Genetic Variants and Protective Immunity against SARS-CoV-2
Ali A Rabaan 1 2 3, Abbas Al Mutair 4 5 6 7, Mohammed Aljeldah 8, Basim R Al Shammari 8, Tarek Sulaiman 9, Abeer N Alshukairi 2 10, Mubarak Alfaresi 11 12, Jumana M Al-Jishi 13, Neda A Al Bati 14, Maha A Al-Mozaini 15, Ali Al Bshabshe 16, Jenan A Almatouq 17, Abdulmonem A Abuzaid 18, Amal H Alfaraj 19, Wasl Al-Adsani 20 21, Mohammed Alabdullah 22, Sara Alwarthan 23, Fatimah Alsalman 24, Ameen S S Alwashmi 25, Saad Alhumaid 26
Affiliations
Affiliations
- 1Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia.
- 2College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
- 3Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
- 4Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia.
- 5College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia.
- 6School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia.
- 7Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia.
- 8Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia.
- 9Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia.
- 10Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia.
- 11Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates.
- 12Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates.
- 13Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia.
- 14Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia.
- 15Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia.
- 16Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia.
- 17Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia.
- 18Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia.
- 19Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia.
- 20Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait.
- 21Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA.
- 22Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia.
- 23Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
- 24Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia.
- 25Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
- 26Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia.
Abstract
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.
Keywords: COVID-19; Genetic resistance; coronaviruses; protective immunity.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
Adli A, Rahimi M, Khodaie R, Hashemzaei N, Hosseini SM.J Med Virol. 2022 May;94(5):1846-1865. doi: 10.1002/jmv.27615. Epub 2022 Feb 8.PMID: 35076118 Free PMC article. Review.
Grolmusz VK, Bozsik A, Papp J, Patócs A.Front Immunol. 2021 Mar 8;12:653489. doi: 10.3389/fimmu.2021.653489. eCollection 2021.PMID: 33763088 Free PMC article. Review.
Mohammadpour S, Torshizi Esfahani A, Halaji M, Lak M, Ranjbar R.J Cell Physiol. 2021 Jan;236(1):49-54. doi: 10.1002/jcp.29868. Epub 2020 Jun 15.PMID: 32542735 Free PMC article. Review.
A Multitrait Locus Regulates Sarbecovirus Pathogenesis.
Schäfer A, Leist SR, Gralinski LE, Martinez DR, Winkler ES, Okuda K, Hawkins PE, Gully KL, Graham RL, Scobey DT, Bell TA, Hock P, Shaw GD, Loome JF, Madden EA, Anderson E, Baxter VK, Taft-Benz SA, Zweigart MR, May SR, Dong S, Clark M, Miller DR, Lynch RM, Heise MT, Tisch R, Boucher RC, Pardo Manuel de Villena F, Montgomery SA, Diamond MS, Ferris MT, Baric RS.mBio. 2022 Aug 30;13(4):e0145422. doi: 10.1128/mbio.01454-22. Epub 2022 Jul 12.PMID: 35862771 Free PMC article.
Huang SW, Wang SF.Int J Mol Sci. 2021 Mar 17;22(6):3060. doi: 10.3390/ijms22063060.PMID: 33802729 Free PMC article.
