseminated Fusariosis. Antimicrob. Agents Chemother. 2020;64:e01735-19. doi: 10.1128/AAC.01735-19. - DOI - PMC - PubMed
  126.  
    1. Shaw K.J., Ibrahim A.S. Fosmanogepix: A Review of the First-in-Class Broad Spectrum Agent for the Treatment of Invasive Fungal Infections. J. Fungi. 2020;6:239. doi: 10.3390/jof6040239. - DOI - PMC - PubMed
  127.  
    1. McCarthy M.W., Kontoyiannis D.P., Cornely O.A., Perfect J.R., Walsh T.J. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J. Infect. Dis. 2017;216:S474–S483. doi: 10.1093/infdis/jix130. - DOI - PubMed
  128.  
    1. Kovanda Laura L., Sullivan Sean M., Smith Larry R., Desai Amit V., Bonate Pete L., Hope William W. Population Pharmacokinetic Modeling of VL-2397, a Novel Systemic Antifungal Agent: Analysis of a Single- and Multiple-Ascending-Dose Study in Healthy Subjects. Antimicrob. Agents Chemother. 2019;63:e00163-19. doi: 10.1128/AAC.00163-19. - DOI - PMC - PubMed
  129.  
    1. Anna-Maria D., Matthias M., Aguiar Mario M., Vasyl I., David T., Joachim P., Clemens D., Martin H., Sullivan Sean M., Smith Larry R., et al. The Siderophore Transporter Sit1 Determines Susceptibility to the Antifungal VL-2397. Antimicrob. Agents Chemother. 2019;63:e00807-19. doi: 10.1128/AAC.00807-19. - DOI - PMC - PubMed
  130.  
    1. Nishikawa H., Yamada E., Shibata T., Uchihashi S., Fan H., Hayakawa H., Nomura N., Mitsuyama J. Uptake of T-2307, a Novel Arylamidine, in Candida Albicans. J. Antimicrob. Chemother. 2010;65:1681–1687. doi: 10.1093/jac/dkq177. - DOI - PubMed
  131.  
    1. Mitsuyama J., Nomura N., Hashimoto K., Yamada E., Nishikawa H., K M., Kimura A., Todo Y., Narita H. In Vitro and In Vivo Antifungal Activities of T-2307, a Novel Arylamidine. Antimicrob. Agents Chemother. 2008;52:1318–1324. doi: 10.1128/AAC.01159-07. - DOI - PMC - PubMed
  132.  
    1. Wiederhold N.P. Review of T-2307, an Investigational Agent That Causes Collapse of Fungal Mitochondrial Membrane Potential. J. Fungi. 2021;7:130. doi: 10.3390/jof7020130. - DOI - PMC - PubMed
  133.  
    1. Campione E., Gaziano R., Marino D., Orlandi A. Fungistatic Activity of All-Trans Retinoic Acid against Aspergillus Fumigatus and Candida Albicans. Drug Des. Dev. 2016;10:1551–1555. doi: 10.2147/DDDT.S93985. - DOI - PMC - PubMed
  134.  
    1. Cosio T., Gaziano R., Zuccari G., Costanza G., Grelli S., Di Francesco P., Bianchi L., Campione E. Retinoids in Fungal Infections: From Bench to Bedside. Pharmaceuticals. 2021;14:962. doi: 10.3390/ph14100962. - DOI - PMC - PubMed
  135.  
    1. Campione E., Cosio T., Lanna C., Mazzilli S., Ventura A., Dika E., Gaziano R., Dattola A., Candi E., Bianchi L. Predictive Role of Vitamin A Serum Concentration in Psoriatic Patients Treated with IL-17 Inhibitors to Prevent Skin and Systemic Fungal Infections. J. Pharmacol. Sci. 2020;144:52–56. doi: 10.1016/j.jphs.2020.06.003. - DOI - PubMed
  136.  
    1. Hill J.A., Cowen L.E. Using Combination Therapy to Thwart Drug Resistance. Future Microbiol. 2015;10:1719–1726. doi: 10.2217/fmb.15.68. - DOI - PubMed
  137.  
    1. Livengood S.J., Drew R.H., Perfect J.R. Combination Therapy for Invasive Fungal Infections. Curr. Fungal Infect. Rep. 2020;14:40–49. doi: 10.1007/s12281-020-00369-4. - DOI
  138.  
    1. Evans E.G.V. The Rationale for Combination Therapy. Br. J. Dermatol. 2001;145:9–13. doi: 10.1046/j.1365-2133.2001.00047.x. - DOI - PubMed
  139.  
    1. Ruhnke M. Antifungal Stewardship in Invasive Candida Infections. Clin. Microbiol. Infect. 2014;20:11–18. doi: 10.1111/1469-0691.12622. - DOI - PubMed
  140.  
