FGFR Pathway Inhibition in Gastric Cancer: The Golden Era of an Old Target?

Affiliations

07 January 2022

-

doi: 10.3390/life12010081


Abstract

Gastric cancer (GC) is the third leading cause of cancer-associated death worldwide. The majority of patients are diagnosed at an advanced/metastatic stage of disease due to a lack of specific symptoms and lack of screening programs, especially in Western countries. Thus, despite the improvement in GC therapeutic opportunities, the survival is disappointing, and the definition of the optimal treatment is still an unmet need. Novel diagnostic techniques were developed in clinical trials in order to characterize the genetic profile of GCs and new potential molecular pathways, such as the Fibroblast Growth Factor Receptor (FGFR) pathway, were identified in order to improve patient's survival by using target therapies. The aim of this review is to summarize the role and the impact of FGFR signaling in GC and to provide an overview regarding the potential effectiveness of anti-FGFR agents in GC treatment in the context of precision medicine.

Keywords: FGFR fusions; FGFR inhibitors; Tyrosine kinase inhibitors; bemarituzumab; fibroblast growth factor receptors; first line; next generation sequencing; precision medicine; target therapy.

Conflict of interest statement

C.G.L. declares employment by Bristol Myers Squibb; A.P. received personal fees from Eli-Lilly, Servier, Merck and MSD. No fees are connected with the submitted paper. The other authors declare no conflict of interest.


Similar articles

The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration.

Ooki A, Yamaguchi K.Gastric Cancer. 2021 Nov;24(6):1169-1183. doi: 10.1007/s10120-021-01235-z. Epub 2021 Aug 16.PMID: 34398359 Review.

Fibroblast growth factor receptor signaling as therapeutic targets in female reproductive system cancers.

Zhu DL, Tuo XM, Rong Y, Zhang K, Guo Y.J Cancer. 2020 Oct 21;11(24):7264-7275. doi: 10.7150/jca.44727. eCollection 2020.PMID: 33193890 Free PMC article. Review.

Therapeutic targeting of fibroblast growth factor receptors in gastric cancer.

Inokuchi M, Fujimori Y, Otsuki S, Sato Y, Nakagawa M, Kojima K.Gastroenterol Res Pract. 2015;2015:796380. doi: 10.1155/2015/796380. Epub 2015 Apr 27.PMID: 26000013 Free PMC article. Review.

Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors.

Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P, Tabernero J.Ann Oncol. 2014 Mar;25(3):552-563. doi: 10.1093/annonc/mdt419. Epub 2013 Nov 20.PMID: 24265351 Free PMC article. Review.

FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention.

De Luca A, Esposito Abate R, Rachiglio AM, Maiello MR, Esposito C, Schettino C, Izzo F, Nasti G, Normanno N.Int J Mol Sci. 2020 Sep 18;21(18):6856. doi: 10.3390/ijms21186856.PMID: 32962091 Free PMC article. Review.


Cited by

Detection of a Novel MSI2-C17orf64 Transcript in a Patient with Aggressive Adenocarcinoma of the Gastroesophageal Junction: A Case Report.

Ferrari A, Fiocca R, Bonora E, Domizio C, Fonzi E, Angeli D, Domenico Raulli G, Mattioli S, Martinelli G, Molinari C.Genes (Basel). 2023 Apr 15;14(4):918. doi: 10.3390/genes14040918.PMID: 37107676 Free PMC article.

Recent Advances in the Systemic Treatment of Localized Gastroesophageal Cancer.

Puhr HC, Reiter TJ, Preusser M, Prager GW, Ilhan-Mutlu A.Cancers (Basel). 2023 Mar 22;15(6):1900. doi: 10.3390/cancers15061900.PMID: 36980786 Free PMC article. Review.

Perioperative Tailored Treatments for Gastric Cancer: Times Are Changing.

