Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.
Keywords: ERG K+ channels; WAY-123,398; class III anti-arrhythmic drug; ether-à-go-go–related gene; locus coeruleus neurons; noradrenergic system.
Huang CS, Wang GH, Tai CH, Hu CC, Yang YC.Sci Adv. 2017 May 10;3(5):e1602272. doi: 10.1126/sciadv.1602272. eCollection 2017 May.PMID: 28508055 Free PMC article.
Van Egroo M., Koshmanova E., Vandewalle G., Jacobs H.I.L. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer’s disease. Sleep Med. Rev. 2022;62:101592. doi: 10.1016/j.smrv.2022.101592. - DOI - PMC - PubMed
Borodovitsyna O., Tkaczynski J.A., Corbett C.M., Loweth J.A., Chandler D.J. Ageand Sex-Dependent Changes in Locus Coeruleus Physiology and Anxiety-Like Behavior Following Acute Stressor Exposure. Front. Behav. Neurosci. 2022;16:808590. doi: 10.3389/fnbeh.2022.808590. - DOI - PMC - PubMed
Dahl M.J., Mather M., Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 2022;26:38–52. doi: 10.1016/j.tics.2021.10.009. - DOI - PMC - PubMed
Llorca-Torralba M., Camarena-Delgado C., Suárez-Pereira I., Bravo L., Mariscal P., Garcia-Partida J.A., López-Martín C., Wei H., Pertovaara A., Mico J.A., et al. Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain. 2022;145:154–167. doi: 10.1093/brain/awab239. - DOI - PMC - PubMed
James T., Kula B., Choi S., Khan S.S., Bekar L.K., Smith N.A. Locus coeruleus in memory formation and Alzheimer’s disease. Eur. J. Neurosci. 2021;54:6948–6959. doi: 10.1111/ejn.15045. - DOI - PMC - PubMed
Ross J.A., Van Bockstaele E.J. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front. Psychiatry. 2021;11:519. doi: 10.3389/fpsyt.2020.601519. - DOI - PMC - PubMed
Uematsu A., Tan B.Z., Ycu E.A., Cuevas J.S., Koivumaa J., Junyent F., Kremer E., Witten I.B., Deisseroth K., Johansen J.P. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat. Neurosci. 2017;20:1602–1611. doi: 10.1038/nn.4642. - DOI - PubMed
D’Adamo M.C., Shang L., Imbrici P., Brown S.D., Pessia M., Tucker S.J. Genetic inactivation of Kcnj16 identifies Kir5.1 as an im-portant determinant of neuronal PCO2/pH sensitivity. J. Biol. Chem. 2011;286:192–198. doi: 10.1074/jbc.M110.189290. - DOI - PMC - PubMed
Filosa J.A., Dean J.B., Putnam R.W. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J. Physiol. 2002;541:493–509. doi: 10.1113/jphysiol.2001.014142. - DOI - PMC - PubMed
Masuko S., Nakajima Y., Nakajima S., Yamaguchi K. Noradrenergic neurons from the locus ceruleus in dissociated cell culture: Culture methods, morphology, and electrophysiology. J. Neurosci. 1986;6:3229–3241. doi: 10.1523/JNEUROSCI.06-11-03229.1986. - DOI - PMC - PubMed
Forsythe I.D., Linsdell P., Stanfield P.R. Unitary A-currents of rat locus coeruleus neurones grown in cell culture: Rectification caused by internal Mg2+ and Na+ J. Physiol. 1992;451:553–583. doi: 10.1113/jphysiol.1992.sp019179. - DOI - PMC - PubMed
Pineda J., Aghajanian G. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience. 1997;77:723–743. doi: 10.1016/S0306-4522(96)00485-X. - DOI - PubMed
Sausbier U., Sausbier M., Sailer C.A., Arntz C., Knaus H.-G., Neuhuber W., Ruth P. Ca2+-activated K+ channels of the BK-type in the mouse brain. Histochem. Cell Biol. 2005;125:725–741. doi: 10.1007/s00418-005-0124-7. - DOI - PubMed
Filosa J.A., Putnam R.W. Multiple targets of chemosensitive signaling in locus coeruleus neurons: Role of K+ and Ca2+ channels. Am. J. Physiol. Cell Physiol. 2003;284:C145–C155. doi: 10.1152/ajpcell.00346.2002. - DOI - PubMed
