FGFR Pathway Inhibition in Gastric Cancer: The Golden Era of an Old Target?
Affiliations
Affiliations
- Head and Neck Surgery, National Institute of Oncology, 1122 Budapest, Hungary.
- Oncology Department, University Hospital of Leicester, Leicester LE1 5WW, UK.
- Comprehensive Cancer Center Innsbruck, Department of Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Department of Medical Oncology, Hiwa Cancer Hospital, Sulayamaniyah 46001, Iraq.
- European Institute of Oncology, 20141 Milan, Italy.
- Medical Oncology, Shaqlawa Teaching Hospital, Erbil 44001, Iraq.
- Department of Hematoncology, Kuwait Cancer Control Center (KCCC), Kuwait City 20001, Kuwait.
- Division of Internal Medicine, UT Southwestern Clements University Hospital, Dallas, TX 75390, USA.
- Department of Oncology, College of Medicine and Health Sciences, Hawassa University, Hawassa 1560, Ethiopia.
- Department of Clinical Oncology, BINOR Cancer Hospital, Bannu 28000, Pakistan.
- Cancer Biomarkers Working Group, Oujda 60000, Morocco.
- Unit of Medical Oncology, Department of Clinical Medicine, University of Nairobi, Nairobi 00202, Kenya.
- Oncomédica C. A., Caracas 1040, Venezuela.
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy.
Abstract
Gastric cancer (GC) is the third leading cause of cancer-associated death worldwide. The majority of patients are diagnosed at an advanced/metastatic stage of disease due to a lack of specific symptoms and lack of screening programs, especially in Western countries. Thus, despite the improvement in GC therapeutic opportunities, the survival is disappointing, and the definition of the optimal treatment is still an unmet need. Novel diagnostic techniques were developed in clinical trials in order to characterize the genetic profile of GCs and new potential molecular pathways, such as the Fibroblast Growth Factor Receptor (FGFR) pathway, were identified in order to improve patient's survival by using target therapies. The aim of this review is to summarize the role and the impact of FGFR signaling in GC and to provide an overview regarding the potential effectiveness of anti-FGFR agents in GC treatment in the context of precision medicine.
Keywords: FGFR fusions; FGFR inhibitors; Tyrosine kinase inhibitors; bemarituzumab; fibroblast growth factor receptors; first line; next generation sequencing; precision medicine; target therapy.
Conflict of interest statement
C.G.L. declares employment by Bristol Myers Squibb; A.P. received personal fees from Eli-Lilly, Servier, Merck and MSD. No fees are connected with the submitted paper. The other authors declare no conflict of interest.
Similar articles
Ooki A, Yamaguchi K.Gastric Cancer. 2021 Nov;24(6):1169-1183. doi: 10.1007/s10120-021-01235-z. Epub 2021 Aug 16.PMID: 34398359 Review.
Zhu DL, Tuo XM, Rong Y, Zhang K, Guo Y.J Cancer. 2020 Oct 21;11(24):7264-7275. doi: 10.7150/jca.44727. eCollection 2020.PMID: 33193890 Free PMC article. Review.
Therapeutic targeting of fibroblast growth factor receptors in gastric cancer.
Inokuchi M, Fujimori Y, Otsuki S, Sato Y, Nakagawa M, Kojima K.Gastroenterol Res Pract. 2015;2015:796380. doi: 10.1155/2015/796380. Epub 2015 Apr 27.PMID: 26000013 Free PMC article. Review.
Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors.
Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P, Tabernero J.Ann Oncol. 2014 Mar;25(3):552-563. doi: 10.1093/annonc/mdt419. Epub 2013 Nov 20.PMID: 24265351 Free PMC article. Review.
FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention.
De Luca A, Esposito Abate R, Rachiglio AM, Maiello MR, Esposito C, Schettino C, Izzo F, Nasti G, Normanno N.Int J Mol Sci. 2020 Sep 18;21(18):6856. doi: 10.3390/ijms21186856.PMID: 32962091 Free PMC article. Review.
Cited by
Ferrari A, Fiocca R, Bonora E, Domizio C, Fonzi E, Angeli D, Domenico Raulli G, Mattioli S, Martinelli G, Molinari C.Genes (Basel). 2023 Apr 15;14(4):918. doi: 10.3390/genes14040918.PMID: 37107676 Free PMC article.
Recent Advances in the Systemic Treatment of Localized Gastroesophageal Cancer.