Lavacchi D, Fancelli S, Buttitta E, Vannini G, Guidolin A, Winchler C, Caliman E, Vannini A, Giommoni E, Brugia M, Cianchi F, Pillozzi S, Roviello G, Antonuzzo L.Int J Mol Sci. 2023 Mar 2;24(5):4877. doi: 10.3390/ijms24054877.PMID: 36902306 Free PMC article. Review.

Recent advances in the management of gastric adenocarcinoma patients.

Rogers JE, Ajani JA.Fac Rev. 2023 Feb 21;12:2. doi: 10.12703/r/12-2. eCollection 2023.PMID: 36873983 Free PMC article. Review.

Recent Trends and Advancements in the Diagnosis and Management of Gastric Cancer.

Haque E, Esmail A, Muhsen I, Salah H, Abdelrahim M.Cancers (Basel). 2022 Nov 15;14(22):5615. doi: 10.3390/cancers14225615.PMID: 36428707 Free PMC article. Review.


References

  1.  
    1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654. - DOI - PubMed
  2.  
    1. Balakrishnan M., George R., Sharma A., Graham D.Y. Changing Trends in Stomach Cancer throughout the World. Curr. Gastroenterol. Rep. 2017;19:36. doi: 10.1007/s11894-017-0575-8. - DOI - PMC - PubMed
  3.  
    1. Luo G., Zhang Y., Guo P., Wang L., Huang Y., Li K. Global patterns and trends in stomach cancer incidence: Age, period and birth cohort analysis. Int. J. Cancer. 2017;141:1333–1344. doi: 10.1002/ijc.30835. - DOI - PubMed
  4.  
    1. Petrillo A., Smyth E.C. 27 years of stomach cancer: Painting a global picture. Lancet Gastroenterol. Hepatol. 2019;5:5–6. doi: 10.1016/S2468-1253(19)30357-7. - DOI - PubMed
  5.  
    1. Tan P., Yeoh K.-G. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology. 2015;149:1153–1162.e3. doi: 10.1053/j.gastro.2015.05.059. - DOI - PubMed
  6.  
    1. Peek R.M., Jr., Blaser M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer. 2002;2:28–37. doi: 10.1038/nrc703. - DOI - PubMed
  7.  
    1. Tramacere I., Negri E., Pelucchi C., Bagnardi V., Rota M., Scotti L., Islami F., Corrao G., La Vecchia C., Boffetta P. A meta-analysis on alcohol drinking and gastric cancer risk. Ann. Oncol. 2011;23:28–36. doi: 10.1093/annonc/mdr135. - DOI - PubMed
  8.  
    1. Smyth E.C., Verheij M., Allum W., Cunningham D., Cervantes A., Arnold D., ESMO Guidelines Committee Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016;27((Suppl. 5)):v38–v49. doi: 10.1093/annonc/mdw350. - DOI - PubMed
  9.  
    1. Muro K., Van Cutsem E., Narita Y., Pentheroudakis G., Baba E., Li J., Ryu M.-H., Zamaniah W.I.W., Yong W.-P., Yeh K.-H., et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: A JSMO–ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann. Oncol. 2019;30:19–33. doi: 10.1093/annonc/mdy502. - DOI - PubMed
  10.  
    1. Wagner A.D., Syn N.L., Moehler M., Grothe W., Yong W.P., Tai B.C., Hol J., Unverzagt S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst. Rev. 2017;8:Cd004064. doi: 10.1002/14651858.CD004064.pub4. - DOI - PMC - PubMed
  11.  
    1. Körfer J., Lordick F., Hacker U.T. Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers. 2021;13:5216. doi: 10.3390/cancers13205216. - DOI - PMC - PubMed
  12.  
    1. Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. doi: 10.1038/nature13480. - DOI - PMC - PubMed
  13.  
