Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome

Affiliations

01 November 2020

-

doi: 10.1016/j.jaci.2020.04.005


Abstract

Background: Severe early-onset erythroderma and gut inflammation, with massive tissue infiltration of oligoclonal activated T cells are the hallmark of Omenn syndrome (OS).

Objective: The impact of altered gut homeostasis in the cutaneous manifestations of OS remains to be clarified.

Methods: We analyzed a cohort of 15 patients with OS and the 129Sv/C57BL/6 knock-in Rag2R229Q/R229Q (Rag2R229Q) mouse model. Homing phenotypes of circulating lymphocytes were analyzed by flow cytometry. Inflammatory cytokines and chemokines were examined in the sera by ELISA and in skin biopsies by immunohistochemistry and in situ RNA hybridization. Experimental colitis was induced in mice by dextran sulfate sodium salt.

Results: We show that memory/activated T cells from patients with OS and from the Rag2R229Q mouse model of OS abundantly express the skin homing receptors cutaneous lymphocyte associated antigen and CCR4 (Ccr4), associated with high levels of chemokine C-C motif ligands 17 and 22. Serum levels of LPS are also elevated. A broad Th1/Th2/Th17 inflammatory signature is detected in the periphery and in the skin. Increased Tlr4 expression in the skin of Rag2R229Q mice is associated with enhanced cutaneous inflammation on local and systemic administration of LPS. Likewise, boosting colitis in Rag2R229Q mice results in increased frequency of Ccr4+ splenic T cells and worsening of skin inflammation, as indicated by epidermal thickening, enhanced epithelial cell activation, and dermal infiltration by Th1 effector T cells.

Conclusions: These results support the existence of an interplay between gut and skin that can sustain skin inflammation in OS.

Keywords: LPS; RAG; T cells; chemokines; cytokines; dysbiosis; erythroderma; gut-skin axis; immune-mediated disease; skin inflammation.


Figures


Similar articles

Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects.

Rigoni R, Fontana E, Guglielmetti S, Fosso B, D'Erchia AM, Maina V, Taverniti V, Castiello MC, Mantero S, Pacchiana G, Musio S, Pedotti R, Selmi C, Mora JR, Pesole G, Vezzoni P, Poliani PL, Grassi F, Villa A, Cassani B.J Exp Med. 2016 Mar 7;213(3):355-75. doi: 10.1084/jem.20151116. Epub 2016 Feb 29.PMID: 26926994 Free PMC article.

Hypomorphic mutation in the RAG2 gene affects dendritic cell distribution and migration.

Maina V, Marrella V, Mantero S, Cassani B, Fontana E, Anselmo A, Del Prete A, Sozzani S, Vezzoni P, Poliani PL, Villa A.J Leukoc Biol. 2013 Dec;94(6):1221-30. doi: 10.1189/jlb.0713365. Epub 2013 Sep 19.PMID: 24052573

Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation.

Capo V, Castiello MC, Fontana E, Penna S, Bosticardo M, Draghici E, Poliani LP, Sergi Sergi L, Rigoni R, Cassani B, Zanussi M, Carrera P, Uva P, Dobbs K, Sacchetti N, Notarangelo LD, van Til NP, Wagemaker G, Villa A.J Allergy Clin Immunol. 2018 Sep;142(3):928-941.e8. doi: 10.1016/j.jaci.2017.11.015. Epub 2017 Dec 11.PMID: 29241731 Free PMC article.

Omenn syndrome does not live by V(D)J recombination alone.

Marrella V, Maina V, Villa A.Curr Opin Allergy Clin Immunol. 2011 Dec;11(6):525-31. doi: 10.1097/ACI.0b013e32834c311a.PMID: 22001740 Review.

[Omenn Syndrome and DNA recombination defects].

Yachie A.Nihon Rinsho Meneki Gakkai Kaishi. 2017;40(3):179-189. doi: 10.2177/jsci.40.179.PMID: 28747605 Review. Japanese.