Imber A.N., Putnam R.W. Postnatal development, and activation of L-type Ca2+ currents in locus coeruleus neurons: Implica-tions for a role for Ca2+ in central chemosensitivity. J. Appl. Physiol. 2012;112:1715–1726. doi: 10.1152/japplphysiol.01585.2011. - DOI - PMC - PubMed
Bauer C.K., Schwarz J.R. Ether-à-go-go K+ channels: Effective modulators of neuronal excitability. J. Physiol. 2018;596:769–783. doi: 10.1113/JP275477. - DOI - PMC - PubMed
Chiesa N., Rosati B., Arcangeli A., Olivotto M., Wanke E. A novel role for HERG K+ channels: Spike-frequency adaptation. J. Physiol. 1997;501:313–318. doi: 10.1111/j.1469-7793.1997.313bn.x. - DOI - PMC - PubMed
Sacco T., Bruno A., Wanke E., Tempia F. Functional Roles of an ERG Current Isolated in Cerebellar Purkinje Neurons. J. Neurophysiol. 2003;90:1817–1828. doi: 10.1152/jn.00104.2003. - DOI - PubMed
Guasti L., Cilia E., Crociani O., Hofmann G., Polvani S., Becchetti A., Wanke E., Tempia F., Arcangeli A. Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: Evidence for coassembly of dif-ferent subunits. J. Comp. Neurol. 2005;491:157–174. doi: 10.1002/cne.20721. - DOI - PubMed
Pessia M., Servettini I., Panichi R., Guasti L., Grassi S., Arcangeli A., Wanke E., Pettorossi V.E. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J. Physiol. 2008;586:4877–4890. doi: 10.1113/jphysiol.2008.155762. - DOI - PMC - PubMed
Huang C.-S., Wang G.-H., Tai C.-H., Hu C.-C., Yang Y.-C. Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K + channels in parkinsonian discharges. Sci. Adv. 2017;3:e1602272. doi: 10.1126/sciadv.1602272. - DOI - PMC - PubMed
Sanguinetti M.C., Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–469. doi: 10.1038/nature04710. - DOI - PubMed
Vandenberg J.I., Perry M.D., Perrin M.J., Mann S.A., Ke Y., Hill A.P. hERG K+ channels: Structure, function, and clinical significance. Physiol. Rev. 2012;92:1393–1478. doi: 10.1152/physrev.00036.2011. - DOI - PubMed
Furlan F., Taccola G., Grandolfo M., Guasti L., Arcangeli A., Nistri A., Ballerini L., Guasti L. ERG Conductance Expression Modulates the Excitability of Ventral Horn GABAergic Interneurons That Control Rhythmic Oscillations in the Developing Mouse Spinal Cord. J. Neurosci. 2007;27:919–928. doi: 10.1523/JNEUROSCI.4035-06.2007. - DOI - PMC - PubMed
Hagendorf S., Fluegge D., Engelhardt C., Spehr M. Homeostatic Control of Sensory Output in Basal Vomeronasal Neurons: Activity-Dependent Expression of Ether-à-Go-Go-Related Gene Potassium Channels. J. Neurosci. 2009;29:206–221. doi: 10.1523/JNEUROSCI.3656-08.2009. - DOI - PMC - PubMed
Ji H., Tucker K.R., Putzier I., Huertas M.A., Horn J.P., Canavier C.C., Levitan E.S., Shepard P.D. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons—Implications for a role in depolarization block. Eur. J. Neurosci. 2012;36:2906–2916. doi: 10.1111/j.1460-9568.2012.08190.x. - DOI - PMC - PubMed
Saganich M.J., Machado E., Rudy B. Differential Expression of Genes Encoding Subthreshold-Operating Voltage-Gated K+ Channels in Brain. J. Neurosci. 2001;21:4609–4624. doi: 10.1523/JNEUROSCI.21-13-04609.2001. - DOI - PMC - PubMed
Papa M., Boscia F., Canitano A., Castaldo P., Sellitti S., Annunziato L., Taglialatela M. Expression pattern of the ether-a-gogo-related (ERG) k+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system. J. Comp. Neurol. 2003;466:119–135. doi: 10.1002/cne.10886. - DOI - PubMed
