Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates

Affiliations


Abstract

Artificial intelligence (AI) is a branch of science and engineering that focuses on the computational understanding of intelligent behavior. Many human professions, including clinical diagnosis and prognosis, are greatly useful from AI. Antimicrobial resistance (AMR) is among the most critical challenges facing Pakistan and the rest of the world. The rising incidence of AMR has become a significant issue, and authorities must take measures to combat the overuse and incorrect use of antibiotics in order to combat rising resistance rates. The widespread use of antibiotics in clinical practice has not only resulted in drug resistance but has also increased the threat of super-resistant bacteria emergence. As AMR rises, clinicians find it more difficult to treat many bacterial infections in a timely manner, and therapy becomes prohibitively costly for patients. To combat the rise in AMR rates, it is critical to implement an institutional antibiotic stewardship program that monitors correct antibiotic use, controls antibiotics, and generates antibiograms. Furthermore, these types of tools may aid in the treatment of patients in the event of a medical emergency in which a physician is unable to wait for bacterial culture results. AI's applications in healthcare might be unlimited, reducing the time it takes to discover new antimicrobial drugs, improving diagnostic and treatment accuracy, and lowering expenses at the same time. The majority of suggested AI solutions for AMR are meant to supplement rather than replace a doctor's prescription or opinion, but rather to serve as a valuable tool for making their work easier. When it comes to infectious diseases, AI has the potential to be a game-changer in the battle against antibiotic resistance. Finally, when selecting antibiotic therapy for infections, data from local antibiotic stewardship programs are critical to ensuring that these bacteria are treated quickly and effectively. Furthermore, organizations such as the World Health Organization (WHO) have underlined the necessity of selecting the appropriate antibiotic and treating for the shortest time feasible to minimize the spread of resistant and invasive resistant bacterial strains.

Keywords: AMR; advances; antibiotic stewardship; better diagnosis; diagnostic microbiology; global platform.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Using Machine Learning to Predict Antimicrobial Resistance-A Literature Review.

Sakagianni A, Koufopoulou C, Feretzakis G, Kalles D, Verykios VS, Myrianthefs P, Fildisis G.Antibiotics (Basel). 2023 Feb 24;12(3):452. doi: 10.3390/antibiotics12030452.PMID: 36978319 Free PMC article. Review.

Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics.

Fanelli U, Pappalardo M, Chinè V, Gismondi P, Neglia C, Argentiero A, Calderaro A, Prati A, Esposito S.Antibiotics (Basel). 2020 Nov 1;9(11):767. doi: 10.3390/antibiotics9110767.PMID: 33139605 Free PMC article. Review.

Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs.

Spera AM, Esposito S, Pagliano P.Infez Med. 2019 Dec 1;27(4):357-364.PMID: 31846984 Review.

Antibiotic Resistance: An Ecological Perspective on an Old Problem: This report is based on a colloquium, sponsored by the American Academy of Microbiology, convened October 12–14, 2008, at the conference center of the Fondation Mérieux in Annecy, France.

[No authors listed]Washington (DC): American Society for Microbiology; 2009.PMID: 32644325 Free Books & Documents. Review.

Combating the menace of antimicrobial resistance in Africa: a review on stewardship, surveillance and diagnostic strategies.

Gulumbe BH, Haruna UA, Almazan J, Ibrahim IH, Faggo AA, Bazata AY.Biol Proced Online. 2022 Nov 23;24(1):19. doi: 10.1186/s12575-022-00182-y.PMID: 36424530 Free PMC article. Review.


Cited by

Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation.

Ali T, Ahmed S, Aslam M.Antibiotics (Basel). 2023 Mar 6;12(3):523. doi: 10.3390/antibiotics12030523.PMID: 36978390 Free PMC article. Review.

Prediction of Putative Epitope Peptides against BaeR Associated with TCS Adaptation in Acinetobacter baumannii Using an In Silico Approach.