KMEL References
References
-
- Cerami C., Popkin-Hall Z.R., Rapp T., Tompkins K., Zhang H., Muller M.S., Basham C., Whittelsey M., Chhetri S.B., Smith J., et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in the United States: Living Density, Viral Load, and Disproportionate Impact on Communities of Color. Clin. Infect. Dis. 2022;74:1776–1785. doi: 10.1093/cid/ciab701. - DOI - PMC - PubMed
-
- Reukers D.F.M., van Boven M., Meijer A., Rots N., Reusken C., Roof I., van Gageldonk-Lafeber A.B., van der Hoek W., van den Hof S. High Infection Secondary Attack Rates of Severe Acute Respiratory Syndrome Coronavirus 2 in Dutch Households Revealed by Dense Sampling. Clin. Infect. Dis. 2022;74:52–58. doi: 10.1093/cid/ciab237. - DOI - PMC - PubMed
-
- Zhang Y., Qin L., Zhao Y., Zhang P., Xu B., Li K., Liang L., Zhang C., Dai Y., Feng Y., et al. Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated with Disease Severity in Coronavirus Disease 2019. J. Infect. Dis. 2020;222:34–37. doi: 10.1093/infdis/jiaa224. - DOI - PMC - PubMed
-
- Bastard P., Gervais A., Le Voyer T., Rosain J., Philippot Q., Manry J., Michailidis E., Hoffmann H.-H., Eto S., Garcia-Prat M., et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 2021;6:eabl4340. doi: 10.1126/sciimmunol.abl4340. - DOI - PMC - PubMed
-
- Asano T., Boisson B., Onodi F., Matuozzo D., Moncada-Velez M., Maglorius Renkilaraj M.R.L., Zhang P., Meertens L., Bolze A., Materna M., et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 2021;6:eabl4348. doi: 10.1126/sciimmunol.abl4348. - DOI - PMC - PubMed
-
- Galani I.-E., Rovina N., Lampropoulou V., Triantafyllia V., Manioudaki M., Pavlos E., Koukaki E., Fragkou P.C., Panou V., Rapti V., et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol. 2021;22:32–40. doi: 10.1038/s41590-020-00840-x. - DOI - PubMed
-
- Bastard P., Michailidis E., Hoffmann H.-H., Chbihi M., Le Voyer T., Rosain J., Philippot Q., Seeleuthner Y., Gervais A., Materna M., et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 2021;218:e20202486. doi: 10.1084/jem.20202486. - DOI - PMC - PubMed
-
- Shelton J.F., Shastri A.J., Ye C., Weldon C.H., Filshtein-Sonmez T., Coker D., Symons A., Esparza-Esparza-Gordillo J., The 23andMe COVID-19 Team. Aslibekyan S., et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat. Genet. 2021;53:801–808. doi: 10.1038/s41588-021-00854-7. - DOI - PubMed
-
- Zhang Y., Garner R., Salehi S., La Rocca M., Duncan D. Association between ABO blood types and coronavirus disease 2019 (COVID-19), genetic associations, and underlying molecular mechanisms: A literature review of 23 studies. Ann. Hematol. 2021;100:1123–1132. doi: 10.1007/s00277-021-04489-w. - DOI - PMC - PubMed
-
- Freeman E.E., McMahon D.E., Lipoff J.B., Rosenbach M., Kovarik C., Takeshita J., French L.E., Thiers B.H., Hruza G.J., Fox L.P., et al. Pernio-like skin lesions associated with COVID-19: A case series of 318 patients from 8 countries. J. Am. Acad. Derm. 2020;83:486–492. doi: 10.1016/j.jaad.2020.05.109. - DOI - PMC - PubMed
-
- Colmenero I., Santonja C., Alonso-Riaño M., Noguera-Morel L., Hernández-Martín A., Andina D., Wiesner T., Rodríguez-Peralto J.L., Requena L., Torrelo A. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: Histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Derm. 2020;183:729–737. doi: 10.1111/bjd.19327. - DOI - PMC - PubMed
-
