Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review

Affiliations


Abstract

The emergency state caused by COVID-19 saw the use of immunomodulators despite the absence of robust research. To date, the results of relatively few randomized controlled trials have been published, and methodological approaches are riddled with bias and heterogeneity. Anti-SARS-CoV-2 antibodies, convalescent plasma and the JAK inhibitor baricitinib have gained Emergency Use Authorizations and tentative recommendations for their use in clinical practice alone or in combination with other therapies. Anti-SARS-CoV-2 antibodies are predominating the management of non-hospitalized patients, while the inpatient setting is seeing the use of convalescent plasma, baricitinib, tofacitinib, tocilizumab, sarilumab, and corticosteroids, as applicable. Available clinical data also suggest the potential clinical benefit of the early administration of blood-derived products (e.g. convalescent plasma, non-SARS-CoV-2-specific immunoglobins) and the blockade of factors implicated in the hyperinflammatory state of severe COVID-19 (Interleukin 1 and 6; Janus Kinase). Immune therapies seem to have a protective effect and using immunomodulators alone or in combination with viral replication inhibitors and other treatment modalities might prevent progression into severe COVID-19 disease, cytokine storm and death. Future trials should address existing gaps and reshape the landscape of COVID-19 management.

Keywords: COVID-19; SARS-CoV2; biologics; cytokine storm; immunomodulation.


Similar articles

ldt T, Fischer JC, Bode JG, Matuschek C, Bölke E, Budach W, Plettenberg C, Scheckenbach K, Kindgen-Milles D, Timm J, Müller L, Kolbe H, Stöhr A, Calles C, Hippe A, Verde P, Spinner CD, Schneider J, Wolf T, Kern WV, Nattermann J, Zoufaly A, Ohmann C, Luedde T; RES-Q-HR Trial Team.Trials. 2021 May 17;22(1):343. doi: 10.1186/s13063-021-05181-0.PMID: 34001215 Free PMC article.


Cited by

Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review.

Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P.Front Pharmacol. 2023 Mar 20;14:1135145. doi: 10.3389/fphar.2023.1135145. eCollection 2023.PMID: 37021053 Free PMC article. Review.

Sarilumab Administration in COVID-19 Patients: Literature Review and Considerations.

Marino A, Munafò A, Augello E, Bellanca CM, Bonomo C, Ceccarelli M, Musso N, Cantarella G, Cacopardo B, Bernardini R.Infect Dis Rep. 2022 May 11;14(3):360-371. doi: 10.3390/idr14030040.PMID: 35645219 Free PMC article. Review.

Immune-related therapeutics: an update on antiviral drugs and vaccines to tackle the COVID-19 pandemic.

Mir I, Aamir S, Shah SRH, Shahid M, Amin I, Afzal S, Nawaz A, Khan MU, Idrees M.Osong Public Health Res Perspect. 2022 Apr;13(2):84-100. doi: 10.24171/j.phrp.2022.0024. Epub 2022 Apr 27.PMID: 35538681 Free PMC article.


KMEL References


References

 