    1. Wang J., Xiu J., Baca Y., Battaglin F., Arai H., Kawanishi N., Soni S., Zhang W., Millstein J., Salhia B., et al. Large-scale analysis of KMT2 mutations defines a distinctive molecular subset with treatment implication in gastric cancer. Oncogene. 2021;40:4894–4905. doi: 10.1038/s41388-021-01840-3. - DOI - PubMed
  14.  
    1. Salem M.E., Puccini A., Xiu J., Raghavan D., Lenz H.-J., Korn W.M., Shields A.F., Philip P.A., Marshall J.L., Goldberg R.M. Comparative Molecular Analyses of Esophageal Squamous Cell Carcinoma, Esophageal Adenocarcinoma, and Gastric Adenocarcinoma. Oncology. 2018;23:1319–1327. doi: 10.1634/theoncologist.2018-0143. - DOI - PMC - PubMed
  15.  
    1. Van Cutsem E., Bang Y.J., Feng-Yi F., Xu J.M., Lee K.W., Jiao S.C., Chong J.L., López-Sanchez R.I., Price T., Gladkov O., et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer. 2015;18:476–484. doi: 10.1007/s10120-014-0402-y. - DOI - PMC - PubMed
  16.  
    1. Bang Y.-J., Van Cutsem E., Feyereislova A., Chung H.C., Shen L., Sawaki A., Lordick F., Ohtsu A., Omuro Y., Satoh T., et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–697. doi: 10.1016/S0140-6736(10)61121-X. - DOI - PubMed
  17.  
    1. Petrillo A., Smyth E.C. Biomarkers for Precision Treatment in Gastric Cancer. Visc. Med. 2020;36:364–372. doi: 10.1159/000510489. - DOI - PMC - PubMed
  18.  
    1. Chao J., Fuchs C.S., Shitara K., Tabernero J., Muro K., Van Cutsem E., Bang Y.-J., De Vita F., Landers G., Yen C.-J., et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021;7:895–902. doi: 10.1001/jamaoncol.2021.0275. - DOI - PMC - PubMed
  19.  
    1. Gambardella V., Fleitas T., Tarazona N., Papaccio F., Huerta M., Roselló S., Gimeno-Valiente F., Roda D., Cervantes A. Precision Medicine to Treat Advanced Gastroesophageal Adenocarcinoma: A Work in Progress. J. Clin. Med. 2020;9:3049. doi: 10.3390/jcm9093049. - DOI - PMC - PubMed
  20.  
    1. Liu F.-T., Li N.-G., Zhang Y.-M., Xie W.-C., Yang S.-P., Lu T., Shi Z.-H. Recent advance in the development of novel, selective and potent FGFR inhibitors. Eur. J. Med. Chem. 2019;186:111884. doi: 10.1016/j.ejmech.2019.111884. - DOI - PubMed
  21.  
    1. Roskoski R. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder. Pharmacol. Res. 2019;151:104567. doi: 10.1016/j.phrs.2019.104567. - DOI - PubMed
  22.  
    1. Roy Burman D., Das S., Das C., Bhattacharya R. Alternative splicing modulates cancer aggressiveness: Role in EMT/metastasis and chemoresistance. Mol. Biol. Rep. 2021;48:897–914. doi: 10.1007/s11033-020-06094-y. - DOI - PubMed
  23.  
    1. Holzmann K., Grunt T., Heinzle C., Sampl S., Steinhoff H., Reichmann N., Kleiter M., Hauck M., Marian B. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. J. Nucleic Acids. 2011;2012:950508. doi: 10.1155/2012/950508. - DOI - PMC - PubMed
  24.  
    1. Raju R., Palapetta S.M., Sandhya V.K., Sahu A., Alipoor A., Balakrishnan L., Advani J., George B., Kini K.R., Geetha N.P., et al. A Network Map of FGF-1/FGFR Signaling System. J. Signal Transduct. 2014;2014:962962. doi: 10.1155/2014/962962. - DOI - PMC - PubMed
  25.  
    1. Itoh N., Ornitz D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–569. doi: 10.1016/j.tig.2004.08.007. - DOI - PubMed