Girija ASS, Gunasekaran S, Habib S, Aljeldah M, Al Shammari BR, Alshehri AA, Alwashmi ASS, Turkistani SA, Alawfi A, Alshengeti A, Garout M, Alwarthan S, Alsubki RA, Moustafa NM, Rabaan AA.Medicina (Kaunas). 2023 Feb 11;59(2):343. doi: 10.3390/medicina59020343.PMID: 36837545 Free PMC article.

Designing Novel Multi-Epitope Vaccine Construct against Prevotella intermedia-Interpain A: An Immunoinformatics Approach.

Yadalam PK, Anegundi RV, Munawar S, Ramadoss R, Rengaraj S, Ramesh S, Aljeldah M, Shammari BRA, Alshehri AA, Alwashmi ASS, Turkistani SA, Alawfi A, Alshengeti A, Garout M, Sabour AA, Alshiekheid MA, Aljebaly FS, Rabaan AA.Medicina (Kaunas). 2023 Feb 6;59(2):302. doi: 10.3390/medicina59020302.PMID: 36837503 Free PMC article.

Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic.

Sohail M, Muzzammil M, Ahmad M, Rehman S, Garout M, Khojah TM, Al-Eisa KM, Breagesh SA, Hamdan RMA, Alibrahim HI, Alsoliabi ZA, Rabaan AA, Ahmed N.Antibiotics (Basel). 2023 Jan 12;12(1):157. doi: 10.3390/antibiotics12010157.PMID: 36671358 Free PMC article.

Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study.

Mustafai MM, Hafeez M, Munawar S, Basha S, Rabaan AA, Halwani MA, Alawfi A, Alshengeti A, Najim MA, Alwarthan S, AlFonaisan MK, Almuthree SA, Garout M, Ahmed N.Antibiotics (Basel). 2023 Jan 11;12(1):148. doi: 10.3390/antibiotics12010148.PMID: 36671350 Free PMC article.