  1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Internet]. 2020 Feb 15 [cited 2021 Jan 21];395(10223):497–506. Available from. ;():. /pmc/articles/PMC7159299/?report=abstract - PMC - PubMed
  2. Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect [Internet]. 2020 Jun 1 [cited 2021 Jan 21];80(6):656–665. Available from: /pmc/articles/PMC7151416/?report=abstract - PMC - PubMed
  3. Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med [Internet]. 2020 Apr 30 [cited 2021 Jan 21];382(18):1708–1720. Available from: /pmc/articles/PMC7092819/?report=abstract - PMC - PubMed
  4. Pedersen SF, Ho YC.. SARS-CoV-2: A storm is raging [Internet]. J Clin Investigat Am Soc Clin Investigat. cited 2021 Jan 21. p. 2202–2205. Available from. ; 2020;130 5: 10.1172/JCI137647. - DOI - PMC - PubMed
  5. Meidaninikjeh S, Sabouni N, Marzouni HZ, et al. Monocytes and macrophages in COVID-19: Friends and foes. Life Sci [Internet]. 2021. Mar [cited 2021 Jan 21];269:119010. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0024320520317707 - PMC - PubMed
  6. Catanzaro M, Fagiani F, Racchi M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2 [Internet]. Vol. 5, Signal Transduct Target Ther. Springer Nature; 2020. [cited 2021 Jan 21]. Available from: https://pmc/articles/PMC7255975/?report=abstract 1 - PMC - PubMed
  7. Channappanavar R, and Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology Semin Immunopathol ; 2017. 39(5):529-539. Available from: https://pmc/articles/PMC7079893/?report=abstract doi:10.1007/s00281-017-0629-x - DOI - PMC - PubMed
  8. Shimabukuro-Vornhagen A, Gödel P, and Subklewe M, et al. Cytokine release syndrome [Internet] Journal for ImmunoTherapy of Cancer. 2018. [cited 2021 Jan 21]. 6:https://pmc/articles/PMC6003181/?report=abstract - PMC - PubMed
  9. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood [Internet]. 2014 Jul 10 [cited 2021 Jan 21];124(2):188–195. Available from: /pmc/articles/PMC4093680/?report=abstract - PMC - PubMed
  10. Zhou Y, Fu B, and Zheng X. Pathogenic Tcells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients Natl Sci Rev. 2020; 7(6):998–1002 doi:10.1093/nsr/nwaa041. - DOI - PMC - PubMed
  11. Conti P, Caraffa A, Gallenga CE, et al. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost Agents [Internet]. 2020 Nov 1 [cited 2021 Dec 23];34(6):1971–1975. Available from: https://pubmed.ncbi.nlm.nih.gov/33016027/ - PubMed
  12. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents [Internet]. 2020 Mar 1 [cited 2021 Dec 23];34(2):327–331. Available from: https://pubmed.ncbi.nlm.nih.gov/32171193/ - PubMed
  13. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.J Am Med Assoc [Internet]. 2020 Mar 17 [cited 2021 Jan 21];323(11):1061–1069. Available from: /pmc/articles/PMC7042881/?report=abstract - PMC - PubMed
  14. Coomes EA, Haghbayan H.. A systematic review and meta-analysis [Internet]. Rev Med Virol John Wiley and Sons Ltd. 2020. [cited 2021 Jan 21];30(6):1–9. Available from: /pmc/articles/PMC7460877/?report=abstract - PMC - PubMed
  15. Theoharides TC, Conti P. Be aware of SARS-CoV-2 spike protein: There is more than meets the eye. J Biol Regul Homeost Agents [Internet]. 2021 May 1 [cited 2021 Dec 23];35(3):833–838. Available from: https://pubmed.ncbi.nlm.nih.gov/34100279/ - PubMed
  16. Ciprandi G, La Mantia I, Brunese FP, et al. Hypertonic saline with xylitol and hyaluronate may shorten the viral shedding duration in asymptomatic COVID-19 positive subjects: a pilot study. J Biol Regul Homeost Agents [Internet]. 2021 May 1 [cited 2021 Dec 23];35(3):1151–1154. Available from: https://pubmed.ncbi.nlm.nih.gov/34229425/ - PubMed
  17. Siddiqi HK, Mehra MR.. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal [Internet]. J Heart Lung Transplant Elsevier USA. 2020. [cited 2021 Jan 21];39(5):405–407. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118652/ - PMC - PubMed
  18. Juul S, Nielsen EE, Feinberg J, et al. Interventions for treatment of COVID-19: Second edition of a living systematic review with meta-analyses and trial sequential analyses (The LIVING Project). PLoS One [Internet]. 2021 Mar 1 [cited 2021 Apr 15];16(3 March). Available from: https://pubmed.ncbi.nlm.nih.gov/33705495/ e0248132. - PMC - PubMed
  19. Jones CW, Woodford AL, Platts-Mills TF. Characteristics of COVID-19 clinical trials registered with clinicaltrials.gov: Cross-sectional analysis. BMJ Open [Internet]. 2020 Sep 17 [cited 2021 Jan 13];10(9). Available from: https://pubmed.ncbi.nlm.nih.gov/32948577/ - PMC - PubMed
  20. Mayer CS, Huser V. Computerized monitoring of COVID-19 trials, studies and registries in ClinicalTrials.gov registry. PeerJ [Internet]. 2020 Oct 23 [cited 2021 Jan 13];8. Available from: https://pubmed.ncbi.nlm.nih.gov/33150094/ - PMC - PubMed
  21. Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action [Internet]. Autoimmun Rev. 2020. [[cited 2021 Jan 13]. Available from];19(7):102554. Elsevier B.V. https://pubmed.ncbi.nlm.nih.gov/32380316/ - PMC - PubMed
  22. Acosta-Ampudia Y, Monsalve DM, Rojas M, et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J Autoimmun [Internet]. 2021 Mar 1 [cited 2021 Apr 15];118. Available from: https://pubmed.ncbi.nlm.nih.gov/33524876/ 102598. - PMC - PubMed
  23. Ranjan Paul S, Roy R, Maiti R, et al. Nature and dimensions of the cytokine storm and its attenuation by convalescent plasma in severe COVID-19. Abhishake Lahiri 2# [Internet]. 2020 Oct 7 [cited 2021 Jan 13];(3):4. Available from: 10.1101/2020.09.21.20199109 - DOI - PMC - PubMed
  24. Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19: A Randomized Clinical Trial. J Am Med Assoc [Internet]. 2020 Aug 4 [cited 2021 Jan 12];324(5):460–470. Available from: /pmc/articles/PMC7270883/?report=abstract - PMC - PubMed
  25. Salazar E, Kuchipudi SV, Christensen PA, et al. Convalescent plasma anti–SARS-CoV-2 spike protein ectodomain and receptor-binding domain IgG correlate with virus neutralization. J Clin Invest [Internet]. 2020 Dec 1 [cited 2021 Jan 13];130(12):6728–6738. Available from: https://pubmed.ncbi.nlm.nih.gov/32910806/ - PMC - PubMed
  26. Perreault J, Tremblay T, Fournier MJ, et al. Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset [Internet]. Blood. 2020[cited 2021 Jan 13];136(22):2588–2591. Available from. American Society of Hematology. /pmc/articles/PMC7714093/?report=abstract - PMC - PubMed
  27. Boonyaratanakornkit J, Morishima C, Selke S, et al. Clinical, laboratory, and temporal predictors of neutralizing antibodies against SARS-CoV-2 among COVID-19 convalescent plasma donor candidates. J Clin Invest [Internet]. 2021 Feb 1 [cited 2021 Apr 15];131(3). Available from: https://pubmed.ncbi.nlm.nih.gov/33320842/ - PMC - PubMed
  28. Bradfute SB, Hurwitz I, Yingling AV, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibody Titers in Convalescent Plasma and Recipients in New Mexico: An Open Treatment Study in Patients With Coronavirus Disease 2019. J Infect Dis [Internet]. 2020 Oct 13 [cited 2021 Jan 13];222(10):1620–1628. Available from: https://pubmed.ncbi.nlm.nih.gov/32779705/ - PMC - PubMed
  29. Olivares-Gazca JC, Priesca-Marín JM, Ojeda-Laguna M, et al. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: a pilot study. Rev Invest Clin Internet]. 2020. [cited 2021 Jan 13];72(3):159–164. Available from. https://pubmed.ncbi.nlm.nih.gov/32584322/ - PubMed
  30. Salazar E, Perez KK, Ashraf M, et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am J Pathol [Internet]. 2020 Aug 1 [cited 2021 Jan 13];190(8):1680–1690. Available from: https://pubmed.ncbi.nlm.nih.gov/32473109/ - PMC - PubMed
  31. Abolghasemi H, Eshghi P, Cheraghali AM, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci [Internet]. 2020 Oct 1 [cited 2021 Jan 13];59(5):102875. Available from: /pmc/articles/PMC7362821/?report=abstract - PMC - PubMed
  32. Shenoy AG, Hettinger AZ, Fernandez SJ, et al. Early mortality benefit with COVID-19 convalescent plasma: a matched control study. Br J Haematol [Internet]. 2021 Feb 1 [cited 2021 Apr 15];192(4):706–713. Available from: https://pubmed.ncbi.nlm.nih.gov/33482025/ - PMC - PubMed
  33. Allahyari A, Seddigh-Shamsi M, Mahmoudi M, et al. Efficacy and safety of convalescent plasma therapy in severe COVID-19 patients with acute respiratory distress syndrome. Int Immunopharmacol [Internet]. 2021 Apr 1 [cited 2021 Apr 15];93. Available from: https://pubmed.ncbi.nlm.nih.gov/33582019/ 107239. - PMC - PubMed