Spinelli W., Moubarak I.F., Parsons R.W., Colatsky T.J. Cellular electrophysiology of WAY-123,398, a new class III antiarrhythmic agent: Specificity of IK block and lack of reverse use dependence in cat ventricular myocytes. Cardiovasc. Res. 1993;27:1580–1591. doi: 10.1093/cvr/27.9.1580. - DOI - PubMed
Faravelli L., Arcangeli A., Olivotto M., Wanke E. A HERG-like K+ channel in rat F-11 DRG cell line: Pharmacological identification and biophysical characterization. J. Physiol. 1996;496:13–23. doi: 10.1113/jphysiol.1996.sp021661. - DOI - PMC - PubMed
Williams J.T., North A.R. Opiate-receptor interactions on single locus coeruleus neurones. Mol. Pharmacol. 1984;26:489–497. - PubMed
Cui E.D., Strowbridge B.W. Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells. J. Neurosci. 2017;38:423–440. doi: 10.1523/JNEUROSCI.1774-17.2017. - DOI - PMC - PubMed
Noriega N.C., Garyfallou V.T., Kohama S.G., Urbanski H.F. Glutamate receptor subunit expression in the rhesus macaque locus coeruleus. Brain Res. 2007;1173:53–65. doi: 10.1016/j.brainres.2007.08.007. - DOI - PMC - PubMed
Cockerill S.L., Tobin A.B., Torrecilla I., Willars G.B., Standen N.B., Mitcheson J. Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J. Physiol. 2007;581:479–493. doi: 10.1113/jphysiol.2006.123414. - DOI - PMC - PubMed
Hirdes W., Horowitz L.F., Hille B. Muscarinic modulation of erg potassium current. J. Physiol. 2004;559:67–84. doi: 10.1113/jphysiol.2004.066944. - DOI - PMC - PubMed
Egan T., North R. Acetylcholine acts on m2-muscarinic receptors to excite rat locus coeruleus neurones. J. Cereb. Blood Flow Metab. 1985;85:733–735. doi: 10.1111/j.1476-5381.1985.tb11070.x. - DOI - PMC - PubMed
Freedman S.B., Beer M.S., Harley E.A. Muscarinic M1, M2 receptor binding. relationship with functional efficacy. Eur. J. Pharmacol. 1988;156:133. doi: 10.1016/0014-2999(88)90155-0. - DOI - PubMed
Niculescu D., Hirdes W., Hornig S., Pongs O., Schwarz J.R. Erg Potassium Currents of Neonatal Mouse Purkinje Cells Exhibit Fast Gating Kinetics and Are Inhibited by mGluR1 Activation. J. Neurosci. 2013;33:16729–16740. doi: 10.1523/JNEUROSCI.5523-12.2013. - DOI - PMC - PubMed
Carter M., Yizhar O., Chikahisa S., Nguyen H., Adamantidis A., Nishino S., Deisseroth K., De Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010;13:1526–1533. doi: 10.1038/nn.2682. - DOI - PMC - PubMed
Poe G.R., Foote S., Eschenko O., Johansen J.P., Bouret S., Aston-Jones G., Harley C.W., Manahan-Vaughan D., Weinshenker D., Valentino R., et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020;21:644–659. doi: 10.1038/s41583-020-0360-9. - DOI - PMC - PubMed
Alvarez V.A., Chow C.C., Van Bockstaele E.J., Williams J.T. Frequency-dependent synchrony in locus ceruleus: Role of electrotonic coupling. Proc. Natl. Acad. Sci. USA. 2002;99:4032–4036. doi: 10.1073/pnas.062716299. - DOI - PMC - PubMed
McCall J.G., Al-Hasani R., Siuda E.R., Hong D.Y., Norris A.J., Ford C.P., Bruchas M.R. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron. 2015;87:605–620. doi: 10.1016/j.neuron.2015.07.002. - DOI - PMC - PubMed
Aston-Jones G., Cohen J.D. An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annu. Rev. Neurosci. 2005;28:403–450. doi: 10.1146/annurev.neuro.28.061604.135709. - DOI - PubMed
Howells F.M., Stein D., Russell V.A. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab. Brain Dis. 2012;27:267–274. doi: 10.1007/s11011-012-9287-9. - DOI - PubMed