KMEL References


References

  1.  
    1. Ahmed I., Rabbi M.B., Sultana S. Antibiotic resistance in Bangladesh: A systematic review. Int. J. Infect. Dis. 2019;80:54–61. doi: 10.1016/j.ijid.2018.12.017. - DOI - PubMed
  2.  
    1. Bilal H., Khan M.N., Rehman T., Hameed M.F., Yang X. Antibiotic resistance in Pakistan: A systematic review of past decade. BMC Infect. Dis. 2021;21:244. doi: 10.1186/s12879-021-05906-1. - DOI - PMC - PubMed
  3.  
    1. Bullens M., de Cerqueira Melo A., Raziq S., Lee J., Khalid G., Khan S., Zada A., Wailly Y., Zeshan S., Saad N. Antibiotic resistance in patients with urinary tract infections in Pakistan. Public Health Action. 2022;12:48–52. doi: 10.5588/pha.21.0071. - DOI - PMC - PubMed
  4.  
    1. Hormozi S.F., Vasei N., Aminianfar M., Darvishi M., Saeedi A.A. Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Eur. J. Transl. Myol. 2018;28:7594. doi: 10.4081/ejtm.2018.7594. - DOI - PMC - PubMed
  5.  
    1. Susmita R.C., Zubayed A., Krishna R., Abdullah A.N., Rashid M.H., Kamol C.M. Emerging threats of antibiotic resistance in Salmonella typhi and Salmonella paratyphi A among enteric fever cases of Dhaka, Bangladesh. Afr. J. Bacteriol. Res. 2022;14:8–15.
  6.  
    1. Martino F., Tijet N., Melano R., Petroni A., Heinz E., De Belder D., Faccone D., Rapoport M., Biondi E., Rodrigo V. Isolation of five Enterobacteriaceae species harbouring bla NDM-1 and mcr-1 plasmids from a single paediatric patient. PLoS ONE. 2019;14:e0221960. - PMC - PubMed
  7.  
    1. Gemert T.V. Bachelor’s Thesis. Utrecht University; Utrecht, The Netherlands: 2017. On the Influence of Dataset Characteristics on Classifier Performance.
  8.  
    1. Ahmed N., Zeshan B., Naveed M., Afzal M., Mohamed M. Antibiotic resistance profile in relation to virulence genes fimH, hlyA and usp of uropathogenic E. coli isolates in Lahore, Pakistan. Trop. Biomed. 2019;36:559–568. - PubMed
  9.  
    1. Lv J., Deng S., Zhang L. A review of artificial intelligence applications for antimicrobial resistance. Biosaf. Health. 2021;3:22–31. doi: 10.1016/j.bsheal.2020.08.003. - DOI
  10.  
    1. Lau H.J., Lim C.H., Foo S.C., Tan H.S. The role of artificial intelligence in the battle against antimicrobial-resistant bacteria. Curr. Genet. 2021;67:421–429. doi: 10.1007/s00294-021-01156-5. - DOI - PubMed
  11.  
    1. Raisch S., Krakowski S. Artificial intelligence and management: The automation–augmentation paradox. Acad. Manag. Rev. 2021;46:192–210. doi: 10.5465/amr.2018.0072. - DOI
  12.  
    1. Song L., Gildea D., Zhang Y., Wang Z., Su J. Semantic neural machine translation using AMR. Trans. Assoc. Comput. Linguist. 2019;7:19–31. doi: 10.1162/tacl_a_00252. - DOI
  13.  
    1. Ahmed N., Khan M., Saleem W., Karobari M.I., Mohamed R.N., Heboyan A., Rabaan A.A., Mutair A.A., Alhumaid S., Alsadiq S.A. Evaluation of bi-lateral co-infections and antibiotic resistance rates among COVID-19 patients. Antibiotics. 2022;11:276. doi: 10.3390/antibiotics11020276. - DOI - PMC - PubMed
  14.  
    1. Zhen X., Lundborg C.S., Sun X., Hu X., Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control. 2019;8:137. doi: 10.1186/s13756-019-0590-7. - DOI - PMC - PubMed
  15.  
    1. Sattar H., Toleman M., Nahid F., Zahra R. Co-existence of bla NDM-1 and bla KPC-2 in clinical isolates of Klebsiella pneumoniae from Pakistan. J. Chemother. 2016;28:346–349. doi: 10.1179/1973947814Y.0000000223. - DOI - PubMed
  16.  