Cited by

Intestinal inflammation alters the antigen-specific immune response to a skin commensal.

Merana GR, Dwyer LR, Dhariwala MO, Weckel A, Gonzalez JR, Okoro JN, Cohen JN, Tamaki CM, Han J, Tasoff P, Palacios-Calderon Y, Ha CWY, Lynch SV, Segre JA, Kong HH, Kattah MG, Ma A, Scharschmidt TC.Cell Rep. 2022 May 31;39(9):110891. doi: 10.1016/j.celrep.2022.110891.PMID: 35649365 Free PMC article.

Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review.

Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W.Front Immunol. 2021 Jul 14;12:720393. doi: 10.3389/fimmu.2021.720393. eCollection 2021.PMID: 34335634 Free PMC article. Review.

RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches.

Bosticardo M, Pala F, Notarangelo LD.Eur J Immunol. 2021 May;51(5):1028-1038. doi: 10.1002/eji.202048880. Epub 2021 Mar 22.PMID: 33682138 Free PMC article. Review.

Innovative Cell-Based Therapies and Conditioning to Cure RAG Deficiency.

Villa A, Capo V, Castiello MC.Front Immunol. 2020 Nov 19;11:607926. doi: 10.3389/fimmu.2020.607926. eCollection 2020.PMID: 33329604 Free PMC article. Review.