  34. Shao S, Wang Y, Kang H, et al. Effect of convalescent blood products for patients with severe acute respiratory infections of viral etiology: A systematic review and meta-analysis. Int J Infect Dis. [Internet]. 2021 Jan 1 [cited 2021 Apr 15];102:397–411. Available from;:.https://pubmed.ncbi.nlm.nih.gov/33002611/ - PMC - PubMed
  35. Libster R, Pérez Marc G, Wappner D, et al. Early high-titer plasma therapy to prevent severe COVID-19 in older adults. N Engl J Med [Internet]. 2021 Feb 18 [cited 2021 Apr 15];384(7):610–618. Available from: https://pubmed.ncbi.nlm.nih.gov/33406353/ - PMC - PubMed
  36. Bratcher-Bowman N Convalescent Plasma EUA Letter of Authorization March 9, 2021 [Internet]. 2021. [cited 2021 Apr 19]. Available from: https://www.govinfo.gov/content/pkg/FR-2020-04-01/pdf/2020-06905.pdf.
  37. Chai KL, Valk SJ, Piechotta V, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane database Syst Rev [Internet]. 2020 Oct 12 [cited 2021 Jan 13];10(10):CD013600. Available from: 10.1002/14651858.CD013600.pub3/full - DOI - PubMed
  38. Axfors C, Janiaud P, Schmitt AM, et al. Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials. BMC Infect Dis [Internet]. 2021 Dec 1 [cited 2021 Dec 26];21(1):1–23. Available from: 10.1186/s12879.021.06829.7 - DOI - PMC - PubMed
  39. Janiaud P, Axfors C, Schmitt AM, et al. Association of Convalescent Plasma Treatment with Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta-analysis [Internet]. JAMA. 2021[[cited 2021 Apr 15]. Available from];325(12):1185. https://pubmed.ncbi.nlm.nih.gov/33635310/ - PMC - PubMed
  40. Balcells ME, Rojas L, Le Corre N, et al. Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial. PLoS Med [Internet]. 2021 Mar 3 [cited 2021 Apr 15];18(3):e1003415. Available from: https://pubmed.ncbi.nlm.nih.gov/33657114/ - PMC - PubMed
  41. Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ [Internet]. 2020 Oct 22 [cited 2021 Jan 13];371. Available from: /pmc/articles/PMC7578662/?report=abstract - PMC - PubMed
  42. Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med [Internet]. 2021 Feb 18 [cited 2021 Apr 15];384(7):619–629. Available from: https://pubmed.ncbi.nlm.nih.gov/33232588/ - PMC - PubMed
  43. Bégin P, Callum J, Jamula E, et al. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med [Internet]. 2021 Nov 1 [cited 2021 Dec 26];27(11):2012–2024. Available from: https://pubmed.ncbi.nlm.nih.gov/34504336/ - PMC - PubMed
  44. Abani O, Abbas A, Abbas F, et al. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial. Lancet (London, England) [Internet]. 2021 May 29 [cited 2021 Dec 26];397(10289):2049–2059. Available from: https://pubmed.ncbi.nlm.nih.gov/34000257/ - PMC - PubMed
  45. Ortigoza MB, Yoon H, Goldfeld KS, et al. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients. JAMA Intern Med [Internet]. 2021 Dec 13; Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2787090 - PMC - PubMed
  46. Korley FK, Durkalski-Mauldin V, Yeatts SD, et al. Early Convalescent Plasma for High-Risk Outpatients with Covid-19. N Engl J Med [Internet]. 2021 Nov 18 [cited 2021 Dec 26];385(21):1951–1960. Available from: https://pubmed.ncbi.nlm.nih.gov/34407339/ - PMC - PubMed
  47. Joyner MJ, Carter RE, and Senefeld JW, et al. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19 N Engl J Med. [Internet]. 2021 Jan 13 [cited 2021 Sep 7];384(11):1015–1027. [Internet]. 2021 Jan 13. ; ():. - PMC - PubMed
  48. Yaqinuddin A, Rahman Ambia A, Atef Elgazzar T, et al. Application of intravenous immunoglobulin (IVIG) to modulate inflammation in critical COVID-19-A theoretical perspective. Medical Hypotheses. 2021. [cited 2021 Sep 7]; Available from;151:110592. DOI:10.1016/j.mehy.2021.110592. - DOI - PMC - PubMed
  49. Jamaati H, Dastan F, Tabarsi P, et al. A fourteen-day experience with coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS): An Iranian treatment protocol. Iran J Pharm Res [Internet]. 2020 Dec 1 [cited 2021 Jan 14];19(1):31–36. Available from: /pmc/articles/PMC7462513/?report=abstract - PMC - PubMed
  50. Ali S, Luxmi S, Anjum F, et al. Hyperimmune anti-COVID-19 IVIG (C-IVIG) Therapy for Passive Immunization of Severe and Critically Ill COVID-19 Patients: A structured summary of a study protocol for a randomised controlled trial. Trials. BioMed Central Ltd 2020. [cited 2021 Jan 14]. Available from; 21(1).Internet https://pubmed.ncbi.nlm.nih.gov/33138867/ - PMC - PubMed
  51. Çolak M, Kalemci S, Sarıhan A.. Treatment of a case with COVID-19 administering intravenous immunoglobulin. J Glob Antimicrob Resist. 2020 Dec 1; 24:106–107.10.1016/j.jgar.2020.12.003 - DOI - PMC - PubMed
  52. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect [Internet]. 2020. Aug;81(2):318–356. Available from]. - PMC - PubMed
  53. Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. Internet]. 2020. [cited 2021 Jan 14];7(3):1–6. Available from;: https://pubmed.ncbi.nlm.nih.gov/32258207/ - PMC - PubMed
  54. Shao Z, Feng Y, Zhong L, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunol. Internet]. 2020. [cited 2021 Jan 14];9(10). Available from. https://pubmed.ncbi.nlm.nih.gov/33082954/ - PMC - PubMed
  55. Herth FJF, Sakoulas G, Haddad F. Use of Intravenous Immunoglobulin (Prevagen or Octagam) for the Treatment of COVID-19: Retrospective Case Series. Respiration [Internet]. 2020. [cited 2021 Jan 14]; Available from: https://pubmed.ncbi.nlm.nih.gov/33316806/ - PMC - PubMed
  56. Huang C, Fei L, Li W, et al. Efficacy Evaluation of Intravenous Immunoglobulin in Non-severe Patients with COVID-19: A Retrospective Cohort Study Based on Propensity Score Matching. Int J Infect Dis [Internet]. 2021 Jan 9 [cited 2021 Jan 14]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33434674 - PMC - PubMed
  57. Zhou Z-G, Xie S-M, Zhang J, et al. Short-Term Moderate-Dose Corticosteroid Plus Immunoglobulin Effectively Reverses COVID-19 Patients Who Have Failed Low-Dose Therapy. 2020 Mar 4 [cited 2021 Jan 14]; Available from: https://europepmc.org/article/ppr/ppr116345
  58. Gharebaghi N, Nejadrahim R, Mousavi SJ, et al. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis [Internet]. 2020 Dec 1 [cited 2021 Jan 14];20(1). Available from: /pmc/articles/PMC7576972/?report=abstract - PMC - PubMed
  59. Sakoulas G, Geriak M, Kullar R, et al. Intravenous Immunoglobulin Plus Methylprednisolone Mitigate Respiratory Morbidity in Coronavirus Disease 2019. Crit Care Explor [Internet]. 2020 Nov 16 [cited 2021 Jan 14];2(11):e0280. Available from: https://pubmed.ncbi.nlm.nih.gov/33225306/ - PMC - PubMed
  60. Cao W, Liu X, Hong K, et al. High-Dose Intravenous Immunoglobulin in Severe Coronavirus Disease 2019: A Multicenter Retrospective Study in China. Front Immunol [Internet]. 2021 Feb 19 [cited 2021 Apr 15];12. Available from: https://pubmed.ncbi.nlm.nih.gov/33679771/ - PMC - PubMed
  61. Tabarsi P, Barati S, Jamaati H, et al. Evaluating the effects of Intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. Int Immunopharmacol [Internet]. 2021 Jan 1 [cited 2021 Apr 15];90. Available from: https://pubmed.ncbi.nlm.nih.gov/33214093/ 107205. - PMC - PubMed
  62. Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. J Am Med Assoc [Internet]. 2021 Feb 16 [cited 2021 Apr 16];325(7):632–644. Available from: https://pubmed.ncbi.nlm.nih.gov/33475701/ - PMC - PubMed
  63. Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. N Engl J Med [Internet]. 2021 Oct 7 [cited 2021 Dec 26];385(15):1382–1392. Available from: https://pubmed.ncbi.nlm.nih.gov/34260849/ - PMC - PubMed
  64. FDA . Fact sheet for health care providers. Emergency Use Authorization (EUA) of bamlanivimab and etesevimab. [Internet]. [cited 2021 Apr 16]. Available from: https://www.cdc.gov/growthcharts/clinical_charts.htm,
  65. Lilly News Release . Lilly’s bamlanivimab and etesevimab together reduced hospitalizations and death in Phase 3 trial for early COVID-19 | Eli Lilly and Company [Internet]. [cited 2021 Apr 16]. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-bam…
  66. ACTIV-3/TICO LY-CoV555 Study Group, Lundgren, Jens D , Grund, Birgit. et al A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N Engl J Med [Internet]. 2021 Mar 11 [cited 2021 Apr 16];384(10):905–914. [Internet]. 2021 Mar 11: https://pubmed.ncbi.nlm.nih.gov/33356051/ - PMC - PubMed
