The effect of neutralizing antibodies on the sustainable efficacy of biologic therapies: what's in it for African and Middle Eastern rheumatologists

Affiliations

01 September 2012

-

doi: 10.1007/s10067-012-2040-2


Abstract

Over the last decade, biologic therapeutic proteins have advanced the treatment of diseases such as rheumatoid arthritis (RA). Therapeutic antibodies such as infliximab, adalimumab, rituximab, tocilizumab, golimumab, certolizumab pegol, the receptor construct etanercept, and abatacept, an anticluster of differentiation (CD)80/anti-CD86 fusion protein, are used as treatment for RA and ankylosing spondylitis (AS). Infliximab, adalimumab, golimumab, certolizumab pegol, and etanercept are inhibitors of tumor necrosis factor (TNF), a key regulator of inflammation. Left untreated, progression of rheumatic diseases due to inflammation can lead to irreversible joint damage and serious disability. One limitation for the use of therapeutic antibodies is immunogenicity, the induction of antibodies by the adaptive immune system in response to foreign substances. The development of antidrug antibodies (ADAs) has a varying impact on the clinical efficacy of biologic agents for the treatment of RA and AS, depending on whether the ADAs are neutralizing or non-neutralizing. Studies have indicated that neutralizing ADAs are associated with a reduced efficacy, decreased drug survival, increased instances of dose escalation, and adverse events. Comparison studies of anti-TNF biologics have demonstrated that each drug has a different sustained efficacy profile depending on immunogenicity. The purpose of this review is to provide rheumatologists with information regarding the effect of neutralizing antibodies on the sustainable efficacy of anti-TNF biologic therapies. This information will be of value to practicing rheumatologists in Africa and the Middle East who should take into account the potential for changes in the efficacy and safety of biologic therapies and closely monitor patients under their care.


Similar articles

TNF-alpha inhibitors for ankylosing spondylitis.

Maxwell LJ, Zochling J, Boonen A, Singh JA, Veras MM, Tanjong Ghogomu E, Benkhalti Jandu M, Tugwell P, Wells GA.Cochrane Database Syst Rev. 2015 Apr 18;(4):CD005468. doi: 10.1002/14651858.CD005468.pub2.PMID: 25887212 Review.

A Retrospective Cohort Study Comparing Utilization and Costs of Biologic Therapies and JAK Inhibitor Therapy Across Four Common Inflammatory Indications in Adult US Managed Care Patients.

Chastek B, White J, Van Voorhis D, Tang D, Stolshek BS.Adv Ther. 2016 Apr;33(4):626-42. doi: 10.1007/s12325-016-0312-y. Epub 2016 Mar 12.PMID: 26970958 Free PMC article.

Biologics or tofacitinib for people with rheumatoid arthritis naive to methotrexate: a systematic review and network meta-analysis.

Singh JA, Hossain A, Mudano AS, Tanjong Ghogomu E, Suarez-Almazor ME, Buchbinder R, Maxwell LJ, Tugwell P, Wells GA.Cochrane Database Syst Rev. 2017 May 8;5(5):CD012657. doi: 10.1002/14651858.CD012657.PMID: 28481462 Free PMC article. Review.

Biologic or tofacitinib monotherapy for rheumatoid arthritis in people with traditional disease-modifying anti-rheumatic drug (DMARD) failure: a Cochrane Systematic Review and network meta-analysis (NMA).

Singh JA, Hossain A, Tanjong Ghogomu E, Mudano AS, Tugwell P, Wells GA.Cochrane Database Syst Rev. 2016 Nov 17;11(11):CD012437. doi: 10.1002/14651858.CD012437.PMID: 27855242 Free PMC article. Review.

Real-world Effectiveness of Biologic Disease-modifying Antirheumatic Drugs for the Treatment of Rheumatoid Arthritis After Etanercept Discontinuation in the United Kingdom, France, and Germany.

Li N, Betts KA, Messali AJ, Skup M, Garg V.Clin Ther. 2017 Aug;39(8):1618-1627. doi: 10.1016/j.clinthera.2017.06.009. Epub 2017 Jul 17.PMID: 28729087


Cited by

A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides.

Geng S, Chang H, Qin W, Lv M, Li Y, Feng J, Shen B.Immunol Res. 2015 Jul;62(3):377-85. doi: 10.1007/s12026-015-8667-8.PMID: 26059602


KMEL References


References

  1.  
    1. Arthritis Res Ther. 2006;8(1):R29 - PubMed
  2.  
    1. Mol Interv. 2003 Sep;3(6):310-8 - PubMed
  3.  
    1. Clin Exp Rheumatol. 2010 Sep-Oct;28(5):661-8 - PubMed
  4.  
    1. Methods. 2005 May;36(1):3-10 - PubMed
  5.  
    1. N Biotechnol. 2009 Jun;25(5):280-6 - PubMed
  6.  
    1. Arthritis Rheum. 2004 Feb;50(2):353-63 - PubMed
  7.  
    1. Arthritis Rheum. 1998 Sep;41(9):1552-63 - PubMed
  8.  
    1. Best Pract Res Clin Rheumatol. 2008 Aug;22(4):621-41 - PubMed
  9.  
    1. N Engl J Med. 2001 Mar 22;344(12):907-16 - PubMed
  10.  
    1. Arthritis Rheum. 2006 Mar;54(3):711-5 - PubMed
  11.  
    1. Ann Rheum Dis. 2007 Jul;66(7):921-6 - PubMed
  12.  
    1. Ann N Y Acad Sci. 2009 Sep;1173:837-46 - PubMed
  13.  
    1. Clin Rheumatol. 2008 Jun;27(6):739-42 - PubMed
  14.  
    1. Arthritis Rheum. 2007 Jan;56(1):13-20 - PubMed
  15.  
    1. Ann Rheum Dis. 2009 Nov;68(11):1739-45 - PubMed
  16.  
    1. Ann Rheum Dis. 2007 Feb;66(2):249-52 - PubMed
  17.  
    1. Arthritis Res Ther. 2009;11 Suppl 1:S1 - PubMed
  18.  
    1. Pharmacoeconomics. 2004;22(2 Suppl 1):1-12 - PubMed
  19.  
    1. Semin Arthritis Rheum. 2005 Apr;34(5 Suppl1):19-22 - PubMed
  20.  
    1. Clin Exp Rheumatol. 2011 Jan-Feb;29(1):26-34 - PubMed
  21.  
    1. Ann Rheum Dis. 2009 Apr;68(4):531-5 - PubMed
  22.  
    1. Clin Ther. 2002 Nov;24(11):1720-40; discussion 1719 - PubMed
  23.  
    1. Clin Rev Allergy Immunol. 2010 Apr;38(2-3):82-9 - PubMed
  24.  
    1. Ann Rheum Dis. 2009 Dec;68(12):1856-62 - PubMed
  25.  
    1. Curr Opin Rheumatol. 2009 May;21(3):211-5 - PubMed
  26.  
    1. Ann Rheum Dis. 2011 Feb;70(2):284-8 - PubMed
  27.  
    1. Ann Rheum Dis. 2007 Sep;66(9):1252-4 - PubMed
  28.  
    1. JAMA. 2011 Apr 13;305(14):1460-8 - PubMed
  29.  
    1. Arthritis Rheum. 2010 Jan;62(1):22-32 - PubMed