KMEL References


References

  1.  
    1. Nestle F.O., Di Meglio P., Qin J.Z., Nickoloff B.J. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679–691. - PMC - PubMed
  2.  
    1. Gebhardt T., Whitney P.G., Zaid A., Mackay L.K., Brooks A.G., Heath W.R. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature. 2011;477:216–219. - PubMed
  3.  
    1. Bromley S.K., Yan S., Tomura M., Kanagawa O., Luster A.D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J Immunol. 2013;190:970–976. - PMC - PubMed
  4.  
    1. Berg E.L., Yoshino T., Rott L.S., Robinson M.K., Warnock R.A., Kishimoto T.K. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med. 1991;174:1461–1466. - PMC - PubMed
  5.  
    1. Campbell J.J., Haraldsen G., Pan J., Rottman J., Qin S., Ponath P. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature. 1999;400:776–780. - PubMed
  6.  
    1. Reiss Y., Proudfoot A.E., Power C.A., Campbell J.J., Butcher E.C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 2001;194:1541–1547. - PMC - PubMed
  7.  
    1. Homey B., Alenius H., Muller A., Soto H., Bowman E.P., Yuan W. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med. 2002;8:157–165. - PubMed
  8.  
    1. Mora J.R., Von Andrian U.H. Specificity and plasticity of memory lymphocyte migration. Curr Top Microbiol Immunol. 2006;308:83–116. - PubMed
  9.  
    1. Hart A.L., Ng S.C., Mann E., Al-Hassi H.O., Bernardo D., Knight S.C. Homing of immune cells: role in homeostasis and intestinal inflammation. Inflamm Bowel Dis. 2010;16:1969–1977. - PubMed
  10.  
    1. Lehman H. Skin manifestations of primary immune deficiency. Clin Rev Allergy Immunol. 2014;46:112–119. - PubMed
  11.  
    1. Oh J., Freeman A.F., Park M., Sokolic R., Candotti F., Holland S.M. for the NISC Comparative Sequencing Program. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23:2103–2114. - PMC - PubMed
  12.  
    1. Notarangelo L.D., Kim M.S., Walter J.E., Lee Y.N. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16:234–246. - PMC - PubMed
  13.  
    1. Scheimberg I., Hoeger P.H., Harper J.I., Lake B., Malone M. Omenn's syndrome: differential diagnosis in infants with erythroderma and immunodeficiency. Pediatr Dev Pathol. 2001;4:237–245. - PubMed
  14.  
    1. Maina V., Marrella V., Mantero S., Cassani B., Fontana E., Anselmo A. Hypomorphic mutation in the RAG2 gene affects dendritic cell distribution and migration. J Leukoc Biol. 2013;94:1221–1230. - PubMed
  15.  
    1. Smith P.D., MacDonald T.T., Blumberg R.S., Society for Mucosal Immunology . Garland Science/Taylor & Francis Group; London: 2013. Principles of mucosal immunology.
  16.  
    1. Parodi A., Paolino S., Greco A., Drago F., Mansi C., Rebora A. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin Gastroenterol Hepatol. 2008;6:759–764. - PubMed
  17.  
    1. Wang M., Karlsson C., Olsson C., Adlerberth I., Wold A.E., Strachan D.P. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol. 2008;121:129–134. - PubMed
  18.  
    1. Forno E., Onderdonk A.B., McCracken J., Litonjua A.A., Laskey D., Delaney M.L. Diversity of the gut microbiota and eczema in early life. Clin Mol Allergy. 2008;6:11. - PMC - PubMed
  19.  
    1. Zanvit P., Konkel J.E., Jiao X., Kasagi S., Zhang D., Wu R. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424. - PMC - PubMed
  20.  
    1. Rigoni R., Fontana E., Guglielmetti S., Fosso B., D'Erchia A.M., Maina V. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J Exp Med. 2016;213:355–375. - PMC - PubMed
  21.  
    1. Fuhlbrigge R.C., Kieffer J.D., Armerding D., Kupper T.S. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature. 1997;389:978–981. - PubMed
  22.  
    1. Biedermann T., Schwarzler C., Lametschwandtner G., Thoma G., Carballido-Perrig N., Kund J. Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human Th2 memory cells to human skin in vivo. Eur J Immunol. 2002;32:3171–3180. - PubMed
  23.  
    1. Marrella V., Poliani P.L., Casati A., Rucci F., Frascoli L., Gougeon M.L. A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. J Clin Invest. 2007;117:1260–1269. - PMC - PubMed
  24.  
    1. de Guzman Strong C., Wertz P.W., Wang C., Yang F., Meltzer P.S., Andl T. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J Cell Biol. 2006;175:661–670. - PMC - PubMed
  25.  
    1. Aberg K.M., Man M.Q., Gallo R.L., Ganz T., Crumrine D., Brown B.E. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol. 2008;128:917–925. - PMC - PubMed
  26.  
    1. Schwarz A., Bruhs A., Schwarz T. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Invest Dermatol. 2017;137:855–864. - PubMed
  27.  
    1. Komine M., Rao L.S., Freedberg I.M., Simon M., Milisavljevic V., Blumenberg M. Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes. J Invest Dermatol. 2001;116:330–338. - PubMed