  67. Cohen MS, Nirula A, Mulligan MJ, et al. Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial. JAMA [Internet]. 2021 Jul 6 [cited 2021 Dec 26];326(1):46–55. Available from: https://pubmed.ncbi.nlm.nih.gov/34081073/ - PMC - PubMed
  68. Gormley A. Bamlanivimab and Etesevimab EUA Letter of Authorization (FDA; ) . 2021.
  69. FDA . Fact sheet for health care providers. Emergency Use Authorization (EUA) of casirivimab and imdevimab [Internet]. [cited 2021 Apr 16]. Available from: https://www.cdc.gov/growthcharts/clinical_charts.htm,
  70. Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med [Internet]. 2021 Jan 21 [cited 2021 Apr 16];384(3):238–251. Available from: https://pubmed.ncbi.nlm.nih.gov/33332778/ - PMC - PubMed
  71. FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF REGEN-COV TM (casirivimab and imdevimab). 2021. [cited 2021 Sep 7]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html
  72. Weinreich DM, Sivapalasingam S, Norton T, et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19. N Engl J Med [Internet]. 2021 Dec 2 [cited 2021 Dec 26];385(23):e81. Available from: https://pubmed.ncbi.nlm.nih.gov/34587383/ - PMC - PubMed
  73. Group RC, Horby PW, Mafham M, et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv [Internet]. 2021 Jun 16 [cited 2021 Dec 26];2021.Jun.15.21258542. Available from: 10.1101/2021.06.15.21258542v1 - DOI
  74. Ash J, Leavitt R, Dietrich T, et al. Real world utilization of REGEN-COV2 at a community hospital. Am J Emerg Med [Internet]. 2021 Dec 1 [cited 2021 Dec 26];50:129–131. Available from: https://pubmed.ncbi.nlm.nih.gov/34364110/ - PMC - PubMed
  75. Dhand A, Lobo SA, Wolfe K, et al. Casirivimab-imdevimab for Treatment of COVID-19 in Solid Organ Transplant Recipients: An Early Experience. Transplantation [Internet]. 2021 Jul 1 [cited 2021 Dec 26];105(7):e68–9. Available from: https://journals.lww.com/transplantjournal/Fulltext/2021/07000/Casirivim... - PubMed
  76. Sidebottom DB, Gill D. Ronapreve for prophylaxis and treatment of covid-19. BMJ [Internet]. 2021 Sep 2 [cited 2021 Dec 26];374. Available from: https://www.bmj.com/content/374/bmj.n2136 - PubMed
  77. Lake DH GSK Sotrovimab Letter Of Authorization 05262021. 2021. [cited 2021 Sep 7]; Available from: www.sotrovimab.com
  78. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med [Internet]. 2021 Nov 18 [cited 2021 Dec 26];385(21):1941–1950. Available from: https://pubmed.ncbi.nlm.nih.gov/34706189/ - PubMed
  79. Shuai H, Chu H, Hou Y, et al. Differential immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung and intestinal cells: Implications for treatment with IFN-β and IFN inducer. J Infect [Internet]. 2020 Oct 1 [cited 2021 Jan 19];81(4):e1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/32707230/ - PMC - PubMed
  80. Zheng F, Zhou Y, Zhou Z, et al. SARS-CoV-2 clearance in COVID-19 patients with Novaferon treatment: A randomized, open-label, parallel-group trial. Int J Infect Dis [Internet]. 2020 Oct 1 [cited 2021 Jan 19];99:84–91. Available from: https://pubmed.ncbi.nlm.nih.gov/32758689/ - PMC - PubMed
  81. Li C, Luo F, Liu C, et al. Effect of a genetically engineered interferon-alpha versus traditional interferon-alpha in the treatment of moderate-to-severe COVID-19: a randomised clinical trial. Ann Med. Internet]. 2021. [cited 2021 Apr 16];53(1):391–401. Available from;: https://pubmed.ncbi.nlm.nih.gov/33620016/ - PMC - PubMed
  82. Jagannathan P, Andrews JR, Bonilla H, et al. Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat Commun [Internet]. 2021 Dec 30 [cited 2021 Apr 16];12(1):1967. Available from: http://www.nature.com/articles/s41467-021-22177-1 - PMC - PubMed
  83. Feld JJ, Kandel C, Biondi MJ, et al. Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir Med. 2021. [[cited 2021 Apr 16]; Available from];9(5):498–510. Internet: https://pubmed.ncbi.nlm.nih.gov/33556319/ - PMC - PubMed
  84. Walz L, Cohen AJ, Rebaza AP, et al. JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: a systematic review and meta-analysis. BMC Infect Dis [Internet]. 2021 Dec 1 [cited 2021 Apr 16];21(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33430799/ - PMC - PubMed
  85. Monk PD, Marsden RJ, Tear VJ, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med [Internet]. 2021 Feb 1 [cited 2021 Apr 16];9(2):196–206. Available from: https://pubmed.ncbi.nlm.nih.gov/33189161/ - PMC - PubMed
  86. Davoudi-Monfared E, Rahmani H, Khalili H, et al. A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrob Agents Chemother [Internet]. 2020 Sep 1 [cited 2021 Jan 19];64(9). Available from: https://pubmed.ncbi.nlm.nih.gov/32661006/ - PMC - PubMed
  87. Dastan F, Nadji SA, Saffaei A, et al. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int Immunopharmacol [Internet]. 2020 Aug 1 [cited 2021 Jan 19];85. Available from: https://pubmed.ncbi.nlm.nih.gov/32544867/ - PMC - PubMed
  88. Baghaei P, Dastan F, Marjani M, et al. Combination therapy of IFNβ1 with lopinavir–ritonavir, increases oxygenation, survival and discharging of severe COVID-19 infected inpatients. Int Immunopharmacol. Internet]. 2020. Dec [cited 2021 Jan 19];92:107329. Available from ;:. https://pubmed.ncbi.nlm.nih.gov/33412395/ - PMC - PubMed
  89. Alavi Darazam I, Hatami F, Mahdi Rabiei M, et al. An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a in severe COVID-19: The COVIFERON II randomized controlled trial. Int Immunopharmacol [Internet]. 2021 Oct 1 [cited 2021 Dec 26];99. Available from: https://pubmed.ncbi.nlm.nih.gov/34224994/ 107916. - PMC - PubMed
  90. Ader F, Peiffer-Smadja N, Poissy J, et al. An open-label randomized controlled trial of the effect of lopinavir/ritonavir, lopinavir/ritonavir plus IFN-β-1a and hydroxychloroquine in hospitalized patients with COVID-19. Clin Microbiol Infect [Internet]. 2021 Dec 1 [cited 2021 Dec 26];27(12):1826–1837. Available from: https://pubmed.ncbi.nlm.nih.gov/34048876/ - PMC - PubMed
  91. Alavi Darazam I, Shokouhi S, Pourhoseingholi MA, et al. Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Sci Rep [Internet]. 2021 Dec 1 [cited 2021 Dec 26];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33850184/ - PMC - PubMed
  92. Mary A, Hénaut L, Macq PY, et al. Rationale for COVID-19 Treatment by Nebulized Interferon-β-1b–Literature Review and Personal Preliminary Experience. Front Pharmacol [Internet]. 2020 Nov 30 [cited 2021 Jan 19];11. Available from: https://pubmed.ncbi.nlm.nih.gov/33329000/ - PMC - PubMed
  93. Khamis F, Al Naabi H, Al Lawati A, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis [Internet]. 2021 Jan 1 [cited 2021 Jan 19];102:538–543. Available from: https://pubmed.ncbi.nlm.nih.gov/33181328/ - PMC - PubMed
  94. Rahmani H, Davoudi-Monfared E, Nourian A, et al. Interferon β-1b in treatment of severe COVID-19: A randomized clinical trial. Int Immunopharmacol [Internet]. 2020 Nov 1 [cited 2021 Jan 19];88. Available from: https://pubmed.ncbi.nlm.nih.gov/32862111/ - PMC - PubMed
  95. Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020 May 30 [cited 2021 Jan 19];395(10238):1695–1704. Available from: https://pubmed.ncbi.nlm.nih.gov/32401715/ - PMC - PubMed
  96. Zhou Q, Chen V, Shannon CP, et al. Interferon-α2b Treatment for COVID-19. Front Immunol [Internet]. 2020 May 15 [cited 2021 Jan 19];11:1061. Available from: /pmc/articles/PMC7242746/?report=abstract - PMC - PubMed
  97. Rui HS, Yan R, Yan ZS, et al. Interferon-α2b spray inhalation did not shorten virus shedding time of SARS-CoV-2 in hospitalized patients: a preliminary matched case-control study. J Zhejiang Univ Sci B [Internet]. 2020 Aug 1 [cited 2021 Jan 19];21(8):628–636. Available from: https://pubmed.ncbi.nlm.nih.gov/32748578/ - PMC - PubMed
  98. Wang N, Zhan Y, Zhu L, et al. Retrospective Multicenter Cohort Study Shows Early Interferon Therapy Is Associated with Favorable Clinical Responses in COVID-19 Patients. Cell Host Microbe [Internet]. 2020 Sep 9 [cited 2021 Jan 19];28(3):455–464.e2. Available from: https://pubmed.ncbi.nlm.nih.gov/32707096/ - PMC - PubMed