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge—A New Hypothesis with Potential Implications for Neurodegenerative Diseases. Front. Neurol. 2020;11:371. doi: 10.3389/fneur.2020.00371. - DOI - PMC - PubMed
Wang Z.-J., Soohoo S., Tiwari P.B., Piszczek G., Brelidze T.I. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. J. Biol. Chem. 2020;295:4114–4123. doi: 10.1074/jbc.RA119.012377. - DOI - PMC - PubMed
Clos M., Bunzeck N., Sommer T. Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology. 2019;44:555–563. doi: 10.1038/s41386-018-0246-y. - DOI - PMC - PubMed
Wang X., Piñol R.A., Byrne P., Mendelowitz D. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors. J. Neurosci. 2014;34:6182–6189. doi: 10.1523/JNEUROSCI.5093-13.2014. - DOI - PMC - PubMed
Johnson J.N., Hofman N., Haglund C.M., Cascino G.D., Wilde A., Ackerman M.J. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology. 2008;72:224–231. doi: 10.1212/01.wnl.0000335760.02995.ca. - DOI - PMC - PubMed
Omichi C., Momose Y., Kitahara S. Congenital long QT syndrome presenting with a history of epilepsy: Misdiagnosis or rela-tionship between channelopathies of the heart and brain? Epilepsia. 2009;51:289–292. doi: 10.1111/j.1528-1167.2009.02267.x. - DOI - PubMed
Kuo P.H., Chuang L.C., Liu J.R., Liu C.M., Huang M.C., Lin S.K., Sunny Sun H., Hsieh M.H., Hung H., Lu R.B. Identification of novel loci for bipolar I disorder in a multi-stage genome-wide association study. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;51:58–64. doi: 10.1016/j.pnpbp.2014.01.003. - DOI - PubMed
Strauss K.A., Markx S., Georgi B., Paul S.M., Jinks R.N., Hoshi T., McDonald A., First M.B., Liu W., Benkert A.R., et al. A population-based study of KCNH7 p.Arg394His and bipolar spectrum disorder. Hum. Mol. Genet. 2014;23:6395–6406. doi: 10.1093/hmg/ddu335. - DOI - PMC - PubMed
Mäki-Marttunen V., Andreassen O.A., Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev. 2020;118:298–314. doi: 10.1016/j.neubiorev.2020.07.038. - DOI - PubMed
Huffaker S.J., Chen J., Nicodemus K.K., Sambataro F., Yang F., Mattay V., Lipska B.K., Hyde T.M., Song J., Rujescu D., et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat. Med. 2009;15:509–518. doi: 10.1038/nm.1962. - DOI - PMC - PubMed
Atalar F., Acuner T.T., Cine N., Oncu F., Yesilbursa D., Ozbek U., Turkcan S. Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: A case control study. Behav. Brain Funct. 2010;6:27. doi: 10.1186/1744-9081-6-27. - DOI - PMC - PubMed
Apud J.A., Zhang F., Decot H., Bigos K.L., Weinberger D.R. Genetic Variation in KCNH2 Associated with Expression in the Brain of a Unique hERG Isoform Modulates Treatment Response in Patients with Schizophrenia. Am. J. Psychiatry. 2012;169:725–734. doi: 10.1176/appi.ajp.2012.11081214. - DOI - PubMed
Hashimoto R., Ohi K., Yasuda Y., Fukumoto M., Yamamori H., Kamino K., Morihara T., Iwase M., Kazui H., Takeda M. The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. World J. Biol. Psychiatry. 2013;14:114–120. doi: 10.3109/15622975.2011.604350. - DOI - PubMed
Matschke L.A., Komadowski M.A., Stöhr A., Lee B., Henrich M.T., Griesbach M., Rinné S., Geibl F.F., Chiu W.-H., Koprich J.B., et al. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson’s disease. Sci. Rep. 2022;12:1–14. doi: 10.1038/s41598-022-06832-1. - DOI - PMC - PubMed
Lottini T., Iorio J., Lastraioli E., Carraresi L., Duranti C., Sala C., Armenio M., Noci I., Pillozzi S., Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci. Rep. 2021;11:8847. doi: 10.1038/s41598-021-87492-5. - DOI - PMC - PubMed