- Wei J., Alfajaro M.M., DeWeirdt P.C., Hanna R.E., Lu-Culligan W.J., Cai W.L., Strine M.S., Zhang S.-M., Graziano V.R., Schmitz C.O., et al. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell. 2021;184:76–91.e13. doi: 10.1016/j.cell.2020.10.028. - DOI - PMC - PubMed
-
- Wang R., Simoneau C.R., Kulsuptrakul J., Bouhaddou M., Travisano K.A., Hayashi J.M., Carlson-Stevermer J., Zengel J.R., Richards C.M., Fozouni P., et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell. 2021;184:106–119.e14. doi: 10.1016/j.cell.2020.12.004. - DOI - PMC - PubMed
-
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. - DOI - PMC - PubMed
-
- Horowitz J.E., Kosmicki J.A., Damask A., Sharma D., Roberts G.H.L., Justice A.E., Banerjee N., Coignet M.V., Yadav A., Leader J.B., et al. Genome-Wide Analysis in 756,646 Individuals Provides First Genetic Evidence that ACE2 Expression Influences COVID-19 Risk and Yields Genetic Risk Scores Predictive of Severe Disease; Genetic and Genomic Medicine. 2020. [(accessed on 28 June 2022)]. Available online: http://medrxiv.org/lookup/doi/10.1101/2020.12.14.20248176. - DOI - PMC - PubMed
-
- Schneider W.M., Luna J.M., Hoffmann H.-H., Sánchez-Rivera F.J., Leal A.A., Ashbrook A.W., Le Pen J., Ricardo-Lax I., Michailidis E., Peace A., et al. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Cell. 2021;184:120–132.e14. doi: 10.1016/j.cell.2020.12.006. - DOI - PMC - PubMed
-
- Hoffmann H.-H., Sánchez-Rivera F.J., Schneider W.M., Luna J.M., Soto-Feliciano Y.M., Ashbrook A.W., Le Pen J., Leal A.A., Ricardo-Lax I., Michailidis E., et al. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host Microbe. 2021;29:267–280.e5. doi: 10.1016/j.chom.2020.12.009. - DOI - PMC - PubMed
-
- van der Made C.I., Simons A., Schuurs-Hoeijmakers J., van den Heuvel G., Mantere T., Kersten S., van Deuren R.C., Steehouwer M., van Reijmersdal S.V., Jaeger M., et al. Presence of Genetic Variants Among Young Men with Severe COVID-19. JAMA. 2020;324:663. doi: 10.1001/jama.2020.13719. - DOI - PMC - PubMed
-
- Ellinghaus D., Degenhardt F., Bujanda L., Buti M., Albillos A., Invernizzi P., Fernández J., Prati D., Baselli G., Asselta R., et al. The ABO blood group locus and a chromosome 3 gene cluster associate with SARS-CoV-2 respiratory failure in an Italian-Spanish genome-wide association analysis. medRxiv. 2020 doi: 10.1101/2020.05.31.20114991. - DOI
-
- MacGowan S.A., Barton M.I., Kutuzov M., Dushek O., van der Merwe P.A., Barton G.J. Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19: A case study in affinity predictions of interface variants. PLoS Comput. Biol. 2022;18:e1009922. doi: 10.1371/journal.pcbi.1009922. - DOI - PMC - PubMed
-
- Wang B., Zhao J., Liu S., Feng J., Luo Y., He X., Wang Y., Ge F., Wang J., Ye B., et al. ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants. Emerg. Microbes Infect. 2022;11:1488–1499. doi: 10.1080/22221751.2022.2079426. - DOI - PMC - PubMed
-
- David A., Parkinson N., Peacock T.P., Pairo-Castineira E., Khanna T., Cobat A., Tenesa A., Sancho-Shimizu V., Casanova J.-L., Abel L., et al. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr. Res. Transl. Med. 2022;70:103333. doi: 10.1016/j.retram.2022.103333. - DOI - PMC - PubMed
-
- Rokni M., Heidari Nia M., Sarhadi M., Mirinejad S., Sargazi S., Moudi M., Saravani R., Rahdar S., Kargar M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: A Case-Control Study with Computational Analyses. Appl. Biochem. Biotechnol. 2022;194:3507–3526. doi: 10.1007/s12010-022-03885-w. - DOI - PMC - PubMed
-