  99. Wang B, Li D, Liu T, et al. Subcutaneous injection of IFN alpha-2b for COVID-19: An observational study. BMC Infect Dis [Internet]. 2020 Oct 2 [cited 2021 Jan 19];20(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33008327/ - PMC - PubMed
  100. Bhushan BLS, Wanve S, Koradia P, et al. Efficacy and safety of pegylated interferon-α2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. Int J Infect Dis [Internet]. 2021 Oct 1 [cited 2021 Dec 26];111:281–287. Available from: https://pubmed.ncbi.nlm.nih.gov/34428542/ - PMC - PubMed
  101. Meng Z, Wang T, Chen L, et al. The Effect of Recombinant Human Interferon Alpha Nasal Drops to Prevent COVID-19 Pneumonia for Medical Staff in an Epidemic Area. Curr Top Med Chem [Internet]. 2021 May 13 [cited 2021 Dec 26];21(10):920–927. Available from: https://pubmed.ncbi.nlm.nih.gov/33970846/ - PubMed
  102. Li C, Luo F, Liu C, et al. Effect of a genetically engineered interferon-alpha versus traditional interferon-alpha in the treatment of moderate-to-severe COVID-19: a randomised clinical trial. Ann Med Internet]. 2021. [cited 2021 Dec 26];53(1):391–401. Available from. ;:. https://pubmed.ncbi.nlm.nih.gov/33620016/ - PMC - PubMed
  103. Mojtabavi H, Saghazadeh A, Rezaei N.. Interleukin-6 and severe COVID-19: a systematic review and meta-analysis [Internet]. Eur Cytokine Netw John Libbey. 2020. [cited 2021 Jan 13];31(2):44–49. Available from: https://pubmed.ncbi.nlm.nih.gov/32933891/ - PMC - PubMed
  104. Ivan Hariyanto T, Kurniawan A. Tocilizumab administration is associated with the reduction in biomarkers of coronavirus disease 2019 infection. J Med Virol [Internet]. 2021 Mar 1 [cited 2021 Apr 16];93(3):1832–1836. Available from: https://pubmed.ncbi.nlm.nih.gov/33241872/ - PMC - PubMed
  105. Ulhaq ZS, Soraya GV. Anti-IL-6 receptor antibody treatment for severe COVID-19 and the potential implication of IL-6 gene polymorphisms in novel coronavirus pneumonia. Med Clin (Barc) [Internet]. 2020 Dec 24 [cited 2021 Jan 13];155(12):548–556. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351402/ - PMC - PubMed
  106. Malekzadeh R, Abedini A, Mohsenpour B, et al. Subcutaneous tocilizumab in adults with severe and critical COVID-19: A prospective open-label uncontrolled multicenter trial. Int Immunopharmacol [Internet]. 2020 Dec 1 [cited 2021 Jan 13];89(Pt B). Available from: https://pubmed.ncbi.nlm.nih.gov/33075713/ - PMC - PubMed
  107. Dastan F, Saffaei A, Haseli S, et al. Promising effects of tocilizumab in COVID-19: A non-controlled, prospective clinical trial. Int Immunopharmacol [Internet]. 2020 Nov 1 [cited 2021 Jan 13];88. Available from: https://pubmed.ncbi.nlm.nih.gov/32889241/ - PMC - PubMed
  108. Ramiro S, Mostard RLM, Magro-Checa C, et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: Results of the CHIC study. Ann Rheum Dis [Internet]. 2020 Sep 1 [cited 2021 Jan 13];79(9):1143–1151. Available from: https://pubmed.ncbi.nlm.nih.gov/32719045/ - PMC - PubMed
  109. Hermine O, Mariette X, Tharaux PL, et al. Effect of Tocilizumab vs Usual Care in Adults Hospitalized with COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med [Internet]. 2021 Jan 1 [cited 2021 Apr 16];181(1):32–40. Available from: https://jamanetwork.com/ - PMC - PubMed
  110. Galván-Román JM, Rodríguez-García SC, Roy-Vallejo E, et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study. J Allergy Clin Immunol [Internet]. 2021 Jan 1 [cited 2021 Apr 16];147(1):72–80.e8. Available from: https://pubmed.ncbi.nlm.nih.gov/33010257/ - PMC - PubMed
  111. Zhao H, Zhu Q, Zhang C, et al. Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. Biomed Pharmacother [Internet]. 2021 Jan 1 [cited 2021 Jan 13];133. Available from: https://pubmed.ncbi.nlm.nih.gov/33378989/ 110825. - PMC - PubMed
  112. Salama C, Han J, Yau L, et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med [Internet]. 2020 Dec 17 [cited 2021 Jan 13];384(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33332779/ 20–30 - PMC - PubMed
  113. Zhao J, Cui W, Tian BP. Efficacy of tocilizumab treatment in severely ill COVID-19 patients [Internet]. Vol. 24, crit care. BioMed Central Ltd; 2020. [cited 2021 Jan 13]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450680/ 1 - PMC - PubMed
  114. Berardicurti O, Ruscitti P, Ursini F, et al. Mortality in tocilizumab-treated patients with COVID-19: a systematic review and meta-analysis. Clin Exp Rheumatol [Internet]. 2020 Nov 1 [cited 2021 Jan 13];38(6):1247–1254. Available from: https://pubmed.ncbi.nlm.nih.gov/33275094/ - PubMed
  115. Strohbehn GW, Heiss BL, Rouhani SJ, et al. COVIDOSE: A Phase II Clinical Trial of Low-Dose Tocilizumab in the Treatment of Noncritical COVID-19 Pneumonia. Clin Pharmacol Ther [Internet]. 2021 Mar 1 [cited 2021 Apr 16];109(3):688–696. Available from: https://pubmed.ncbi.nlm.nih.gov/33210302/ - PMC - PubMed
  116. Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med [Internet]. 2020 Dec 10 [cited 2021 Jan 13];383(24):2333–2344. Available from: https://pubmed.ncbi.nlm.nih.gov/33085857/ - PMC - PubMed
  117. Veiga VC, Prats JAGG, Farias DLC, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: Randomised controlled trial. BMJ [Internet]. 2021 Jan 20 [cited 2021 Apr 16];372. Available from: https://pubmed.ncbi.nlm.nih.gov/33472855/ - PMC - PubMed
  118. Salvarani C, Dolci G, Massari M, et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized with COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med [Internet]. 2021 Jan 1 [cited 2021 Apr 16];181(1):24–31. Available from: https://pubmed.ncbi.nlm.nih.gov/33080005/ - PMC - PubMed
  119. Abani O, Abbas A, Abbas F, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet [Internet]. 2021 May 1 [cited 2021 Sep 7];397(10285):1637–1645. Available from: http://www.thelancet.com/article/S0140673621006760/fulltext - PMC - PubMed
  120. The REMAP-CAP Investigators . Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19 New England Journal of Medicine . [Internet]. 2021 Feb 25 [cited 2021 Sep 7];384(16):1491–1502. [Internet]. 2021 Feb 25; ():. - PMC - PubMed
  121. Rosas IO, Diaz G, Gottlieb RL, et al. Tocilizumab and remdesivir in hospitalized patients with severe COVID-19 pneumonia: a randomized clinical trial. Intensive Care Med [Internet]. 2021 Nov 1 [cited 2021 Dec 27];47(11):1258–1270. Available from: https://pubmed.ncbi.nlm.nih.gov/34609549/ - PMC - PubMed
  122. Gremese E, Cingolani A, Bosello SL, et al. Sarilumab use in severe SARS-CoV-2 pneumonia. EClinicalMedicine [Internet]. 2020 Oct 1 [cited 2021 Jan 13];27. Available from: https://pubmed.ncbi.nlm.nih.gov/33043284/ - PMC - PubMed
  123. Montesarchio V, Parella R, Iommelli C, et al. Outcomes and biomarker analyses among patients with COVID-19 treated with interleukin 6 (IL-6) receptor antagonist sarilumab at a single institution in Italy. J Immunother Cancer [Internet]. 2020 Aug 11 [cited 2021 Jan 13];8(2). Available from: /pmc/articles/PMC7418768/?report=abstract - PMC - PubMed
  124. Benucci M, Giannasi G, Cecchini P, et al. COVID-19 pneumonia treated with Sarilumab: A clinical series of eight patients [Internet]. J Med Virol. 2020[cited 2021 Jan 13];92(11):2368–2370. Available from. John Wiley and Sons Inc. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300861/ - PMC - PubMed
  125. Della-Torre E, Campochiaro C, Cavalli G, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann Rheum Dis [Internet]. 2020 Oct 1 [cited 2021 Jan 13];79(10):1277–1285. Available from: https://pubmed.ncbi.nlm.nih.gov/32620597/ - PMC - PubMed
  126. Lescure FX, Honda H, Fowler RA, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med [Internet]. 2021 May 1 [cited 2021 Dec 27];9(5):522–532. Available from: https://pubmed.ncbi.nlm.nih.gov/33676590/ - PMC - PubMed
  127. León López R, Fernández SC, Limia Pérez L, et al. Efficacy and safety of early treatment with sarilumab in hospitalised adults with COVID-19 presenting cytokine release syndrome (SARICOR STUDY): Protocol of a phase II, open-label, randomised, multicentre, controlled clinical trial. BMJ Open [Internet]. 2020 Nov 14 [cited 2021 Jan 13];10(11). Available from: https://pubmed.ncbi.nlm.nih.gov/33191263/ - PMC - PubMed
  128. Garcia-Vicuña R, Abad-Santos F, González-Alvaro I, et al. Subcutaneous Sarilumab in hospitalised patients with moderate-severe COVID-19 infection compared to the standard of care (SARCOVID): A structured summary of a study protocol for a randomised controlled trial [Internet]. Vol. 21, Trials. BioMed Central Ltd; 2020. [cited 2021 Jan 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/32907638/ 1. - PMC - PubMed