Puhr HC, Reiter TJ, Preusser M, Prager GW, Ilhan-Mutlu A.Cancers (Basel). 2023 Mar 22;15(6):1900. doi: 10.3390/cancers15061900.PMID: 36980786 Free PMC article. Review.
Perioperative Tailored Treatments for Gastric Cancer: Times Are Changing.
Lavacchi D, Fancelli S, Buttitta E, Vannini G, Guidolin A, Winchler C, Caliman E, Vannini A, Giommoni E, Brugia M, Cianchi F, Pillozzi S, Roviello G, Antonuzzo L.Int J Mol Sci. 2023 Mar 2;24(5):4877. doi: 10.3390/ijms24054877.PMID: 36902306 Free PMC article. Review.
Recent advances in the management of gastric adenocarcinoma patients.
Rogers JE, Ajani JA.Fac Rev. 2023 Feb 21;12:2. doi: 10.12703/r/12-2. eCollection 2023.PMID: 36873983 Free PMC article. Review.
Recent Trends and Advancements in the Diagnosis and Management of Gastric Cancer.
Haque E, Esmail A, Muhsen I, Salah H, Abdelrahim M.Cancers (Basel). 2022 Nov 15;14(22):5615. doi: 10.3390/cancers14225615.PMID: 36428707 Free PMC article. Review.
References
-
- Muro K., Van Cutsem E., Narita Y., Pentheroudakis G., Baba E., Li J., Ryu M.-H., Zamaniah W.I.W., Yong W.-P., Yeh K.-H., et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: A JSMO–ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann. Oncol. 2019;30:19–33. doi: 10.1093/annonc/mdy502. - DOI - PubMed
-
- Wang J., Xiu J., Baca Y., Battaglin F., Arai H., Kawanishi N., Soni S., Zhang W., Millstein J., Salhia B., et al. Large-scale analysis of KMT2 mutations defines a distinctive molecular subset with treatment implication in gastric cancer. Oncogene. 2021;40:4894–4905. doi: 10.1038/s41388-021-01840-3. - DOI - PubMed
-
- Salem M.E., Puccini A., Xiu J., Raghavan D., Lenz H.-J., Korn W.M., Shields A.F., Philip P.A., Marshall J.L., Goldberg R.M. Comparative Molecular Analyses of Esophageal Squamous Cell Carcinoma, Esophageal Adenocarcinoma, and Gastric Adenocarcinoma. Oncology. 2018;23:1319–1327. doi: 10.1634/theoncologist.2018-0143. - DOI - PMC - PubMed
-
- Van Cutsem E., Bang Y.J., Feng-Yi F., Xu J.M., Lee K.W., Jiao S.C., Chong J.L., López-Sanchez R.I., Price T., Gladkov O., et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015;18:476–484. doi: 10.1007/s10120-014-0402-y. - DOI - PMC - PubMed
-
- Bang Y.-J., Van Cutsem E., Feyereislova A., Chung H.C., Shen L., Sawaki A., Lordick F., Ohtsu A., Omuro Y., Satoh T., et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–697. doi: 10.1016/S0140-6736(10)61121-X. - DOI - PubMed
-
- Chao J., Fuchs C.S., Shitara K., Tabernero J., Muro K., Van Cutsem E., Bang Y.-J., De Vita F., Landers G., Yen C.-J., et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021;7:895–902. doi: 10.1001/jamaoncol.2021.0275. - DOI - PMC - PubMed
-
- Ong S.H., Guy G.R., Hadari Y.R., Laks S., Gotoh N., Schlessinger J., Lax I. FRS2 Proteins Recruit Intracellular Signaling Pathways by Binding to Diverse Targets on Fibroblast Growth Factor and Nerve Growth Factor Receptors. Mol. Cell. Biol. 2000;20:979–989. doi: 10.1128/MCB.20.3.979-989.2000. - DOI - PMC - PubMed
-
- Mandal S., Bandyopadhyay S., Tyagi K., Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188619. doi: 10.1016/j.bbcan.2021.188619. - DOI - PubMed
-
- Kuboki Y., Schatz C.A., Koechert K., Schubert S., Feng J., Wittemer-Rump S., Ziegelbauer K., Krahn T., Nagatsuma A.K., Ochiai A. In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual-color in situ hybridization in a large cohort of gastric cancer patients. Gastric Cancer. 2017;21:401–412. doi: 10.1007/s10120-017-0758-x. - DOI - PMC - PubMed