- Duman N., Tuncel G., Bisgin A., Bozdogan S.T., Sag S.O., Gul S., Kiraz A., Balta B., Erdogan M., Uyanik B., et al. Analysis of ACE2 and TMPRSS2 coding variants as a risk factor for SARS-CoV-2 from 946 whole-exome sequencing data in the Turkish population. J. Med. Virol. 2022;94:5225–5243. doi: 10.1002/jmv.27976. - DOI - PMC - PubMed
-
- Trimarco J.D., Heaton B.E., Chaparian R.R., Burke K.N., Binder R.A., Gray G.C., Smith C.M., Menachery V.D., Heaton N.S. TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathog. 2021;17:e1009599. doi: 10.1371/journal.ppat.1009599. - DOI - PMC - PubMed
-
- Verma A., Tsao N.L., Thomann L.O., Ho Y.-L., Iyengar S.K., Luoh S.-W., Carr R., Crawford D.C., Efird J.T., Huffman J.E., et al. A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLoS Genet. 2022;18:e1010113. doi: 10.1371/journal.pgen.1010113. - DOI - PMC - PubMed
-
- Jlizi A., Edouard J., Fadhlaoui-Zid K., Frigi S., Debré P., Slim A., Theodorou I., El Gaaied A.B.A., Carpentier W. Identification of the CCR5-Δ32 HIV resistance allele and new mutations of the CCR5 gene in different Tunisian populations. Hum. Immunol. 2007;68:993–1000. doi: 10.1016/j.humimm.2007.10.003. - DOI - PubMed
-
- Khanaliha K., Bokharaei-Salim F., Donyavi T., Nahand J.S., Marjani A., Jamshidi S., Khatami A., Moghaddas M., Esghaei M., Fakhim A. Evaluation of CCR5-Δ32 mutation and HIV-1 surveillance drug-resistance mutations in peripheral blood mononuclear cells of long-term non progressors of HIV-1-infected individuals. Future Virol. 2022;17:429–439. doi: 10.2217/fvl-2021-0028. - DOI
-
- Fath-Elrahman M.H., Alkarsany M., Nour B.Y.M., Abakar A.D., Mhammed A.E., Elzaki S.G., Osman E., Elshafia M., Ahmed E.A. Rating of CCR5-Delta 32 Homozygous Mutation in Sudanese HIV Patients and Sex Workers. WJA. 2022;12:55–64. doi: 10.4236/wja.2022.122005. - DOI
-
- Veerabathiran R., Mansoor S.A., Kalarani I.B., Mohammed V. Gene-editing of CCR5 for the Treatment of HIV: A Novel Therapeutic Approach. TJI. 2022;10:1–11. doi: 10.4274/tji.galenos.2022.47965. - DOI
-
- Abel L., Fellay J., Haas D.W., Schurr E., Srikrishna G., Urbanowski M., Chaturvedi N., Srinivasan S., Johnson D.H., Bishai W.R. Genetics of human susceptibility to active and latent tuberculosis: Present knowledge and future perspectives. Lancet Infect. Dis. 2018;18:e64–e75. doi: 10.1016/S1473-3099(17)30623-0. - DOI - PMC - PubMed
-
- Boisson-Dupuis S., El Baghdadi J., Parvaneh N., Bousfiha A., Bustamante J., Feinberg J., Samarina A., Grant A.V., Janniere L., El Hafidi N., et al. IL-12Rβ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey. PLoS ONE. 2011;6:e18524. doi: 10.1371/journal.pone.0018524. - DOI - PMC - PubMed
-
- Kreins A.Y., Ciancanelli M.J., Okada S., Kong X.-F., Ramírez-Alejo N., Kilic S.S., El Baghdadi J., Nonoyama S., Mahdaviani S.A., Ailal F., et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 2015;212:1641–1662. doi: 10.1084/jem.20140280. - DOI - PMC - PubMed
-
- Boisson-Dupuis S., Ramirez-Alejo N., Li Z., Patin E., Rao G., Kerner G., Lim C.K., Krementsov D.N., Hernandez N., Ma C.S., et al. Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 2018;3:eaau8714. doi: 10.1126/sciimmunol.aau8714. - DOI - PMC - PubMed
-
- de Prost N., Bastard P., Arrestier R., Fourati S., Mahévas M., Burrel S., Dorgham K., Gorochov G., Tandjaoui-Lambiotte Y., Azzaoui I., et al. Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J. Clin. Immunol. 2021;41:536–544. doi: 10.1007/s10875-021-00994-9. - DOI - PMC - PubMed
-