  129. Ghosn L, Chaimani A, Evrenoglou T, et al. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev . [Internet] 2021 Mar 18 [cited 2021 Apr 16];3. Available from: https://pubmed.ncbi.nlm.nih.gov/33734435/ - PMC - PubMed
  130. Sivapalasingam S, Lederer DJ, Bhore R, et al. A Randomized Placebo-Controlled Trial of Sarilumab in Hospitalized Patients with Covid-19. medRxiv [Internet]. 2021 Oct 28 [cited 2021 Dec 27];2021.May.13.21256973. Available from: 10.1101/2021.05.13.21256973v4 - DOI
  131. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA [Internet]. 2021 Jul 20 [cited 2021 Dec 26];326(3):230–239. Available from: https://pubmed.ncbi.nlm.nih.gov/34283183/ - PMC - PubMed
  132. Kyriazopoulou E, Panagopoulos P, Metallidis S, et al. An open label trial of anakinra to prevent respiratory failure in COVID-19. Elife [Internet]. 2021 Mar 8 [cited 2021 Apr 16];10. Available from: https://pubmed.ncbi.nlm.nih.gov/33682678/ - PMC - PubMed
  133. Mariette X, Hermine O, Resche-Rigon M, et al. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med [Internet]. 2021 Mar 1 [cited 2021 Apr 16];9(3):295–304. Available from: https://pubmed.ncbi.nlm.nih.gov/33493450/ - PMC - PubMed
  134. Derde LPG, Gordon AC, Mouncey PR, et al. Effectiveness of Tocilizumab, Sarilumab, and Anakinra for critically ill patients with COVID-19 The REMAP-CAP COVID-19 Immune Modulation Therapy Domain Randomized Clinical Trial. medRxiv [Internet]. 2021 Jun 25 [cited 2021 Dec 26];2021.Jun.18.21259133. Available from: 10.1101/2021.06.18.21259133v2 - DOI
  135. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med [Internet]. 2021 Oct 1 [cited 2021 Dec 26];27(10):1752–1760. Available from: https://pubmed.ncbi.nlm.nih.gov/34480127/ - PMC - PubMed
  136. Aomar-Millán IF, Salvatierra J, Torres-Parejo Ú, et al. Anakinra after treatment with corticosteroids alone or with tocilizumab in patients with severe COVID-19 pneumonia and moderate hyperinflammation. A retrospective cohort study. Intern Emerg Med [Internet]. 2021 Jan 5 [cited 2021 Jan 13]; Available from: https://pubmed.ncbi.nlm.nih.gov/33400157/ - PMC - PubMed
  137. Iglesias-Julián E, López-Veloso M, De-la-torre-ferrera N, et al. High dose subcutaneous Anakinra to treat acute respiratory distress syndrome secondary to cytokine storm syndrome among severely ill COVID-19 patients. J Autoimmun [Internet]. 2020 Dec 1 [cited 2021 Jan 13];115. Available from: https://pubmed.ncbi.nlm.nih.gov/32843231/ - PMC - PubMed
  138. Langer-Gould A, Smith JB, Gonzales EG, et al. Early identification of COVID-19 cytokine storm and treatment with anakinra or tocilizumab. Int J Infect Dis [Internet]. 2020 Oct 1 [cited 2021 Jan 13];99:291–297. Available from: https://pubmed.ncbi.nlm.nih.gov/32768693/ - PMC - PubMed
  139. Navarro-Millán I, Sattui SE, Lakhanpal A, et al. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol [Internet]. 2020 Dec 1 [cited 2021 Jan 13];72(12):1990–1997. Available from: https://pubmed.ncbi.nlm.nih.gov/32602262/ - PMC - PubMed
  140. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: Case series [Internet]. Ann Rheum Dis. 2020[cited 2021 Jan 13];79(10):1381–1382. Available from. BMJ Publishing Group. http://saintantoine.aphp.fr/score/ - PubMed
  141. Kaps L, Labenz C, Grimm D, et al. Treatment of cytokine storm syndrome with IL-1 receptor antagonist anakinra in a patient with ARDS caused by COVID-19 infection: A case report. Clin Case Rep [Internet]. 2020 Dec 1 [cited 2021 Jan 13];8(12):2990–2994. Available from: https://pubmed.ncbi.nlm.nih.gov/33363865/ - PMC - PubMed
  142. Kooistra EJ, Waalders NJB, Grondman I, et al. Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study. Crit Care [Internet]. 2020 Dec 1 [cited 2021 Jan 13];24(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33302991/ - PMC - PubMed
  143. Cauchois R, Koubi M, Delarbre D, et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A [Internet]. 2020 Aug 11 [cited 2021 Jan 13];117(32):18951–18953. Available from: /pmc/articles/PMC7430998/?report=abstract - PMC - PubMed
  144. Balkhair A, Al-Zakwani I, Al Busaidi M, et al. Anakinra in hospitalized patients with severe COVID-19 pneumonia requiring oxygen therapy: Results of a prospective, open-label, interventional study. Int J Infect Dis [Internet]. 2021 Feb 1 [cited 2021 Jan 13];103:288–296. Available from: https://pubmed.ncbi.nlm.nih.gov/33217576/ - PMC - PubMed
  145. Nemchand P, Tahir H, Mediwake R, et al. Cytokine storm and use of anakinra in a patient with COVID-19. BMJ Case Rep [Internet]. 2020 Sep 15 [cited 2021 Jan 13];13(9). Available from: https://pubmed.ncbi.nlm.nih.gov/32933914/ - PMC - PubMed
  146. Clark KEN, Collas O, Lachmann H, et al. Safety of intravenous anakinra in COVID-19 with evidence of hyperinflammation, a case series. Rheumatol Adv Pract [Internet]. 2020. [cited 2021 Jan 13];4(2). Available from: https://pubmed.ncbi.nlm.nih.gov/32964179/ - PMC - PubMed
  147. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol [Internet]. 2020 Jul 1 [cited 2021 Jan 13];2(7):e393–400. Available from: https://pubmed.ncbi.nlm.nih.gov/32835245/ - PMC - PubMed
  148. Pontali E, Volpi S, Antonucci G, et al. Safety and efficacy of early high-dose IV anakinra in severe COVID-19 lung disease. J Allergy Clin Immunol [Internet]. 2020 Jul 1 [cited 2021 Jan 13];146(1):213–215. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211718/ - PMC - PubMed
  149. Borie R, Savale L, Dossier A, et al. Glucocorticoids with low-dose anti-IL1 anakinra rescue in severe non-ICU COVID-19 infection: A cohort study. PLoS One [Internet]. 2020 Dec 1 [cited 2021 Jan 13];15(12). Available from: https://pubmed.ncbi.nlm.nih.gov/33326457/ - PMC - PubMed
  150. Calò Carducci FI, De Ioris MA, Agrati C, et al. Hyperinflammation in Two Severe Acute Respiratory Syndrome Coronavirus 2-Infected Adolescents Successfully Treated With the Interleukin-1 Inhibitor Anakinra and Glucocorticoids. Front Pediatr [Internet]. 2020 Nov 30 [cited 2021 Jan 13];8. Available from: https://pubmed.ncbi.nlm.nih.gov/33330276/ - PMC - PubMed
  151. Bozzi G, Mangioni D, Minoia F, et al.Anakinra combined with methylprednisolone in patients with severe COVID-19 pneumonia and hyperinflammation: An observational cohort study J Allergy Clin Immunol 2020[cited 2021 Jan 13]; Available from; https://pubmed.ncbi.nlm.nih.gov/33220354/ - PMC - PubMed
  152. Pontali E, Volpi S, Signori A, et al. Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol [Internet]. 2021 Apr 1 [cited 2021 Apr 16];147(4). Available from: https://pubmed.ncbi.nlm.nih.gov/33556464/ 1217–1225 - PMC - PubMed
  153. Brenner EJ, Ungaro RC, Gearry RB, et al. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results From an International Registry. Gastroenterology [Internet]. 2020 Aug 1 [cited 2021 Jan 13];159(2):481–491.e3. Available from: https://pubmed.ncbi.nlm.nih.gov/32425234/ - PMC - PubMed
  154. Gianfrancesco M, Hyrich KL, Hyrich KL, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis [Internet]. 2020 Jul 1 [cited 2021 Jan 13];79(7):859–866. Available from: https://pubmed.ncbi.nlm.nih.gov/32471903/ - PMC - PubMed
  155. Winthrop KL, Brunton AE, Beekmann S, et al. SARS CoV-2 infection among patients using immunomodulatory therapies. Ann Rheum Dis [Internet]. 2020 Aug 5 [cited 2021 Jan 13];80(2):annrheumdis-2020-218580. Available from: https://www - PubMed
  156. Nørgård BM, Nielsen J, Knudsen T, et al.Hospitalization for COVID-19 in patients treated with selected immunosuppressant and immunomodulating agents, compared to the general population: A Danish cohort study Br J Clin Pharmacol 2020[cited 2021 Jan 13]; Available from; https://pubmed.ncbi.nlm.nih.gov/33098713/ - PubMed
  157. Bezzio C, Manes G, Bini F, et al. Infliximab for severe ulcerative colitis and subsequent SARS-CoV-2 pneumonia: a stone for two birds. Gut [Internet]. 2020 Jun 17 [cited 2021 Jan 14];gutjnl-2020-321760. Available from: http://gut.bmj.com/ 70 3 623–624. - PubMed
