Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K+ Channels

Affiliations

05 December 2022

-

doi: 10.3390/ijms232315334


Abstract

Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.

Keywords: ERG K+ channels; WAY-123,398; class III anti-arrhythmic drug; ether-à-go-go–related gene; locus coeruleus neurons; noradrenergic system.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Ether-à-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons.

Hardman RM, Forsythe ID.J Physiol. 2009 Jun 1;587(Pt 11):2487-97. doi: 10.1113/jphysiol.2009.170548. Epub 2009 Apr 9.PMID: 19359372 Free PMC article.

Ether-à-go-go K+ channels: effective modulators of neuronal excitability.

Bauer CK, Schwarz JR.J Physiol. 2018 Mar 1;596(5):769-783. doi: 10.1113/JP275477. Epub 2018 Feb 6.PMID: 29333676 Free PMC article. Review.

Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K+ channels in parkinsonian discharges.

Huang CS, Wang GH, Tai CH, Hu CC, Yang YC.Sci Adv. 2017 May 10;3(5):e1602272. doi: 10.1126/sciadv.1602272. eCollection 2017 May.PMID: 28508055 Free PMC article.

Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells.

Cui ED, Strowbridge BW.J Neurosci. 2018 Jan 10;38(2):423-440. doi: 10.1523/JNEUROSCI.1774-17.2017. Epub 2017 Nov 24.PMID: 29175952 Free PMC article.

Ether-a-go-go-related gene potassium channels: what's all the buzz about?

Shepard PD, Canavier CC, Levitan ES.Schizophr Bull. 2007 Nov;33(6):1263-9. doi: 10.1093/schbul/sbm106. Epub 2007 Sep 28.PMID: 17905786 Free PMC article. Review.