-
- Kim S.Y., Ahn T., Bang H., Ham J.S., Kim J., Kim S.T., Jang J., Shim M., Kang S.Y., Park S.H., et al. Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget. 2017;8:15014–15022. doi: 10.18632/oncotarget.14788. - DOI - PMC - PubMed
-
- de Almeida Carvalho L.M., de Oliveira Sapori Avelar S., Haslam A., Gill J., Prasad V. Estimation of Percentage of Patients with Fibroblast Growth Factor Receptor Alterations Eligible for Off-label Use of Erdafitinib. JAMA Netw. Open. 2019;2:e1916091. doi: 10.1001/jamanetworkopen.2019.16091. - DOI - PMC - PubMed
-
- Perera T.P., Jovcheva E., Mevellec L., Vialard J., De Lange D., Verhulst T., Paulussen C., Van De Ven K., King P., Freyne E., et al. Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Mol. Cancer Ther. 2017;16:1010–1020. doi: 10.1158/1535-7163.MCT-16-0589. - DOI - PubMed
-
- Liu P.C.C., Koblish H., Wu L., Bowman K., Diamond S., DiMatteo D., Zhang Y., Hansbury M., Rupar M., Wen X., et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE. 2020;15:e0231877. doi: 10.1371/journal.pone.0231877. - DOI - PMC - PubMed
-
- Vogel A., Sahai V., Hollebecque A., Vaccaro G., Melisi D., Al-Rajabi R., Paulson A.S., Borad M.J., Gallinson D., Murphy A.G., et al. LBA40—FIGHT-202: A phase II study of pemigatinib in patients (pts) with previously treated locally advanced or metastatic cholangiocarcinoma (CCA) Ann. Oncol. 2019;30:v876. doi: 10.1093/annonc/mdz394.031. - DOI
-
- Yuan M., Zhu Z., Mao W., Wang H., Qian H., Wu J., Guo X., Xu Q. Anlotinib Combined with Anti-PD-1 Antibodies Therapy in Patients with Advanced Refractory Solid Tumors: A Single-Center, Observational, Prospective Study. Front. Oncol. 2021;11:683502. doi: 10.3389/fonc.2021.683502. - DOI - PMC - PubMed
-
- Deng N., Goh L.K., Wang H., Das K., Tao J., Tan I., Zhang S., Lee M., Wu J., Lim K.H., et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–684. doi: 10.1136/gutjnl-2011-301839. - DOI - PMC - PubMed
-
- Yamamoto Y., Matsui J., Matsushima T., Obaishi H., Miyazaki K., Nakamura K., Tohyama O., Semba T., Yamaguchi A., Hoshi S.S., et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell. 2014;6:18. doi: 10.1186/2045-824X-6-18. - DOI - PMC - PubMed
-
- Hilberg F., Tontsch-Grunt U., Baum A., Le A.T., Doebele R.C., Lieb S., Gianni D., Voss T., Garin-Chesa P., Haslinger C., et al. Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J. Pharmacol. Exp. Ther. 2017;364:494–503. doi: 10.1124/jpet.117.244129. - DOI - PMC - PubMed
-
- Kim S.T., Jang H.-L., Lee S.J., Lee J., Choi Y.-L., Kim K.-M., Cho J., Park S.H., Park Y.S., Lim H.Y., et al. Pazopanib, a Novel Multitargeted Kinase Inhibitor, Shows Potent In Vitro Antitumor Activity in Gastric Cancer Cell Lines with FGFR2 Amplification. Mol. Cancer Ther. 2014;13:2527–2536. doi: 10.1158/1535-7163.MCT-14-0255. - DOI - PubMed
-
- Gozgit J.M., Wongchenko M., Moran L., Wardwell S., Mohemmad Q.K., Narasimhan N.I., Shakespeare W.C., Wang F., Clackson T., Rivera V.M. Ponatinib (AP24534), a Multitargeted Pan-FGFR Inhibitor with Activity in Multiple FGFR-Amplified or Mutated Cancer Models. Mol. Cancer Ther. 2012;11:690–699. doi: 10.1158/1535-7163.MCT-11-0450. - DOI - PubMed
-