  158. Stallmach A, Kortgen A, Gonnert F, et al. Infliximab against severe COVID-19-induced cytokine storm syndrome with organ failure - A cautionary case series [Internet]. Vol. 24, crit care. BioMed Central; 2020. [cited 2021 Jan 14]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366555/ 1 - PMC - PubMed
  159. Fakharian A, Barati S, Mirenayat M, et al. Evaluation of adalimumab effects in managing severe cases of COVID-19: A randomized controlled trial. Int Immunopharmacol [Internet]. 2021 Oct 1 [cited 2021 Dec 26];99. Available from: https://pubmed.ncbi.nlm.nih.gov/34426106/ 107961. - PMC - PubMed
  160. Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol [Internet]. 2020 Jun 5 [cited 2021 Jan 19];5(48). Available from: https://pubmed.ncbi.nlm.nih.gov/32503877/ - PMC - PubMed
  161. Thibaud S, Tremblay D, Bhalla S, et al. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19 [Internet]. Vol. 190, Br J Haematol. Blackwell Publishing Ltd; 2020. [cited 2021 Jan 19]. p. e73–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276870/ 2 - PMC - PubMed
  162. Lin AY, Cuttica MJ, Ison MG, et al. Ibrutinib for chronic lymphocytic leukemia in the setting of respiratory failure from severe COVID‐19 infection: Case report and literature review. eJHaem. Internet]. 2020. Nov [cited 2021 Jan 19];1(2):596–600. Available from. ;():. https://pubmed.ncbi.nlm.nih.gov/33043320/ - PMC - PubMed
  163. Treon SP, Castillo JJ, Skarbnik AP, et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients [Internet]. Blood. 2020[cited 2021 Jan 19];135(21):1912–1915. Available from. American Society of Hematology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243149/ - PMC - PubMed
  164. Peterson D, Damsky W, King B. The use of Janus kinase inhibitors in the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [Internet]. Vol. 82, J Am Acad Dermatol. Mosby Inc.; 2020. [cited 2021 Jan 19]. p. e223–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144601/ 6 - PMC - PubMed
  165. Agrawal M, Brenner EJ, Zhang X, et al. Characteristics and Outcomes of IBD Patients with COVID-19 on Tofacitinib Therapy in the SECURE-IBD Registry. Inflamm Bowel Dis [Internet]. 2020 Dec 16 [cited 2021 Jan 19];XX. Available from: 10.1093/ibd/izaa303/6039067 - DOI - PMC - PubMed
  166. Jacobs J, Clark-Snustad K, and Lee S. Case Report of a SARS-CoV-2 Infection in a Patient with Ulcerative Colitis on Tofacitinib]. Vol. 26 7 , Inflammatory Bowel Diseases. ; 2020. []. p. e64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197538/ - PMC - PubMed
  167. Yan B, Freiwald T, Chauss D, et al.SARS-CoV2 drives JAK1/2-dependent local and systemic complement hyper-activation Res Sq 2020[cited 2021 Jan 19]; Available from; https://pubmed.ncbi.nlm.nih.gov/32702726/
  168. Mortara A, Mazzetti S, Margonato D, et al. Compassionate use of Ruxolitinib in patients with SarsCov‐2 infection not on mechanical ventilation. Short‐term effects on inflammation and ventilation. Clin Transl Sci [Internet]. 2021 Jan 6 [cited 2021 Jan 19];cts.12971. Available from: 10.1111/cts.12971 14 3 1062–1068 - DOI - PMC - PubMed
  169. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol [Internet]. 2020 Jul 1 [cited 2021 Jan 19];146(1):137–146.e3. Available from: https://pubmed.ncbi.nlm.nih.gov/32470486/ - PMC - PubMed
  170. Capochiani E, Frediani B, Iervasi G, et al. Ruxolitinib Rapidly Reduces Acute Respiratory Distress Syndrome in COVID-19 Disease. Analysis of Data Collection From RESPIRE Protocol. Front Med [Internet]. 2020 Aug 4 [cited 2021 Jan 19];7. Available from: https://pubmed.ncbi.nlm.nih.gov/32850921/ - PMC - PubMed
  171. Vannucchi AM, Sordi B, Morettini A, et al.Compassionate use of JAK1/2 inhibitor ruxolitinib for severe COVID-19: a prospective observational study Leukemia 2020[cited 2021 Jan 19]; Available from; https://pubmed.ncbi.nlm.nih.gov/32814839/ - PMC - PubMed
  172. Barbui T, Vannucchi AM, Alvarez-Larran A, et al. High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib. Leukemia. 2021. [[cited 2021 Jan 19]; Available from];35(2):485–493. Internet: https://pubmed.ncbi.nlm.nih.gov/33414483/ - PMC - PubMed
  173. Betelli M, De Stefano F, and Tedeschi A. Late Worsening of COVID-19 Pneumonia: Successful Treatment with Ruxolitinib and Steroid Eur Jcase reports Intern Med . [Internet]. 2020. [cited 2021 Jan 19];7(11):001938. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33194871 - PMC - PubMed
  174. D’Alessio A, Del Poggio P, Bracchi F, et al.Low-dose ruxolitinib plus steroid in severe SARS-CoV-2 pneumonia Leukemia 2020[cited 2021 Jan 19]; Available from; https://pubmed.ncbi.nlm.nih.gov/33173161/ - PMC - PubMed
  175. Innes AJ, Cook LB, Marks S, et al. Ruxolitinib for tocilizumab-refractory severe COVID-19 infection [Internet]. Br J Haematol. 2020[cited 2021 Jan 13];190(4):e198–200. Available from. Blackwell Publishing Ltd. https://pubmed.ncbi.nlm.nih.gov/32593183/ - PMC - PubMed
  176. Foss FM, Rubinowitz A, Landry ML, et al. Attenuated Novel SARS Coronavirus 2 Infection in an Allogeneic Hematopoietic Stem Cell Transplant Patient on Ruxolitinib [Internet]. Clin Lymphoma Myeloma Leukemia. 2020[cited 2021 Jan 19];20(11):720–723. Available from. Elsevier Inc. https://pubmed.ncbi.nlm.nih.gov/32727701/ - PMC - PubMed
  177. Cantini F, Goletti D, Petrone L, et al. Immune Therapy, or Antiviral Therapy, or Both for COVID-19: A Systematic Review [Internet]. Drugs Adis. 2020. [cited 2021 Jan 19];80(18):1929–1946. Available from: https://pubmed.ncbi.nlm.nih.gov/33068263/ - PMC - PubMed
  178. Rosas J, Liaño FP, Cantó ML, et al. Experience With the Use of Baricitinib and Tocilizumab Monotherapy or Combined, in Patients With Interstitial Pneumonia Secondary to Coronavirus COVID19: A Real-World Study. Reumatol Clin [Internet]. 2020. [cited 2021 Jan 19]; Available from: https://pubmed.ncbi.nlm.nih.gov/33358361/ - PMC - PubMed
  179. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med [Internet]. 2021 Mar 4 [cited 2021 Jan 19];384(9):795–807. Available from: 10.1056/NEJMoa2031994 - DOI - PMC - PubMed
  180. Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, et al. Baricitinib improves respiratory function in patients treated with corticosteroids for SARS-CoV-2 pneumonia: an observational cohort study. Rheumatology [Internet]. 2020 Oct 6 [cited 2021 Jan 19];60(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33020836/ 399–407 - PMC - PubMed
  181. Bronte V, Ugel S, Tinazzi E, et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest [Internet]. 2020 Dec 1 [cited 2021 Jan 19];130(12):6409–6416. Available from: https://pubmed.ncbi.nlm.nih.gov/32809969/ - PMC - PubMed
  182. Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact [Internet]. J Infect W.B. Saunders Ltd. 2020. [cited 2021 Jan 19];81(2):318–356. Available from: https://pubmed.ncbi.nlm.nih.gov/32333918/ - PMC - PubMed
  183. Cingolani A, Tummolo AM, Montemurro G, et al. Baricitinib as rescue therapy in a patient with COVID-19 with no complete response to sarilumab. Infection [Internet]. 2020 Oct 1 [cited 2021 Jan 13];48(5):767–771. Available from: https://pubmed.ncbi.nlm.nih.gov/32642806/ - PMC - PubMed
  184.  
    1. FDA . Fact sheet for healthcare providers emergency use authorization (EUA) of baricitinib [Internet]. [cited 2021 Apr 16]. Available from: www.lillytrade.com
  185. Marconi VC, Ramanan AV, de BS, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med Internet]. 2021. Sep [cited 2021 Sep 7];0. Available from. http://www.thelancet.com/article/S2213260021003313/fulltext - PMC - PubMed
  186. Guimarães PO, Quirk D, Furtado RH, et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med [Internet]. 2021 Jul 29 [cited 2021 Dec 27];385(5):406–415. Available from: https://pubmed.ncbi.nlm.nih.gov/34133856/ - PMC - PubMed
  187. Yuan M, Xu X, Xia D, et al. Effects of Corticosteroid Treatment for Non-Severe COVID-19 Pneumonia: A Propensity Score-Based Analysis. Shock [Internet]. 2020 Nov 1 [cited 2021 Jan 20];54(5):638–643. Available from: https://pubmed.ncbi.nlm.nih.gov/32496422/ - PubMed
  188. Tang X, Feng YM, Ni JX, et al. Early Use of Corticosteroid May Prolong SARS-CoV-2 Shedding in Non-Intensive Care Unit Patients with COVID-19 Pneumonia: A Multicenter, Single-Blind, Randomized Control Trial. Respiration [Internet]. 2021 Feb 1 [cited 2021 Apr 16];100(2):116–126. Available from: https://pubmed.ncbi.nlm.nih.gov/33486496/ - PMC - PubMed