KMEL References


References

  1.  
    1. Van Egroo M., Koshmanova E., Vandewalle G., Jacobs H.I.L. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer’s disease. Sleep Med. Rev. 2022;62:101592. doi: 10.1016/j.smrv.2022.101592. - DOI - PMC - PubMed
  2.  
    1. Borodovitsyna O., Tkaczynski J.A., Corbett C.M., Loweth J.A., Chandler D.J. Ageand Sex-Dependent Changes in Locus Coeruleus Physiology and Anxiety-Like Behavior Following Acute Stressor Exposure. Front. Behav. Neurosci. 2022;16:808590. doi: 10.3389/fnbeh.2022.808590. - DOI - PMC - PubMed
  3.  
    1. Dahl M.J., Mather M., Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 2022;26:38–52. doi: 10.1016/j.tics.2021.10.009. - DOI - PMC - PubMed
  4.  
    1. Llorca-Torralba M., Camarena-Delgado C., Suárez-Pereira I., Bravo L., Mariscal P., Garcia-Partida J.A., López-Martín C., Wei H., Pertovaara A., Mico J.A., et al. Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain. 2022;145:154–167. doi: 10.1093/brain/awab239. - DOI - PMC - PubMed
  5.  
    1. James T., Kula B., Choi S., Khan S.S., Bekar L.K., Smith N.A. Locus coeruleus in memory formation and Alzheimer’s disease. Eur. J. Neurosci. 2021;54:6948–6959. doi: 10.1111/ejn.15045. - DOI - PMC - PubMed
  6.  
    1. Ross J.A., Van Bockstaele E.J. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front. Psychiatry. 2021;11:519. doi: 10.3389/fpsyt.2020.601519. - DOI - PMC - PubMed
  7.  
    1. Uematsu A., Tan B.Z., Ycu E.A., Cuevas J.S., Koivumaa J., Junyent F., Kremer E., Witten I.B., Deisseroth K., Johansen J.P. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat. Neurosci. 2017;20:1602–1611. doi: 10.1038/nn.4642. - DOI - PubMed
  8.  
    1. D’Adamo M.C., Shang L., Imbrici P., Brown S.D., Pessia M., Tucker S.J. Genetic inactivation of Kcnj16 identifies Kir5.1 as an im-portant determinant of neuronal PCO2/pH sensitivity. J. Biol. Chem. 2011;286:192–198. doi: 10.1074/jbc.M110.189290. - DOI - PMC - PubMed
  9.  
    1. Filosa J.A., Dean J.B., Putnam R.W. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J. Physiol. 2002;541:493–509. doi: 10.1113/jphysiol.2001.014142. - DOI - PMC - PubMed
  10.  
    1. Masuko S., Nakajima Y., Nakajima S., Yamaguchi K. Noradrenergic neurons from the locus ceruleus in dissociated cell culture: Culture methods, morphology, and electrophysiology. J. Neurosci. 1986;6:3229–3241. doi: 10.1523/JNEUROSCI.06-11-03229.1986. - DOI - PMC - PubMed
  11.  
    1. Forsythe I.D., Linsdell P., Stanfield P.R. Unitary A-currents of rat locus coeruleus neurones grown in cell culture: Rectification caused by internal Mg2+ and Na+ J. Physiol. 1992;451:553–583. doi: 10.1113/jphysiol.1992.sp019179. - DOI - PMC - PubMed
  12.  
    1. Pineda J., Aghajanian G. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience. 1997;77:723–743. doi: 10.1016/S0306-4522(96)00485-X. - DOI - PubMed
  13.  
    1. Sausbier U., Sausbier M., Sailer C.A., Arntz C., Knaus H.-G., Neuhuber W., Ruth P. Ca2+-activated K+ channels of the BK-type in the mouse brain. Histochem. Cell Biol. 2005;125:725–741. doi: 10.1007/s00418-005-0124-7. - DOI - PubMed
  14.  
    1. Filosa J.A., Putnam R.W. Multiple targets of chemosensitive signaling in locus coeruleus neurons: Role of K+ and Ca2+ channels. Am. J. Physiol. Cell Physiol. 2003;284:C145–C155. doi: 10.1152/ajpcell.00346.2002. - DOI - PubMed
  15.  
    1. Imber A.N., Putnam R.W. Postnatal development, and activation of L-type Ca2+ currents in locus coeruleus neurons: Implica-tions for a role for Ca2+ in central chemosensitivity. J. Appl. Physiol. 2012;112:1715–1726. doi: 10.1152/japplphysiol.01585.2011. - DOI - PMC - PubMed