    1. Williams M.A., Wyner S.N. Antimicrobial Resistance: Facing the Rise of a Global Threat. American Public Health Association; Washington, DC, USA: 2019.
  17.  
    1. Hadjadj L., Syed M.A., Bushra J., Abbasi S.A., Rolain J.-M. Emergence of Vancomycin-resistant Enterococcus faecium ST 80 in Pakistan. Surg. Infect. 2019;20:524–525. doi: 10.1089/sur.2019.005. - DOI - PubMed
  18.  
    1. Dantas G., Sommer M.O., Oluwasegun R.D., Church G.M. Bacteria subsisting on antibiotics. Science. 2008;320:100–103. doi: 10.1126/science.1155157. - DOI - PubMed
  19.  
    1. Sohail M., Khurshid M., Saleem H.G.M., Javed H., Khan A.A. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J. Microbiol. 2015;8:e19272. doi: 10.5812/jjm.19272v2. - DOI - PMC - PubMed
  20.  
    1. Fasih N., Zafar A., Khan E., Jabeen K., Hasan R. Clonal dissemination of vanA positive Enterococcus species in tertiary care hospitals in Karachi, Pakistan. J. Pak. Med. Assoc. 2010;60:805. - PubMed
  21.  
    1. Miller J.R., Dunham S., Mochalkin I., Banotai C., Bowman M., Buist S., Dunkle B., Hanna D., Harwood H.J., Huband M.D. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc. Natl. Acad. Sci. USA. 2009;106:1737–1742. doi: 10.1073/pnas.0811275106. - DOI - PMC - PubMed
  22.  
    1. Arango-Argoty G., Garner E., Pruden A., Heath L.S., Vikesland P., Zhang L. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23. doi: 10.1186/s40168-018-0401-z. - DOI - PMC - PubMed
  23.  
    1. Cánovas-Segura B., Campos M., Morales A., Juarez J.M., Palacios F. Development of a clinical decision support system for antibiotic management in a hospital environment. Prog. Artif. Intell. 2016;5:181–197. doi: 10.1007/s13748-016-0089-x. - DOI
  24.  
    1. Ahmed N., Ali Z., Riaz M., Zeshan B., Wattoo J.I., Aslam M.N. Evaluation of antibiotic resistance and virulence genes among clinical isolates of Pseudomonas aeruginosa from cancer patients. Asian Pac. J. Cancer Prev. APJCP. 2020;21:1333. doi: 10.31557/APJCP.2020.21.5.1333. - DOI - PMC - PubMed
  25.  
    1. Zafar A., Hasan R., Nizami S.Q., von Seidlein L., Soofi S., Ahsan T., Chandio S., Habib A., Bhutto N., Siddiqui F.J. Frequency of isolation of various subtypes and antimicrobial resistance of Shigella from urban slums of Karachi, Pakistan. Int. J. Infect. Dis. 2009;13:668–672. doi: 10.1016/j.ijid.2008.10.005. - DOI - PubMed
  26.  
    1. Nava Lara R.A., Aguilera-Mendoza L., Brizuela C.A., Peña A., Del Rio G. Heterologous machine learning for the identification of antimicrobial activity in Human-Targeted drugs. Molecules. 2019;24:1258. doi: 10.3390/molecules24071258. - DOI - PMC - PubMed
  27.  
    1. van Belkum A., Burnham C.-A.D., Rossen J.W., Mallard F., Rochas O., Dunne W.M. Innovative and rapid antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2020;18:299–311. doi: 10.1038/s41579-020-0327-x. - DOI - PubMed
  28.  
    1. Gajdács M., Paulik E., Szabó A. Knowledge, attitude and practice of community pharmacists regarding antibiotic use and infectious diseases: A cross-sectional survey in Hungary (KAPPhA-HU) Antibiotics. 2020;9:41. doi: 10.3390/antibiotics9020041. - DOI - PMC - PubMed
  29.  
    1. Yelin I., Snitser O., Novich G., Katz R., Tal O., Parizade M., Chodick G., Koren G., Shalev V., Kishony R. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 2019;25:1143–1152. doi: 10.1038/s41591-019-0503-6. - DOI - PMC - PubMed
  30.  
    1. Parveen S., Saqib S., Ahmed A., Shahzad A., Ahmed N. Prevalence of MRSA colonization among healthcare-workers and effectiveness of decolonization regimen in ICU of a Tertiary care Hospital, Lahore, Pakistan. Adv. Life Sci. 2020;8:38–41.