  28.  
    1. Nestle F.O., Turka L.A., Nickoloff B.J. Characterization of dermal dendritic cells in psoriasis: autostimulation of T lymphocytes and induction of Th1 type cytokines. J Clin Invest. 1994;94:202–209. - PMC - PubMed
  29.  
    1. Pasparakis M., Haase I., Nestle F.O. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289–301. - PubMed
  30.  
    1. Elias P.M. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3–14. - PubMed
  31.  
    1. Zhang L.J. Type 1 interferons potential initiating factors linking skin wounds with psoriasis pathogenesis. Front Immunol. 2019;10:1440. - PMC - PubMed
  32.  
    1. Randolph G.J., Ivanov S., Zinselmeyer B.H., Scallan J.P. The lymphatic system: integral roles in immunity. Annu Rev Immunol. 2017;35:31–52. - PMC - PubMed
  33.  
    1. Liao S., Ruddle N.H. Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol. 2006;177:3369–3379. - PubMed
  34.  
    1. Albanesi C., Scarponi C., Sebastiani S., Cavani A., Federici M., Sozzani S. A cytokine-to-chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation in chronic inflammatory skin diseases. J Leukoc Biol. 2001;70:617–623. - PubMed
  35.  
    1. Fierro M.T., Comessatti A., Quaglino P., Ortoncelli M., Osella Abate S., Ponti R. Expression pattern of chemokine receptors and chemokine release in inflammatory erythroderma and Sezary syndrome. Dermatology. 2006;213:284–292. - PubMed
  36.  
    1. Lonsdorf A.S., Hwang S.T., Enk A.H. Chemokine receptors in T-cell-mediated diseases of the skin. J Invest Dermatol. 2009;129:2552–2566. - PubMed
  37.  
    1. Di Cesare A., Di Meglio P., Nestle F.O. A role for Th17 cells in the immunopathogenesis of atopic dermatitis? J Invest Dermatol. 2008;128:2569–2571. - PubMed
  38.  
    1. Lim H.W., Lee J., Hillsamer P., Kim C.H. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol. 2008;180:122–129. - PubMed
  39.  
    1. Andrew D.P., Ruffing N., Kim C.H., Miao W., Heath H., Li Y. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J Immunol. 2001;166:103–111. - PubMed
  40.  
    1. Charo I.F., Ransohoff R.M. The many roles of chemokines and chemokine receptors in inflammation. New Engl J Med. 2006;354:610–621. - PubMed
  41.  
    1. Subramaniam J.M., Whiteside G., McKeage K., Croxtall J.C. Mogamulizumab: first global approval. Drugs. 2012;72:1293–1298. - PubMed
  42.  
    1. Song P.I., Park Y.M., Abraham T., Harten B., Zivony A., Neparidze N. Human keratinocytes express functional CD14 and Toll-like receptor 4. J Invest Dermatol. 2002;119:424–432. - PubMed
  43.  
    1. Huang B.L., Chandra S., Shih D.Q. Skin manifestations of inflammatory bowel disease. Front Physiol. 2012;3:13. - PMC - PubMed
  44.  
    1. Leffler D.A., Green P.H., Fasano A. Extraintestinal manifestations of coeliac disease. Nat Rev Gastroenterol Hepatol. 2015;12:561–571. - PubMed
  45.  
    1. Weinstock L.B., Steinhoff M. Rosacea and small intestinal bacterial overgrowth: prevalence and response to rifaximin. J Am Acad Dermatol. 2013;68:875–876. - PubMed
  46.  
    1. Orange J.S. Congenital immunodeficiencies and sepsis. Pediatr Crit Care Med. 2005;6(3 Suppl):S99–S107. - PubMed
  47.  
    1. Naik S., Bouladoux N., Wilhelm C., Molloy M.J., Salcedo R., Kastenmuller W. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–1119. - PMC - PubMed
  48.  
    1. Gao Z., Tseng C.H., Strober B.E., Pei Z., Blaser M.J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719. - PMC - PubMed
  49.  
    1. Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. - PMC - PubMed
  50.  
    1. Oyoshi M.K., Elkhal A., Scott J.E., Wurbel M.A., Hornick J.L., Campbell J.J. Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin. J Clin Invest. 2011;121:2210–2220. - PMC - PubMed
  51.  
    1. Rigoni R., Grassi F., Villa A., Cassani B. RAGs and BUGS: an alliance for autoimmunity. Gut Microbes. 2016;7:503–511. - PMC - PubMed
  52.  
    1. Nizza S.T., Campbell J.J. CD11b+ migratory dendritic cells mediate CD8 T cell cross-priming and cutaneous imprinting after topical immunization. PLoS One. 2014;9 - PMC - PubMed
  53.  
    1. Milani C., Hevia A., Foroni E., Duranti S., Turroni F., Lugli G.A. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One. 2013;8 - PMC - PubMed
  54.  
    1. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. - PMC - PubMed
  55.  
    1. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. - PMC - PubMed
  56.  
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. - PMC - PubMed
  57.  
    1. Myles I.A., Williams K.W., Reckhow J.D., Jammeh M.L., Pincus N.B., Sastalla I. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1 - PMC - PubMed