  26.  
    1. Del Piccolo N., Sarabipour S., Hristova K. A New Method to Study Heterodimerization of Membrane Proteins and Its Application to Fibroblast Growth Factor Receptors. J. Biol. Chem. 2017;292:1288–1301. doi: 10.1074/jbc.M116.755777. - DOI - PMC - PubMed
  27.  
    1. Ferguson H.R., Smith M.P., Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells. 2021;10:1201. doi: 10.3390/cells10051201. - DOI - PMC - PubMed
  28.  
    1. Ong S.H., Guy G.R., Hadari Y.R., Laks S., Gotoh N., Schlessinger J., Lax I. FRS2 Proteins Recruit Intracellular Signaling Pathways by Binding to Diverse Targets on Fibroblast Growth Factor and Nerve Growth Factor Receptors. Mol. Cell. Biol. 2000;20:979–989. doi: 10.1128/MCB.20.3.979-989.2000. - DOI - PMC - PubMed
  29.  
    1. Arkun Y., Yasemi M. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations. PLoS ONE. 2018;13:e0195513. doi: 10.1371/journal.pone.0195513. - DOI - PMC - PubMed
  30.  
    1. Mossahebi-Mohammadi M., Quan M., Zhang J.-S., Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front. Cell Dev. Biol. 2020;8:79. doi: 10.3389/fcell.2020.00079. - DOI - PMC - PubMed
  31.  
    1. Mandal S., Bandyopadhyay S., Tyagi K., Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188619. doi: 10.1016/j.bbcan.2021.188619. - DOI - PubMed
  32.  
    1. Helsten T., Schwaederle M., Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: Biologic and clinical implications. Cancer Metastasis Rev. 2015;34:479–496. doi: 10.1007/s10555-015-9579-8. - DOI - PMC - PubMed
  33.  
    1. Gu W., Yang J., Wang Y., Xu J., Wang X., Du F., Hu X., Guo H., Song C., Tao R., et al. Comprehensive identification of FGFR1-4 alterations in 5 557 Chinese patients with solid tumors by next-generation sequencing. Am. J. Cancer Res. 2021;11:3893–3906. - PMC - PubMed
  34.  
    1. Sun Y., Li G., Zhu W., He Q., Liu Y., Chen X., Liu J., Lin J., Han-Zhang H., Yang Z., et al. A comprehensive pan-cancer study of fibroblast growth factor receptor aberrations in Chinese cancer patients. Ann. Transl. Med. 2020;8:1290. doi: 10.21037/atm-20-5118. - DOI - PMC - PubMed
  35.  
    1. Cristescu R., Lee J., Nebozhyn M., Kim K.-M., Ting J.C., Wong S.S., Liu J., Yue Y.G., Wang J., Yu K., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015;21:449–456. doi: 10.1038/nm.3850. - DOI - PubMed
  36.  
    1. Kuboki Y., Schatz C.A., Koechert K., Schubert S., Feng J., Wittemer-Rump S., Ziegelbauer K., Krahn T., Nagatsuma A.K., Ochiai A. In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual-color in situ hybridization in a large cohort of gastric cancer patients. Gastric Cancer. 2017;21:401–412. doi: 10.1007/s10120-017-0758-x. - DOI - PMC - PubMed
  37.  
    1. Matsumoto K., Arao T., Hamaguchi T., Shimada Y., Kato K., Oda I., Taniguchi H., Koizumi F., Yanagihara K., Sasaki H., et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br. J. Cancer. 2012;106:727–732. doi: 10.1038/bjc.2011.603. - DOI - PMC - PubMed
  38.  
    1. Lee S.J., Hong J.Y., Kim K., Kim K.-M., Kang S.Y., Lee T., Kim S.T., Park S.H., Park Y.S., Lim H.Y., et al. Detection of Fusion Genes Using a Targeted RNA Sequencing Panel in Gastrointestinal and Rare Cancers. J. Oncol. 2020;2020:4659062. doi: 10.1155/2020/4659062. - DOI - PMC - PubMed