  31.  
    1. Zeshan B., Karobari M.I., Afzal N., Siddiq A., Basha S., Basheer S.N., Peeran S.W., Mustafa M., Daud N.H.A., Ahmed N. The usage of antibiotics by COVID-19 patients with comorbidities: The risk of increased antimicrobial resistance. Antibiotics. 2021;11:35. doi: 10.3390/antibiotics11010035. - DOI - PMC - PubMed
  32.  
    1. Melo M.C., Maasch J.R., de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 2021;4:1050. doi: 10.1038/s42003-021-02586-0. - DOI - PMC - PubMed
  33.  
    1. Pakistan Antimicrobial Resistance Network (PARN) [(accessed on 20 May 2022)]. Available online: https://parn.org.pk/antimicrobial-data/
  34.  
    1. Ahmed Z., Bhinder K.K., Tariq A., Tahir M.J., Mehmood Q., Tabassum M.S., Malik M., Aslam S., Asghar M.S., Yousaf Z. Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Pakistan: A cross-sectional online survey. Ann. Med. Surg. 2022;76:103493. doi: 10.1016/j.amsu.2022.103493. - DOI - PMC - PubMed
  35.  
    1. Rasheed M.A., Chand P., Ahmed S., Sharif H., Hoodbhoy Z., Siddiqui A., Hasan B.S. Use of artificial intelligence on Electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in Pakistan. PLoS ONE. 2021;16:e0246236. doi: 10.1371/journal.pone.0246236. - DOI - PMC - PubMed
  36.  
    1. Kazi A.M., Qazi S.A., Khawaja S., Ahsan N., Ahmed R.M., Sameen F., Mughal M.A.K., Saqib M., Ali S., Kaleemuddin H. An artificial intelligence–based, personalized smartphone app to improve childhood immunization coverage and timelines among children in Pakistan: Protocol for a randomized controlled trial. JMIR Res. Protoc. 2020;9:e22996. doi: 10.2196/22996. - DOI - PMC - PubMed
  37.  
    1. Dahri A.S., Al-Athwari A., Hussain A. Usability evaluation of mobile health application from AI perspective in rural areas of Pakistan. [(accessed on 22 May 2022)];Int. Assoc. Online Eng. 2019 Available online: https://www.learntechlib.org/p/216620/
  38.  
    1. Khan A.U., Melzer F., Hendam A., Sayour A.E., Khan I., Elschner M.C., Younus M., Ehtisham-ul-Haque S., Waheed U., Farooq M. Seroprevalence and Molecular Identification of Brucella spp. in Bovines in Pakistan—Investigating Association with Risk Factors Using Machine Learning. Front. Vet. Sci. 2020;7:980. doi: 10.3389/fvets.2020.594498. - DOI - PMC - PubMed
  39.  
    1. Khan M., Mehran M.T., Haq Z.U., Ullah Z., Naqvi S.R., Ihsan M., Abbass H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. Expert Syst. Appl. 2021;185:115695. doi: 10.1016/j.eswa.2021.115695. - DOI - PMC - PubMed
  40.  
    1. Elyan E., Hussain A., Sheikh A., Elmanama A.A., Vuttpittayamongkol P., Hijazi K. Antimicrobial Resistance and Machine Learning: Challenges and Opportunities. IEEE Access. 2022;10:31561–31577. doi: 10.1109/ACCESS.2022.3160213. - DOI
  41.  
    1. Steinkey R., Moat J., Gannon V., Zovoilis A., Laing C. Application of artificial intelligence to the in silico assessment of antimicrobial resistance and risks to human and animal health presented by priority enteric bacterial pathogens. Can. Commun. Dis. Rep. 2020;46:180–185. doi: 10.14745/ccdr.v46i06a05. - DOI - PMC - PubMed
  42.  
    1. Anahtar M.N., Yang J.H., Kanjilal S. Applications of machine learning to the problem of antimicrobial resistance: An emerging model for translational research. J. Clin. Microbiol. 2021;59:e01260-20. doi: 10.1128/JCM.01260-20. - DOI - PMC - PubMed
  43.  