    1. Johnson M.D., Lewis R.E., Dodds Ashley E.S., Ostrosky-Zeichner L., Zaoutis T., Thompson G.R., III, Andes D.R., Walsh T.J., Pappas P.G., Cornely O.A., et al. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J. Infect. Dis. 2020;222:S175–S198. doi: 10.1093/infdis/jiaa394. - DOI - PMC - PubMed
  141.  
    1. Valerio M., Muñoz P., Rodríguez-González C., Sanjurjo M., Guinea J., Bouza E. Training Should Be the First Step toward an Antifungal Stewardship Program. Enferm. Infecc. Y Microbiol. Clínica. 2015;33:221–227. doi: 10.1016/j.eimc.2014.04.016. - DOI - PubMed
  142.  
    1. Urbancic K.F., Thursky K., Kong D.C.M., Johnson P.D.R., Slavin M.A. Antifungal Stewardship: Developments in the Field. Curr. Opin. Infect. Dis. 2018;31:490–498. doi: 10.1097/QCO.0000000000000497. - DOI - PubMed
  143.  
    1. Micallef C., Aliyu S.H., Santos R., Brown N.M., Rosembert D., Enoch D.A. Introduction of an Antifungal Stewardship Programme Targeting High-Cost Antifungals at a Tertiary Hospital in Cambridge, England. J. Antimicrob. Chemother. 2015;70:1908–1911. doi: 10.1093/jac/dkv040. - DOI - PubMed
  144.  
    1. Valerio M., Muñoz P., Rodríguez C.G., Caliz B., Padilla B., Fernández-Cruz A., Sánchez-Somolinos M., Gijón P., Peral J., Gayoso J., et al. Antifungal Stewardship in a Tertiary-Care Institution: A Bedside Intervention. Clin. Microbiol. Infect. 2015;21:492.e1–492.e9. doi: 10.1016/j.cmi.2015.01.013. - DOI - PubMed
  145.  
    1. Leach M.D., Klipp E., Cowen L.E., Brown A.J.P. Fungal Hsp90: A Biological Transistor That Tunes Cellular Outputs to Thermal Inputs. Nat. Rev. Microbiol. 2012;10:693–704. doi: 10.1038/nrmicro2875. - DOI - PMC - PubMed
  146.  
    1. Singh S.D., Robbins N., Zaas A.K., Schell W.A., Perfect J.R., Cowen L.E. Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida Albicans via Calcineurin. PLoS Pathog. 2009;5:e1000532. doi: 10.1371/journal.ppat.1000532. - DOI - PMC - PubMed
  147.  
    1. Lamoth F., Juvvadi P.R., Gehrke C., Steinbach W.J. In Vitro Activity of Calcineurin and Heat Shock Protein 90 Inhibitors against Aspergillus Fumigatus Azole- and Echinocandin-Resistant Strains. Antimicrob. Agents Chemother. 2013;57:1035–1039. doi: 10.1128/AAC.01857-12. - DOI - PMC - PubMed
  148.  
    1. Chen Y.-L., Lehman V.N., Lewit Y., Averette A.F., Heitman J. Calcineurin Governs Thermotolerance and Virulence of Cryptococcus Gattii. G3 (Bethesda) 2013;3:527–539. doi: 10.1534/g3.112.004242. - DOI - PMC - PubMed
  149.  
    1. Chen Y.-L., Brand A., Morrison E.L., Silao F.G.S., Bigol U.G., Malbas F.F., Nett J.E., Andes D.R., Solis N.V., Filler S.G., et al. Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida Dubliniensis. Eukaryot. Cell. 2011;10:803–819. doi: 10.1128/EC.00310-10. - DOI - PMC - PubMed
  150.  
    1. One Health: Fungal Pathogens of Humans, Animals, and Plants: Report on an American Academy of Microbiology Colloquium Held in Washington, DC, on 18 October 2017. American Society for Microbiology; Washington, DC, USA: 2019. American Academy of Microbiology Colloquia Reports. - PubMed
  151.  
    1. Schneider M.C., Munoz-Zanzi C., Min K., Aldighieri S. “One Health” From Concept to Application in the Global World; Oxford Research Encyclopedia, Global Public Health. Oxford University Press; Oxford, UK: 2018.
  152.  
    1. Chowdhary A., Meis J. Emergence of Azole Resistant Aspergillus Fumigatus and One Health: Time to Implement Environmental Stewardship. Environ. Microbiol. 2018;20:1299–1301. doi: 10.1111/1462-2920.14055. - DOI - PubMed
  153.  
    1. Banerjee S., Denning D.W., Chakrabarti A. One Health Aspects & Priority Roadmap for Fungal Diseases: A Mini-Review. Indian J. Med. Res. 2021;153:311–319. doi: 10.4103/ijmr.IJMR_768_21. - DOI - PMC - PubMed