- Koning R., Bastard P., Casanova J.L., Brouwer M.C., van de Beek D., with the Amsterdam U.M.C. COVID-19 Biobank Investigator. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021;47:704–706. doi: 10.1007/s00134-021-06392-4. - DOI - PMC - PubMed
-
- Troya J., Bastard P., Planas-Serra L., Ryan P., Ruiz M., de Carranza M., Torres J., Martínez A., Abel L., Casanova J.-L., et al. Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 2021;41:914–922. doi: 10.1007/s10875-021-01036-0. - DOI - PMC - PubMed
-
- Ghafouri-Fard S., Noroozi R., Vafaee R., Branicki W., Poṡpiech E., Pyrc K., Łabaj P.P., Omrani M.D., Taheri M., Sanak M. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed. Pharmacother. 2020;128:110296. doi: 10.1016/j.biopha.2020.110296. - DOI - PMC - PubMed
-
- Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? IJMS. 2020;21:3474. doi: 10.3390/ijms21103474. - DOI - PMC - PubMed
-
- Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circ. Res. 2000;87:E1–E9. doi: 10.1161/01.RES.87.5.e1. - DOI - PubMed
-
- Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. - DOI - PMC - PubMed
-
- Pinto B.G.G., Oliveira A.E.R., Singh Y., Jimenez L., Gonçalves A.N.A., Ogava R.L.T., Creighton R., Schatzmann Peron J.P., Nakaya H.I. ACE2 Expression Is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J. Infect. Dis. 2020;222:556–563. doi: 10.1093/infdis/jiaa332. - DOI - PMC - PubMed
-
- Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., et al. SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.2020105114. - DOI - PMC - PubMed
-
- McCoy J., Wambier C.G., Vano-Galvan S., Shapiro J., Sinclair R., Ramos P.M., Washenik K., Andrade M., Herrera S., Goren A. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J. Cosmet. Derm. 2020;19:1542–1543. doi: 10.1111/jocd.13455. - DOI - PMC - PubMed
-
- Gibson W.T., Evans D.M., An J., Jones S.J. ACE 2 Coding Variants: A Potential X-linked Risk Factor for COVID-19 Disease. BioRxiv. 2020 doi: 10.1101/2020.04.05.026633. - DOI
-
- Benetti E., Tita R., Spiga O., Ciolfi A., Birolo G., Bruselles A., Doddato G., Giliberti A., Marconi C., Musacchia F., et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet. 2020;28:1602–1614. doi: 10.1038/s41431-020-0691-z. - DOI - PMC - PubMed
-
- Novelli A., Biancolella M., Borgiani P., Cocciadiferro D., Colona V.L., D’Apice M.R., Rogliani P., Zaffina S., Leonardis F., Campana A., et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum. Genom. 2020;14:29. doi: 10.1186/s40246-020-00279-z. - DOI - PMC - PubMed
-
- Fawzy M.S., Ashour H., Shafie A.A.A., Dahman N.B.H., Fares A.M., Antar S., Elnoby A.S., Fouad F.M. The role of angiotensin-converting enzyme 2 (ACE2) genetic variations in COVID-19 infection: A literature review. Egypt J. Med. Hum. Genet. 2022;23:97. doi: 10.1186/s43042-022-00309-6. - DOI
-
- Posadas-Sánchez R., Sánchez-Muñoz F., Guzmán-Martín C.A., Hernández-Díaz Couder A., Rojas-Velasco G., Fragoso J.M., Vargas-Alarcón G. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci. 2021;276:119410. doi: 10.1016/j.lfs.2021.119410. - DOI - PMC - PubMed
-
- Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M., et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28:1195–1199. doi: 10.1002/oby.22831. - DOI - PMC - PubMed
-
- Peacock T.P., Goldhill D.H., Zhou J., Baillon L., Frise R., Swann O.C., Kugathasan R., Penn R., Brown J.C., Sanchez-David R.Y., et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 2021;6:899–909. doi: 10.1038/s41564-021-00908-w. - DOI - PubMed
-