  39.  
    1. Costa R., Carneiro B.A., Taxter T., Tavora F.A., Kalyan A., Pai S.A., Chae Y.K., Giles F.J. FGFR3-TACC3 fusion in solid tumors: Mini review. Oncotarget. 2016;7:55924–55938. doi: 10.18632/oncotarget.10482. - DOI - PMC - PubMed
  40.  
    1. Kim S.Y., Ahn T., Bang H., Ham J.S., Kim J., Kim S.T., Jang J., Shim M., Kang S.Y., Park S.H., et al. Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget. 2017;8:15014–15022. doi: 10.18632/oncotarget.14788. - DOI - PMC - PubMed
  41.  
    1. Zhou Y., Wu C., Lu G., Hu Z., Chen Q., Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J. Cancer. 2020;11:2000–2007. doi: 10.7150/jca.40531. - DOI - PMC - PubMed
  42.  
    1. Nienhüser H., Schmidt T. Angiogenesis and Anti-Angiogenic Therapy in Gastric Cancer. Int. J. Mol. Sci. 2017;19:43. doi: 10.3390/ijms19010043. - DOI - PMC - PubMed
  43.  
    1. Touat M., Ileana E., Postel-Vinay S., André F., Soria J.-C. Targeting FGFR Signaling in Cancer. Clin. Cancer Res. 2015;21:2684–2694. doi: 10.1158/1078-0432.CCR-14-2329. - DOI - PubMed
  44.  
    1. Facchinetti F., Hollebecque A., Bahleda R., Loriot Y., Olaussen K.A., Massard C., Friboulet L. Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clin. Cancer Res. 2019;26:764–774. doi: 10.1158/1078-0432.CCR-19-2035. - DOI - PMC - PubMed
  45.  
    1. de Almeida Carvalho L.M., de Oliveira Sapori Avelar S., Haslam A., Gill J., Prasad V. Estimation of Percentage of Patients with Fibroblast Growth Factor Receptor Alterations Eligible for Off-label Use of Erdafitinib. JAMA Netw. Open. 2019;2:e1916091. doi: 10.1001/jamanetworkopen.2019.16091. - DOI - PMC - PubMed
  46.  
    1. Weaver A., Bossaer J.B. Fibroblast growth factor receptor (FGFR) inhibitors: A review of a novel therapeutic class. J. Oncol. Pharm. Pract. 2020;27:702–710. doi: 10.1177/1078155220983425. - DOI - PubMed
  47.  
    1. Perera T.P., Jovcheva E., Mevellec L., Vialard J., De Lange D., Verhulst T., Paulussen C., Van De Ven K., King P., Freyne E., et al. Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Mol. Cancer Ther. 2017;16:1010–1020. doi: 10.1158/1535-7163.MCT-16-0589. - DOI - PubMed
  48.  
    1. Loriot Y., Necchi A., Park S.H., Garcia-Donas J., Huddart R., Burgess E., Fleming M., Rezazadeh A., Mellado B., Varlamov S., et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019;381:338–348. doi: 10.1056/NEJMoa1817323. - DOI - PubMed
  49.  
    1. Liu P.C.C., Koblish H., Wu L., Bowman K., Diamond S., DiMatteo D., Zhang Y., Hansbury M., Rupar M., Wen X., et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE. 2020;15:e0231877. doi: 10.1371/journal.pone.0231877. - DOI - PMC - PubMed
  50.  
    1. Vogel A., Sahai V., Hollebecque A., Vaccaro G., Melisi D., Al-Rajabi R., Paulson A.S., Borad M.J., Gallinson D., Murphy A.G., et al. LBA40—FIGHT-202: A phase II study of pemigatinib in patients (pts) with previously treated locally advanced or metastatic cholangiocarcinoma (CCA) Ann. Oncol. 2019;30:v876. doi: 10.1093/annonc/mdz394.031. - DOI
  51.  