- Meric-Bernstam F., Bahleda R., Hierro C., Sanson M., Bridgewater J., Arkenau H.-T., Tran B., Kelley R.K., Park J.O., Javle M., et al. Futibatinib, an Irreversible FGFR1–4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-21-0697. - DOI - PubMed
-
- Zhao G., Li W.-Y., Chen D., Henry J.R., Li H.-Y., Chen Z., Zia-Ebrahimi M., Bloem L., Zhai Y., Huss K., et al. A Novel, Selective Inhibitor of Fibroblast Growth Factor Receptors That Shows a Potent Broad Spectrum of Antitumor Activity in Several Tumor Xenograft Models. Mol. Cancer Ther. 2011;10:2200–2210. doi: 10.1158/1535-7163.MCT-11-0306. - DOI - PubMed
-
- Ran K., Zeng J., Wan G., He X., Feng Z., Xiang W., Wei W., Hu X., Wang N., Liu Z., et al. Design, synthesis and biological evaluations of a series of Pyrido[1,2-a]pyrimidinone derivatives as novel selective FGFR inhibitors. Eur. J. Med. Chem. 2021;220:113499. doi: 10.1016/j.ejmech.2021.113499. - DOI - PubMed
-
- Paik P.K., Shen R., Berger M.F., Ferry D., Soria J.-C., Mathewson A., Rooney C., Smith N.R., Cullberg M., Kilgour E., et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017;23:5366–5373. doi: 10.1158/1078-0432.CCR-17-0645. - DOI - PMC - PubMed
-
- Kitowska K., Gorska-Arcisz M., Antoun D., Zarczynska I., Czaplinska D., Szczepaniak A., Skladanowski A.C., Wieczorek M., Stanczak A., Skupinska M., et al. MET-Pyk2 Axis Mediates Acquired Resistance to FGFR Inhibition in Cancer Cells. Front. Oncol. 2021;11:633410. doi: 10.3389/fonc.2021.633410. - DOI - PMC - PubMed
-
- Matos I., Goyal L., Cleary J., Voss M., Oh D., Bernstam F.M., Ng C., Iyer G., Ishii N., Hu Y., et al. SO-003-Debio 1347 in patients with gastrointestinal cancers harboring an FGFR gene fusion: Preliminary results. Ann. Oncol. 2019;30:iv122–iv123. doi: 10.1093/annonc/mdz157.002. - DOI
-
- Schmidt K., Moser C., Hellerbrand C., Zieker D., Wagner C., Redekopf J., Schlitt H.J., Geissler E.K., Lang S.A. Targeting Fibroblast Growth Factor Receptor (FGFR) with BGJ398 in a Gastric Cancer Model. Anticancer. Res. 2015;35:6655–6665. - PubMed
-
- Grygielewicz P., Dymek B., Bujak A., Gunerka P., Stanczak A., Lamparska-Przybysz M., Wieczorek M., Dzwonek K., Zdżalik-Bielecka D. Epithelial–mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastric Cancer. 2014;19:53–62. doi: 10.1007/s10120-014-0444-1. - DOI - PMC - PubMed
-
- Tsimafeyeu I., Ludes-Meyers J., Stepanova E., Daeyaert F., Khochenkov D., Joose J.-B., Solomko E., Van Akene K., Peretolchina N., Yin W., et al. Targeting FGFR2 with alofanib (RPT835) shows potent activity in tumour models. Eur. J. Cancer. 2016;61:20–28. doi: 10.1016/j.ejca.2016.03.068. - DOI - PubMed
-
- Li J., Ye Y., Wang M., Lu L., Han C., Zhou Y., Zhang J., Yu Z., Zhang X., Zhao C., et al. The over-expression of FGFR4 could influence the features of gastric cancer cells and inhibit the efficacy of PD173074 and 5-fluorouracil towards gastric cancer. Tumor Biol. 2015;37:6881–6891. doi: 10.1007/s13277-015-4411-1. - DOI - PubMed
-
- Kim S.B., Meric-Bernstam F., Kalyan A., Babich A., Liu R., Tanigawa T., Sommer A., Osada M., Reetz F., Laurent D., et al. First-in-Human Phase I Study of Aprutumab Ixadotin, a Fibroblast Growth Factor Receptor 2 Antibody-Drug Conjugate (BAY 1187982) in Patients with Advanced Cancer. Target Oncol. 2019;14:591–601. doi: 10.1007/s11523-019-00670-4. - DOI - PMC - PubMed
-