    1. Yakar D., Ongena Y.P., Kwee T.C., Haan M. Do people favor artificial intelligence over physicians? A survey among the general population and their view on artificial intelligence in medicine. Value Health. 2022;25:374–381. doi: 10.1016/j.jval.2021.09.004. - DOI - PubMed
  44.  
    1. Rawson T.M., Ahmad R., Toumazou C., Georgiou P., Holmes A.H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 2019;3:543–545. doi: 10.1038/s41562-019-0583-9. - DOI - PubMed
  45.  
    1. Baxi V., Edwards R., Montalto M., Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022;35:23–32. doi: 10.1038/s41379-021-00919-2. - DOI - PMC - PubMed
  46.  
    1. Wang T., Wan X., Yao S. Better AMR-to-text generation with graph structure reconstruction; Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence; Yokohama, Japan. 7–15 January 2021; pp. 3919–3925.
  47.  
    1. Afshinnekoo E., Bhattacharya C., Burguete-García A., Castro-Nallar E., Deng Y., Desnues C., Dias-Neto E., Elhaik E., Iraola G., Jang S. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microb. 2021;2:e135–e136. doi: 10.1016/S2666-5247(21)00039-2. - DOI - PMC - PubMed
  48.  
    1. Fanelli U., Pappalardo M., Chinè V., Gismondi P., Neglia C., Argentiero A., Calderaro A., Prati A., Esposito S. Role of artificial intelligence in fighting antimicrobial resistance in pediatrics. Antibiotics. 2020;9:767. doi: 10.3390/antibiotics9110767. - DOI - PMC - PubMed
  49.  
    1. Neumann D., Mansi T., Itu L., Georgescu B., Kayvanpour E., Sedaghat-Hamedani F., Amr A., Haas J., Katus H., Meder B. A self-taught artificial agent for multi-physics computational model personalization. Med. Image Anal. 2016;34:52–64. doi: 10.1016/j.media.2016.04.003. - DOI - PubMed
  50.  
    1. Van Steenkiste T., Ruyssinck J., De Baets L., Decruyenaere J., De Turck F., Ongenae F., Dhaene T. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif. Intell. Med. 2019;97:38–43. doi: 10.1016/j.artmed.2018.10.008. - DOI - PubMed
  51.  
    1. Kaji D.A., Zech J.R., Kim J.S., Cho S.K., Dangayach N.S., Costa A.B., Oermann E.K. An attention based deep learning model of clinical events in the intensive care unit. PLoS ONE. 2019;14:e0211057. doi: 10.1371/journal.pone.0211057. - DOI - PMC - PubMed
  52.  
    1. Smith K.P., Wang H., Durant T.J.S., Mathison B.A., Sharp S.E., Kirby J.E., Long S.W., Rhoads D.D. Applications of Artificial Intelligence in Clinical Microbiology Diagnostic Testing. Clin. Microbiol. Newsl. 2020;42:61–70. doi: 10.1016/j.clinmicnews.2020.03.006. - DOI
  53.  
    1. Cartelle Gestal M., Dedloff M.R., Torres-Sangiao E. Computational health engineering applied to model infectious diseases and antimicrobial resistance spread. Appl. Sci. 2019;9:2486. doi: 10.3390/app9122486. - DOI
  54.  
    1. Khaledi A., Weimann A., Schniederjans M., Asgari E., Kuo T.H., Oliver A., Cabot G., Kola A., Gastmeier P., Hogardt M. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol. Med. 2020;12:e10264. doi: 10.15252/emmm.201910264. - DOI - PMC - PubMed
  55.  
    1. Luz C.F., van Niekerk J.M., Keizer J., Beerlage-de Jong N., Braakman-Jansen L.A., Stein A., Sinha B., van Gemert-Pijnen J., Glasner C. Mapping twenty years of antimicrobial resistance research trends. Artif. Intell. Med. 2022;123:102216. doi: 10.1016/j.artmed.2021.102216. - DOI - PubMed
  56.  
    1. Agnello S., Brand M., Chellat M.F., Gazzola S., Riedl R. A structural view on medicinal chemistry strategies against drug resistance. Angew. Chem. Int. Ed. 2019;58:3300–3345. doi: 10.1002/anie.201802416. - DOI - PubMed