    1. Xiang H., Chan A.G., Ahene A., Bellovin D.I., Deng R., Hsu A.W., Jeffry U., Palencia S., Powers J., Zanghi J., et al. Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer. mAbs. 2021;13:1981202. doi: 10.1080/19420862.2021.1981202. - DOI - PMC - PubMed
  52.  
    1. Gao Y., Liu P., Shi R. Anlotinib as a molecular targeted therapy for tumors (Review) Oncol. Lett. 2020;20:1001–1014. doi: 10.3892/ol.2020.11685. - DOI - PMC - PubMed
  53.  
    1. Yuan M., Zhu Z., Mao W., Wang H., Qian H., Wu J., Guo X., Xu Q. Anlotinib Combined with Anti-PD-1 Antibodies Therapy in Patients with Advanced Refractory Solid Tumors: A Single-Center, Observational, Prospective Study. Front. Oncol. 2021;11:683502. doi: 10.3389/fonc.2021.683502. - DOI - PMC - PubMed
  54.  
    1. Deng N., Goh L.K., Wang H., Das K., Tao J., Tan I., Zhang S., Lee M., Wu J., Lim K.H., et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–684. doi: 10.1136/gutjnl-2011-301839. - DOI - PMC - PubMed
  55.  
    1. Yamamoto Y., Matsui J., Matsushima T., Obaishi H., Miyazaki K., Nakamura K., Tohyama O., Semba T., Yamaguchi A., Hoshi S.S., et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell. 2014;6:18. doi: 10.1186/2045-824X-6-18. - DOI - PMC - PubMed
  56.  
    1. Wang K., Wang H., Lv Y., Liu H., Liu J., Zhang Y. Camrelizumab combined with lenvatinib in the treatment of gastric cancer with liver metastasis: A case report. Ann. Palliat. Med. 2021;10:803–809. doi: 10.21037/apm-20-2572. - DOI - PubMed
  57.  
    1. Mo D.-C., Luo P.-H., Huang S.-X., Wang H.-L., Huang J.-F. Safety and efficacy of pembrolizumab plus lenvatinib versus pembrolizumab and lenvatinib monotherapies in cancers: A systematic review. Int. Immunopharmacol. 2020;91:107281. doi: 10.1016/j.intimp.2020.107281. - DOI - PubMed
  58.  
    1. Hilberg F., Tontsch-Grunt U., Baum A., Le A.T., Doebele R.C., Lieb S., Gianni D., Voss T., Garin-Chesa P., Haslinger C., et al. Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J. Pharmacol. Exp. Ther. 2017;364:494–503. doi: 10.1124/jpet.117.244129. - DOI - PMC - PubMed
  59.  
    1. Kim S.T., Jang H.-L., Lee S.J., Lee J., Choi Y.-L., Kim K.-M., Cho J., Park S.H., Park Y.S., Lim H.Y., et al. Pazopanib, a Novel Multitargeted Kinase Inhibitor, Shows Potent In Vitro Antitumor Activity in Gastric Cancer Cell Lines with FGFR2 Amplification. Mol. Cancer Ther. 2014;13:2527–2536. doi: 10.1158/1535-7163.MCT-14-0255. - DOI - PubMed
  60.  
    1. Limaye S., Patil D., Akolkar D., Srivastava N., Patil R., Apurwa S., Patil S., John J., Gosavi R., Nesargikar P., et al. Response to pazopanib-based combination regimen in a case of FGFR3 amplified gastric adenocarcinoma. Clin. Case Rep. 2021;9:e04986. doi: 10.1002/ccr3.4986. - DOI - PMC - PubMed
  61.  
    1. Gozgit J.M., Wongchenko M., Moran L., Wardwell S., Mohemmad Q.K., Narasimhan N.I., Shakespeare W.C., Wang F., Clackson T., Rivera V.M. Ponatinib (AP24534), a Multitargeted Pan-FGFR Inhibitor with Activity in Multiple FGFR-Amplified or Mutated Cancer Models. Mol. Cancer Ther. 2012;11:690–699. doi: 10.1158/1535-7163.MCT-11-0450. - DOI - PubMed
  62.  