  16.  
    1. Bauer C.K., Schwarz J.R. Ether-à-go-go K+ channels: Effective modulators of neuronal excitability. J. Physiol. 2018;596:769–783. doi: 10.1113/JP275477. - DOI - PMC - PubMed
  17.  
    1. Chiesa N., Rosati B., Arcangeli A., Olivotto M., Wanke E. A novel role for HERG K+ channels: Spike-frequency adaptation. J. Physiol. 1997;501:313–318. doi: 10.1111/j.1469-7793.1997.313bn.x. - DOI - PMC - PubMed
  18.  
    1. Sacco T., Bruno A., Wanke E., Tempia F. Functional Roles of an ERG Current Isolated in Cerebellar Purkinje Neurons. J. Neurophysiol. 2003;90:1817–1828. doi: 10.1152/jn.00104.2003. - DOI - PubMed
  19.  
    1. Guasti L., Cilia E., Crociani O., Hofmann G., Polvani S., Becchetti A., Wanke E., Tempia F., Arcangeli A. Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: Evidence for coassembly of dif-ferent subunits. J. Comp. Neurol. 2005;491:157–174. doi: 10.1002/cne.20721. - DOI - PubMed
  20.  
    1. Pessia M., Servettini I., Panichi R., Guasti L., Grassi S., Arcangeli A., Wanke E., Pettorossi V.E. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J. Physiol. 2008;586:4877–4890. doi: 10.1113/jphysiol.2008.155762. - DOI - PMC - PubMed
  21.  
    1. Huang C.-S., Wang G.-H., Tai C.-H., Hu C.-C., Yang Y.-C. Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K + channels in parkinsonian discharges. Sci. Adv. 2017;3:e1602272. doi: 10.1126/sciadv.1602272. - DOI - PMC - PubMed
  22.  
    1. Sanguinetti M.C., Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–469. doi: 10.1038/nature04710. - DOI - PubMed
  23.  
    1. Vandenberg J.I., Perry M.D., Perrin M.J., Mann S.A., Ke Y., Hill A.P. hERG K+ channels: Structure, function, and clinical significance. Physiol. Rev. 2012;92:1393–1478. doi: 10.1152/physrev.00036.2011. - DOI - PubMed
  24.  
    1. Furlan F., Taccola G., Grandolfo M., Guasti L., Arcangeli A., Nistri A., Ballerini L., Guasti L. ERG Conductance Expression Modulates the Excitability of Ventral Horn GABAergic Interneurons That Control Rhythmic Oscillations in the Developing Mouse Spinal Cord. J. Neurosci. 2007;27:919–928. doi: 10.1523/JNEUROSCI.4035-06.2007. - DOI - PMC - PubMed
  25.  
    1. Hagendorf S., Fluegge D., Engelhardt C., Spehr M. Homeostatic Control of Sensory Output in Basal Vomeronasal Neurons: Activity-Dependent Expression of Ether-à-Go-Go-Related Gene Potassium Channels. J. Neurosci. 2009;29:206–221. doi: 10.1523/JNEUROSCI.3656-08.2009. - DOI - PMC - PubMed
  26.  
    1. Ji H., Tucker K.R., Putzier I., Huertas M.A., Horn J.P., Canavier C.C., Levitan E.S., Shepard P.D. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons—Implications for a role in depolarization block. Eur. J. Neurosci. 2012;36:2906–2916. doi: 10.1111/j.1460-9568.2012.08190.x. - DOI - PMC - PubMed
  27.  
    1. Saganich M.J., Machado E., Rudy B. Differential Expression of Genes Encoding Subthreshold-Operating Voltage-Gated K+ Channels in Brain. J. Neurosci. 2001;21:4609–4624. doi: 10.1523/JNEUROSCI.21-13-04609.2001. - DOI - PMC - PubMed
  28.  
    1. Papa M., Boscia F., Canitano A., Castaldo P., Sellitti S., Annunziato L., Taglialatela M. Expression pattern of the ether-a-gogo-related (ERG) k+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system. J. Comp. Neurol. 2003;466:119–135. doi: 10.1002/cne.10886. - DOI - PubMed
  29.  
    1. Spinelli W., Moubarak I.F., Parsons R.W., Colatsky T.J. Cellular electrophysiology of WAY-123,398, a new class III antiarrhythmic agent: Specificity of IK block and lack of reverse use dependence in cat ventricular myocytes. Cardiovasc. Res. 1993;27:1580–1591. doi: 10.1093/cvr/27.9.1580. - DOI - PubMed