  57.  
    1. Kayid A. The Role of Artificial Intelligence in Future Technology. Academic Press; Cambridge, MA, USA: 2020. - DOI
  58.  
    1. VanOeffelen M., Nguyen M., Aytan-Aktug D., Brettin T., Dietrich E.M., Kenyon R.W., Machi D., Mao C., Olson R., Pusch G.D. A genomic data resource for predicting antimicrobial resistance from laboratory-derived antimicrobial susceptibility phenotypes. Brief. Bioinform. 2021;22:bbab313. doi: 10.1093/bib/bbab313. - DOI - PMC - PubMed
  59.  
    1. Macesic N., Polubriaginof F., Tatonetti N.P. Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Curr. Opin. Infect. Dis. 2017;30:511–517. doi: 10.1097/QCO.0000000000000406. - DOI - PubMed
  60.  
    1. Martínez-Agüero S., Mora-Jiménez I., Lérida-García J., Álvarez-Rodríguez J., Soguero-Ruiz C. Machine learning techniques to identify antimicrobial resistance in the intensive care unit. Entropy. 2019;21:603. doi: 10.3390/e21060603. - DOI - PMC - PubMed
  61.  
    1. Rodríguez-González A., Zanin M., Menasalvas-Ruiz E. Public health and epidemiology informatics: Can artificial intelligence help future global challenges? An overview of antimicrobial resistance and impact of climate change in disease epidemiology. Yearb. Med. Inform. 2019;28:224–231. doi: 10.1055/s-0039-1677910. - DOI - PMC - PubMed
  62.  
    1. Santerre J.W., Davis J.J., Xia F., Stevens R. Machine learning for antimicrobial resistance. arXiv. 20161607.01224
  63.  
    1. Shashikumar S.P., Wardi G., Malhotra A., Nemati S. Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”. NPJ Digit. Med. 2021;4:134. doi: 10.1038/s41746-021-00504-6. - DOI - PMC - PubMed
  64.  
    1. Feretzakis G., Sakagianni A., Loupelis E., Kalles D., Skarmoutsou N., Martsoukou M., Christopoulos C., Lada M., Petropoulou S., Velentza A. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc. Inform. Res. 2021;27:214–221. doi: 10.4258/hir.2021.27.3.214. - DOI - PMC - PubMed
  65.  
    1. Hameed F., Khan M.A., Muhammad H., Sarwar T., Bilal H., Rehman T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Rev. Soc. Bras. Med. Trop. 2019;52:e20190237. doi: 10.1590/0037-8682-0237-2019. - DOI - PubMed
  66.  
    1. Pal C., Bengtsson-Palme J., Kristiansson E., Larsson D.J. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:1–15. doi: 10.1186/s40168-016-0199-5. - DOI - PMC - PubMed
  67.  
    1. Ahmed N., Khalid H., Mushtaq M., Basha S., Rabaan A.A., Garout M., Halwani M.A., Al Mutair A., Alhumaid S., Al Alawi Z., et al. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics. 2022;11:516. doi: 10.3390/antibiotics11040516. - DOI - PMC - PubMed
  68.  
    1. Zahra N., Zeshan B., Qadri M.M.A., Ishaq M., Afzal M., Ahmed N. Phenotypic and Genotypic Evaluation of Antibiotic Resistance of Acinetobacter baumannii Bacteria Isolated from Surgical Intensive Care Unit Patients in Pakistan. Jundishapur J. Microbiol. 2021;14:104922. doi: 10.5812/jjm.113008. - DOI
  69.  
    1. Saleem Z., Godman B., Azhar F., Kalungia A.C., Fadare J., Opanga S., Markovic-Pekovic V., Hoxha I., Saeed A., Al-Gethamy M. Progress on the national action plan of Pakistan on antimicrobial resistance (AMR): A narrative review and the implications. Expert Rev. Anti-Infect. Ther. 2022;20:71–93. doi: 10.1080/14787210.2021.1935238. - DOI - PubMed
  70.  
    1. Oluwafemi R., Olawale I., Alagbe J. Recent trends in the utilization of medicinal plants as growth promoters in poultry nutrition—A review. Res. Agric. Vet. Sci. 2020;4:5–11.