- De Vita F., Di Martino N., Fabozzi A., Laterza M.M., Ventriglia J., Savastano B., Petrillo A., Gambardella V., Sforza V., Marano L., et al. Clinical management of advanced gastric cancer: The role of new molecular drugs. World J. Gastroenterol. 2014;20:14537–14558. doi: 10.3748/wjg.v20.i40.14537. - DOI - PMC - PubMed
-
- Van Cutsem E., Bang Y.J., Mansoor W., Petty R.D., Chao Y., Cunningham D., Ferry D.R., Smith N.R., Frewer P., Ratnayake J., et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017;28:1316–1324. doi: 10.1093/annonc/mdx107. - DOI - PubMed
-
- Wang J., Wu D.X., Meng L., Ji G. Anlotinib combined with SOX regimen (S1 (tegafur, gimeracil and oteracil porassium capsules) + oxaliplatin) in treating stage IV gastric cancer: Study protocol for a single-armed and single-centred clinical trial. BMJ Open. 2020;10:e034685. doi: 10.1136/bmjopen-2019-034685. - DOI - PMC - PubMed
-
- Wainberg Z.A., Enzinger P.C., Kang Y.-K., Yamaguchi K., Qin S., Lee K.-W., Oh S.C., Li J., Turk H.M., Teixeira A.C., et al. Randomized double-blind placebo-controlled phase 2 study of bemarituzumab combined with modified FOLFOX6 (mFOLFOX6) in first-line (1L) treatment of advanced gastric/gastroesophageal junction adenocarcinoma (FIGHT) J. Clin. Oncol. 2021;39:160. doi: 10.1200/JCO.2021.39.3_suppl.160. - DOI
-
- Catenacci D.V., Kang Y.-K., Saeed A., Yamaguchi K., Qin S., Lee K.-W., Kim I.-H., Oh S.C., Li J., Turk H.M., et al. FIGHT: A randomized, double-blind, placebo-controlled, phase II study of bemarituzumab (bema) combined with modified FOLFOX6 in 1L FGFR2b+ advanced gastric/gastroesophageal junction adenocarcinoma (GC) J. Clin. Oncol. 2021;39:4010. doi: 10.1200/JCO.2021.39.15_suppl.4010. - DOI
-
- Lau D.K., Luk I.Y., Jenkins L.J., Martin A., Williams D.S., Schoffer K.L., Chionh F., Buchert M., Sjoquist K., Boussioutas A., et al. Rapid Resistance of FGFR-driven Gastric Cancers to Regorafenib and Targeted FGFR Inhibitors can be Overcome by Parallel Inhibition of MEK. Mol. Cancer Ther. 2021;20:704–715. doi: 10.1158/1535-7163.MCT-20-0836. - DOI - PubMed
-
- Zhao B., Dierichs L., Gu J.-N., Trajkovic-Arsic M., Hilger R.A., Savvatakis K., Vega-Rubin-De-Celis S., Liffers S.-T., Peña-Llopis S., Behrens D., et al. TFEB-mediated lysosomal biogenesis and lysosomal drug sequestration confer resistance to MEK inhibition in pancreatic cancer. Cell Death Discov. 2020;6:12. doi: 10.1038/s41420-020-0246-7. - DOI - PMC - PubMed
-
- Englinger B., Kallus S., Senkiv J., Heilos D., Gabler L., Van Schoonhoven S., Terenzi A., Moser P., Pirker C., Timelthaler G., et al. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. J. Exp. Clin. Cancer Res. 2017;36:122. doi: 10.1186/s13046-017-0592-3. - DOI - PMC - PubMed
-
- Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. - DOI - PMC - PubMed
-
- Palakurthi S., Kuraguchi M., Zacharek S.J., Zudaire E., Huang W., Bonal D.M., Liu J., Dhaneshwar A., Depeaux K., Gowaski M.R., et al. The Combined Effect of FGFR Inhibition and PD-1 Blockade Promotes Tumor-Intrinsic Induction of Antitumor Immunity. Cancer Immunol. Res. 2019;7:1457–1471. doi: 10.1158/2326-6066.CIR-18-0595. - DOI - PubMed
-
- Akhand S.S., Liu Z., Purdy S.C., Abdullah A., Lin H., Cresswell G.M., Ratliff T.L., Wendt M.K. Pharmacologic Inhibition of FGFR Modulates the Metastatic Immune Microenvironment and Promotes Response to Immune Checkpoint Blockade. Cancer Immunol. Res. 2020;8:1542–1553. doi: 10.1158/2326-6066.CIR-20-0235. - DOI - PMC - PubMed