  30.  
    1. Faravelli L., Arcangeli A., Olivotto M., Wanke E. A HERG-like K+ channel in rat F-11 DRG cell line: Pharmacological identification and biophysical characterization. J. Physiol. 1996;496:13–23. doi: 10.1113/jphysiol.1996.sp021661. - DOI - PMC - PubMed
  31.  
    1. Williams J.T., North A.R. Opiate-receptor interactions on single locus coeruleus neurones. Mol. Pharmacol. 1984;26:489–497. - PubMed
  32.  
    1. Cui E.D., Strowbridge B.W. Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells. J. Neurosci. 2017;38:423–440. doi: 10.1523/JNEUROSCI.1774-17.2017. - DOI - PMC - PubMed
  33.  
    1. Noriega N.C., Garyfallou V.T., Kohama S.G., Urbanski H.F. Glutamate receptor subunit expression in the rhesus macaque locus coeruleus. Brain Res. 2007;1173:53–65. doi: 10.1016/j.brainres.2007.08.007. - DOI - PMC - PubMed
  34.  
    1. Cockerill S.L., Tobin A.B., Torrecilla I., Willars G.B., Standen N.B., Mitcheson J. Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J. Physiol. 2007;581:479–493. doi: 10.1113/jphysiol.2006.123414. - DOI - PMC - PubMed
  35.  
    1. Hirdes W., Horowitz L.F., Hille B. Muscarinic modulation of erg potassium current. J. Physiol. 2004;559:67–84. doi: 10.1113/jphysiol.2004.066944. - DOI - PMC - PubMed
  36.  
    1. Egan T., North R. Acetylcholine acts on m2-muscarinic receptors to excite rat locus coeruleus neurones. J. Cereb. Blood Flow Metab. 1985;85:733–735. doi: 10.1111/j.1476-5381.1985.tb11070.x. - DOI - PMC - PubMed
  37.  
    1. Freedman S.B., Beer M.S., Harley E.A. Muscarinic M1, M2 receptor binding. relationship with functional efficacy. Eur. J. Pharmacol. 1988;156:133. doi: 10.1016/0014-2999(88)90155-0. - DOI - PubMed
  38.  
    1. Niculescu D., Hirdes W., Hornig S., Pongs O., Schwarz J.R. Erg Potassium Currents of Neonatal Mouse Purkinje Cells Exhibit Fast Gating Kinetics and Are Inhibited by mGluR1 Activation. J. Neurosci. 2013;33:16729–16740. doi: 10.1523/JNEUROSCI.5523-12.2013. - DOI - PMC - PubMed
  39.  
    1. Carter M., Yizhar O., Chikahisa S., Nguyen H., Adamantidis A., Nishino S., Deisseroth K., De Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010;13:1526–1533. doi: 10.1038/nn.2682. - DOI - PMC - PubMed
  40.  
    1. Poe G.R., Foote S., Eschenko O., Johansen J.P., Bouret S., Aston-Jones G., Harley C.W., Manahan-Vaughan D., Weinshenker D., Valentino R., et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020;21:644–659. doi: 10.1038/s41583-020-0360-9. - DOI - PMC - PubMed
  41.  
    1. Alvarez V.A., Chow C.C., Van Bockstaele E.J., Williams J.T. Frequency-dependent synchrony in locus ceruleus: Role of electrotonic coupling. Proc. Natl. Acad. Sci. USA. 2002;99:4032–4036. doi: 10.1073/pnas.062716299. - DOI - PMC - PubMed
  42.  
    1. McCall J.G., Al-Hasani R., Siuda E.R., Hong D.Y., Norris A.J., Ford C.P., Bruchas M.R. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron. 2015;87:605–620. doi: 10.1016/j.neuron.2015.07.002. - DOI - PMC - PubMed
  43.  
    1. Aston-Jones G., Cohen J.D. An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annu. Rev. Neurosci. 2005;28:403–450. doi: 10.1146/annurev.neuro.28.061604.135709. - DOI - PubMed
  44.  
    1. Howells F.M., Stein D., Russell V.A. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab. Brain Dis. 2012;27:267–274. doi: 10.1007/s11011-012-9287-9. - DOI - PubMed
  45.  
    1. Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge—A New Hypothesis with Potential Implications for Neurodegenerative Diseases. Front. Neurol. 2020;11:371. doi: 10.3389/fneur.2020.00371. - DOI - PMC - PubMed
  46.  