  189. Jamaati H, Hashemian SMR, Farzanegan B, et al. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: A preliminary report of a randomized clinical trial. Eur J Pharmacol [Internet]. 2021 Apr 15 [cited 2021 Apr 16];897. Available from: https://pubmed.ncbi.nlm.nih.gov/33607104/ 173947. - PMC - PubMed
  190. Stockman LJ, Bellamy R, Garner P.. SARS: Systematic review of treatment effects. PLoS Med. Internet]. Vol. 3, ; 2006. [cited 2021 Jan 20]. p. 1525–1531. Available from; :. :https://pubmed.ncbi.nlm.nih.gov/16968120/ - PMC - PubMed
  191. Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med [Internet]. 2018 Mar 15 [cited 2021 Jan 20];197(6):757–767. Available from: https://pubmed.ncbi.nlm.nih.gov/29161116/ - PubMed
  192. Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, et al. Corticosteroids as adjunctive therapy in the treatment of influenza [Internet]. Cochrane Database Syst Rev. 2016. [[cited 2021 Jan 20]. Available from];2016. John Wiley and Sons Ltd https://pubmed.ncbi.nlm.nih.gov/26950335/ - PubMed
  193. The RECOVERY Collaborative Group . Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med. [Internet]. 2020 Jul 17 [cited 2021 Jan 20];NEJMoa2021436. Available from; 384(8):693–704.https://pubmed.ncbi.nlm.nih.gov/32678530/ - PMC - PubMed
  194. Sterne JAC, Murthy S, Diaz JV, et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. J Am Med Assoc [Internet]. 2020 Oct 6 [cited 2021 Jan 20];324(13):1330–1341. Available from: https://jamanetwork.com/ - PMC - PubMed
  195. Ma S, Xu C, Liu S, et al. Efficacy and safety of systematic corticosteroids among severe COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials [Internet]. Signal Transduct Target Ther. Springer Nature. 6(1):2021. [cited 2021 Apr 16]. Available from; https://pubmed.ncbi.nlm.nih.gov/33612824/ - PMC - PubMed
  196. Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. J Am Med Assoc. Internet]. 2020. [cited 2021 Jan 20];324(13):1307–1316. Available from;: https://pubmed.ncbi.nlm.nih.gov/32876695/ - PMC - PubMed
  197. Angus DC, Derde L, Al-Beidh F, et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. J Am Med Assoc. Internet]. 2020. [cited 2021 Jan 20];324(13):1317–1329. Available from;: https://pubmed.ncbi.nlm.nih.gov/32876697/ - PMC - PubMed
  198. Ranjbar K, Moghadami M, Mirahmadizadeh A, et al. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC Infect Dis [Internet]. 2021 Apr 10 [cited 2021 Apr 16];21(1):337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33838657 - PMC - PubMed
  199. Leung YY, Yao Hui LL, and Kraus VB. Colchicine-Update on mechanisms of action and therapeutic uses]. Vol. 45 3 , Seminars in Arthritis and Rheumatism. ; 2015. p. 341–350. Available from: https://pubmed.ncbi.nlm.nih.gov/26228647/ - PMC - PubMed
  200. Martínez GJ, Robertson S, Barraclough J, et al. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome. J Am Heart Assoc [Internet]. 2015 Aug 24 [cited 2021 Jan 12];4(8):e002128. Available from: https://pubmed.ncbi.nlm.nih.gov/26304941/ - PMC - PubMed
  201. Chen I-Y, Moriyama M, Chang M-F, et al. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol [Internet]. 2019 Jan 29 [cited 2021 Jan 12];10(JAN):50. Available from: 10.3389/fmicb.2019.00050/full - DOI - PMC - PubMed
  202. Brunetti L, Diawara O, Tsai A, et al. Colchicine to Weather the Cytokine Storm in Hospitalized Patients with COVID-19. J Clin Med [Internet]. 2020 Sep 14 [cited 2021 Jan 11];9(9):2961. Available from: /pmc/articles/PMC7565543/?report=abstract - PMC - PubMed
  203. Salah HM, Mehta JL. Meta-analysis of the Effect of Colchicine on Mortality and Mechanical Ventilation in COVID-19. Am J Cardiol [Internet]. 2021. Apr [cited 2021 Apr 16];145:170. Available from: /pmc/articles/PMC7894200/ - PMC - PubMed
  204. Rodriguez-Nava G, Trelles-Garcia DP, Yanez-Bello MA, et al. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: A retrospective cohort study [Internet]. Vol. 24, crit care. BioMed Central; 2020. [cited 2021 Jan 11]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358561/ 1 - PMC - PubMed
  205. Sandhu T, Tieng A, Chilimuri S, et al. A case control study to evaluate the impact of colchicine on patients admitted to the hospital with moderate to severe covid-19 infection. Can J Infect Dis Med Microbiol Internet]. 2020. [cited 2021 Jan 11];Available from. ;2020:1–9. https://pubmed.ncbi.nlm.nih.gov/33133323/ - PMC - PubMed
  206. Scarsi M, Piantoni S, Colombo E, et al. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. Ann Rheum Dis [Internet]. 2020 Oct 1 [cited 2021 Jan 11];79(10):1286–1289. Available from: 10.1136/annrheumdis-2020-217712 - DOI - PMC - PubMed
  207. Vrachatis DA, Giannopoulos GV, Giotaki SG, et al. Impact of colchicine on mortality in patients with COVID-19. A meta-analysis. Hell J Cardiol [Internet]. 2021 Jan 6 [cited 2021 Jan 11]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1109966620302852 62 5 374–377 - PMC - PubMed
  208. Haslak F, Yildiz M, Adrovic A, et al. Management of childhood-onset autoinflammatory diseases during the COVID-19 pandemic. Rheumatol Int [Internet]. 2020 Sep 1 [cited 2021 Jan 11];40(9):1423–1431. Available from: https://pubmed.ncbi.nlm.nih.gov/32661928/ - PMC - PubMed
  209. Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: an interim analysis of a randomized, double-blinded, placebo controlled clinical trial. medRxiv [Internet]. 2020 Aug 12 [cited 2021 Jan 11];.20169573. Available from: 10.1101/2020.08.06.20169573 - DOI - PMC - PubMed
  210. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Network Open [Internet]. 2020 Jun 1 [cited 2021 Jan 11];3(6):e2013136. Available from: https://pubmed.ncbi.nlm.nih.gov/32579195/ - PMC - PubMed
  211. Reyes AZ, Hu KA, Teperman J, et al. Anti-inflammatory therapy for COVID-19 infection: The case for colchicine [Internet]. Ann Rheum Dis. BMJ Publishing Group. 2020. cited 2021 Jan 11;0:1–8. Available from10.1136/annrheumdis-2020-219174 - DOI - PMC - PubMed
  212. Piantoni S, Patroni A, Toniati P, et al. Why not to use colchicine in COVID-19? An oldanti-inflammatory drug for a novel auto-inflammatory disease. Rheumatology [Internet]. 2020 Jul 1 [cited 2021 Jan 11];59(7):1769–1770. Available from: https://academic.oup.com/rheumatology/article/59/7/1769/5848955 - PMC - PubMed
  213. Kow CS, Hasan SS.. Colchicine as an adjunct to heparin for prophylaxis of venous thromboembolism in patients with COVID-19. Rheumatol Int. Springer Science and Business Media Deutschland GmbH. 2021;[Internet]. Vol. 1, . ; [cited 2021 Jan 11]. p. 1. Available from] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778475/ - PMC - PubMed
  214. Tardif J-C, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med [Internet]. 2019 Dec 26 [cited 2021 Jan 12];381(26):2497–2505. Available from: 10.1056/NEJMoa1912388 - DOI - PubMed
  215. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression [Internet]. Lancet Lancet Publishing Group. 2020. [cited 2021 Jan 12];395(10229):1033–1034. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270045/ - PMC - PubMed
  216. Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: A randomised, double-blinded, placebo-controlled clinical trial. RMD Open [Internet]. 2021 Feb 4 [cited 2021 Apr 16];7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33542047/ e001455. - PMC - PubMed
  217. Della-Torre E, Della-Torre F, Kusanovic M, et al. Treating COVID-19 with colchicine in community healthcare setting [Internet]. Clin Immunol Academic Press Inc. 2020. [cited 2021 Jan 11]; 217:108490. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1521661620304782 - PMC - PubMed
  218. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Efficacy of Colchicine in Non-Hospitalized Patients with COVID-19. medRxiv [Internet]. 2021 Jan 27 [cited 2021 Sep 7]. Available from. 10.1101/2021.01.26.21250494v1 - DOI
  219. Group PTC, Dorward J, Yu L-M, et al. Colchicine for COVID-19 in adults in the community (PRINCIPLE): a randomised, controlled, adaptive platform trial. medRxiv [Internet]. 2021 Sep 23 [cited 2021 Dec 27];21263828. Available from: 10.1101/2021.09.20.21263828v1 - DOI
  220. Group RC, Horby PW, Campbell M, et al. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv [Internet]. 2021 May 18 [cited 2021 Sep 7];21257267. Available from: 10.1101/2021.05.18.21257267v1 - DOI