- Roy B.A., Kirchner J.W. Evolutionary dynamics of pathogen resistance and tolerance. Evolution. 2000;54:51–63. - PubMed
-
- Chaganti S., Ma C.S., Bell A.I., Croom-Carter D., Hislop A.D., Tangye S.G., Rickinson A.B. Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood. 2008;112:672–679. doi: 10.1182/blood-2007-10-116269. - DOI - PubMed
-
- Palendira U., Low C., Bell A.I., Ma C.S., Abbott R.J.M., Phan T.G., Riminton D.S., Choo S., Smart J.M., Lougaris V., et al. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J. Exp. Med. 2012;209:913–924. doi: 10.1084/jem.20112391. - DOI - PMC - PubMed
-
- van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–582. doi: 10.1038/s41586-020-2608-y. - DOI - PMC - PubMed
-
- Alharbi N.K., Qasim I., Almasoud A., Aljami H.A., Alenazi M.W., Alhafufi A., Aldibasi O.S., Hashem A.M., Kasem S., Albrahim R., et al. Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Sci. Rep. 2019;9:16292. doi: 10.1038/s41598-019-52730-4. - DOI - PMC - PubMed
-
- Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007. - DOI - PMC - PubMed
-
- Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. doi: 10.1016/j.cell.2020.04.035. - DOI - PMC - PubMed
-
- Bogdanović Z., Marinović-Terzić I., Kuret S., Jerončić A., Bradarić N., Forempoher G., Polašek O., Anđelinović Š., Terzić J. The impact of IL-6 and IL-28B gene polymorphisms on treatment outcome of chronic hepatitis C infection among intravenous drug users in Croatia. PeerJ. 2016;4:e2576. doi: 10.7717/peerj.2576. - DOI - PMC - PubMed
-
- Nattermann J., Vogel M., Berg T., Danta M., Axel B., Mayr C., Bruno R., Tural C., Klausen G., Clotet B., et al. Effect of the interleukin-6 C174G gene polymorphism on treatment of acute and chronic hepatitis C in human immunodeficiency virus coinfected patients. Hepatology. 2007;46:1016–1025. doi: 10.1002/hep.21778. - DOI - PubMed
-
- Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., Hirayama A.V., Mastroiani F., Turtle C.J., Harhay M.O., et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020;8:1233–1244. doi: 10.1016/S2213-2600(20)30404-5. - DOI - PMC - PubMed
-
- Vuille-dit-Bille R.N., Camargo S.M., Emmenegger L., Sasse T., Kummer E., Jando J., Hamie Q.M., Meier C.F., Hunziker S., Forras-Kaufmann Z., et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47:693–705. doi: 10.1007/s00726-014-1889-6. - DOI - PubMed
-
- Wein A.N., McMaster S.R., Takamura S., Dunbar P.R., Cartwright E.K., Hayward S.L., McManus D.T., Shimaoka T., Ueha S., Tsukui T., et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 2019;216:2748–2762. doi: 10.1084/jem.20181308. - DOI - PMC - PubMed
-
- Szyda J., Dobosz P., Stojak J., Sypniewski M., Suchocki T., Kotlarz K., Mroczek M., Stępień M., Słomian D., Butkiewicz S., et al. Beyond GWAS—Could Genetic Differentiation within the Allograft Rejection Pathway Shape Natural Immunity to COVID-19? IJMS. 2022;23:6272. doi: 10.3390/ijms23116272. - DOI - PMC - PubMed
-
- Stravalaci M., Pagani I., Paraboschi E.M., Pedotti M., Doni A., Scavello F., Mapelli S.N., Sironi M., Perucchini C., Varani L., et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol. 2022;23:275–286. doi: 10.1038/s41590-021-01114-w. - DOI - PubMed
-
- Asteris P.G., Gavriilaki E., Touloumenidou T., Koravou E., Koutra M., Papayanni P.G., Pouleres A., Karali V., Lemonis M.E., Mamou A., et al. Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks. J. Cell. Mol. Med. 2022;26:1445–1455. doi: 10.1111/jcmm.17098. - DOI - PMC - PubMed