    1. Wang Z.-J., Soohoo S., Tiwari P.B., Piszczek G., Brelidze T.I. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. J. Biol. Chem. 2020;295:4114–4123. doi: 10.1074/jbc.RA119.012377. - DOI - PMC - PubMed
  47.  
    1. Clos M., Bunzeck N., Sommer T. Dopamine is a double-edged sword: Dopaminergic modulation enhances memory retrieval performance but impairs metacognition. Neuropsychopharmacology. 2019;44:555–563. doi: 10.1038/s41386-018-0246-y. - DOI - PMC - PubMed
  48.  
    1. Wang X., Piñol R.A., Byrne P., Mendelowitz D. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors. J. Neurosci. 2014;34:6182–6189. doi: 10.1523/JNEUROSCI.5093-13.2014. - DOI - PMC - PubMed
  49.  
    1. Johnson J.N., Hofman N., Haglund C.M., Cascino G.D., Wilde A., Ackerman M.J. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology. 2008;72:224–231. doi: 10.1212/01.wnl.0000335760.02995.ca. - DOI - PMC - PubMed
  50.  
    1. Omichi C., Momose Y., Kitahara S. Congenital long QT syndrome presenting with a history of epilepsy: Misdiagnosis or rela-tionship between channelopathies of the heart and brain? Epilepsia. 2009;51:289–292. doi: 10.1111/j.1528-1167.2009.02267.x. - DOI - PubMed
  51.  
    1. Kuo P.H., Chuang L.C., Liu J.R., Liu C.M., Huang M.C., Lin S.K., Sunny Sun H., Hsieh M.H., Hung H., Lu R.B. Identification of novel loci for bipolar I disorder in a multi-stage genome-wide association study. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;51:58–64. doi: 10.1016/j.pnpbp.2014.01.003. - DOI - PubMed
  52.  
    1. Strauss K.A., Markx S., Georgi B., Paul S.M., Jinks R.N., Hoshi T., McDonald A., First M.B., Liu W., Benkert A.R., et al. A population-based study of KCNH7 p.Arg394His and bipolar spectrum disorder. Hum. Mol. Genet. 2014;23:6395–6406. doi: 10.1093/hmg/ddu335. - DOI - PMC - PubMed
  53.  
    1. Mäki-Marttunen V., Andreassen O.A., Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev. 2020;118:298–314. doi: 10.1016/j.neubiorev.2020.07.038. - DOI - PubMed
  54.  
    1. Huffaker S.J., Chen J., Nicodemus K.K., Sambataro F., Yang F., Mattay V., Lipska B.K., Hyde T.M., Song J., Rujescu D., et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat. Med. 2009;15:509–518. doi: 10.1038/nm.1962. - DOI - PMC - PubMed
  55.  
    1. Atalar F., Acuner T.T., Cine N., Oncu F., Yesilbursa D., Ozbek U., Turkcan S. Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: A case control study. Behav. Brain Funct. 2010;6:27. doi: 10.1186/1744-9081-6-27. - DOI - PMC - PubMed
  56.  
    1. Apud J.A., Zhang F., Decot H., Bigos K.L., Weinberger D.R. Genetic Variation in KCNH2 Associated with Expression in the Brain of a Unique hERG Isoform Modulates Treatment Response in Patients with Schizophrenia. Am. J. Psychiatry. 2012;169:725–734. doi: 10.1176/appi.ajp.2012.11081214. - DOI - PubMed
  57.  
    1. Hashimoto R., Ohi K., Yasuda Y., Fukumoto M., Yamamori H., Kamino K., Morihara T., Iwase M., Kazui H., Takeda M. The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. World J. Biol. Psychiatry. 2013;14:114–120. doi: 10.3109/15622975.2011.604350. - DOI - PubMed
  58.  
    1. Matschke L.A., Komadowski M.A., Stöhr A., Lee B., Henrich M.T., Griesbach M., Rinné S., Geibl F.F., Chiu W.-H., Koprich J.B., et al. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson’s disease. Sci. Rep. 2022;12:1–14. doi: 10.1038/s41598-022-06832-1. - DOI - PMC - PubMed
  59.  
    1. Lottini T., Iorio J., Lastraioli E., Carraresi L., Duranti C., Sala C., Armenio M., Noci I., Pillozzi S., Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci. Rep. 2021;11:8847. doi: 10.1038/s41598-021-87492-5. - DOI - PMC - PubMed