    1. Meric-Bernstam F., Bahleda R., Hierro C., Sanson M., Bridgewater J., Arkenau H.-T., Tran B., Kelley R.K., Park J.O., Javle M., et al. Futibatinib, an Irreversible FGFR1–4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-21-0697. - DOI - PubMed
  63.  
    1. Ye Y., Jiang D., Li J., Wang M., Han C., Zhang X., Zhao C., Wen J., Kan Q. Silencing of FGFR4 could influence the biological features of gastric cancer cells and its therapeutic value in gastric cancer. Tumor Biol. 2015;37:3185–3195. doi: 10.1007/s13277-015-4100-0. - DOI - PubMed
  64.  
    1. Zhao G., Li W.-Y., Chen D., Henry J.R., Li H.-Y., Chen Z., Zia-Ebrahimi M., Bloem L., Zhai Y., Huss K., et al. A Novel, Selective Inhibitor of Fibroblast Growth Factor Receptors That Shows a Potent Broad Spectrum of Antitumor Activity in Several Tumor Xenograft Models. Mol. Cancer Ther. 2011;10:2200–2210. doi: 10.1158/1535-7163.MCT-11-0306. - DOI - PubMed
  65.  
    1. Michael M., Bang Y.-J., Park Y.S., Kang Y.-K., Kim T.M., Hamid O., Thornton N., Tate S.C., Raddad E., Tie J. A Phase 1 Study of LY2874455, an Oral Selective pan-FGFR Inhibitor, in Patients with Advanced Cancer. Target. Oncol. 2017;12:463–474. doi: 10.1007/s11523-017-0502-9. - DOI - PubMed
  66.  
    1. Ran K., Zeng J., Wan G., He X., Feng Z., Xiang W., Wei W., Hu X., Wang N., Liu Z., et al. Design, synthesis and biological evaluations of a series of Pyrido[1,2-a]pyrimidinone derivatives as novel selective FGFR inhibitors. Eur. J. Med. Chem. 2021;220:113499. doi: 10.1016/j.ejmech.2021.113499. - DOI - PubMed
  67.  
    1. Paik P.K., Shen R., Berger M.F., Ferry D., Soria J.-C., Mathewson A., Rooney C., Smith N.R., Cullberg M., Kilgour E., et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017;23:5366–5373. doi: 10.1158/1078-0432.CCR-17-0645. - DOI - PMC - PubMed
  68.  
    1. Kitowska K., Gorska-Arcisz M., Antoun D., Zarczynska I., Czaplinska D., Szczepaniak A., Skladanowski A.C., Wieczorek M., Stanczak A., Skupinska M., et al. MET-Pyk2 Axis Mediates Acquired Resistance to FGFR Inhibition in Cancer Cells. Front. Oncol. 2021;11:633410. doi: 10.3389/fonc.2021.633410. - DOI - PMC - PubMed
  69.  
    1. Matos I., Goyal L., Cleary J., Voss M., Oh D., Bernstam F.M., Ng C., Iyer G., Ishii N., Hu Y., et al. SO-003-Debio 1347 in patients with gastrointestinal cancers harboring an FGFR gene fusion: Preliminary results. Ann. Oncol. 2019;30:iv122–iv123. doi: 10.1093/annonc/mdz157.002. - DOI
  70.  
    1. Schmidt K., Moser C., Hellerbrand C., Zieker D., Wagner C., Redekopf J., Schlitt H.J., Geissler E.K., Lang S.A. Targeting Fibroblast Growth Factor Receptor (FGFR) with BGJ398 in a Gastric Cancer Model. Anticancer. Res. 2015;35:6655–6665. - PubMed
  71.  
    1. Grygielewicz P., Dymek B., Bujak A., Gunerka P., Stanczak A., Lamparska-Przybysz M., Wieczorek M., Dzwonek K., Zdżalik-Bielecka D. Epithelial–mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastric Cancer. 2014;19:53–62. doi: 10.1007/s10120-014-0444-1. - DOI - PMC - PubMed
  72.  
    1. Li K., Deng X., Feng G., Chen Y. Knockdown of Bcl-2-Associated Athanogene-3 Can Enhance the Efficacy of BGJ398 via Suppressing Migration and Inducing Apoptosis in Gastric Cancer. Dig. Dis. Sci. 2020;66:3036–3044. doi: 10.1007/s10620-020-06640-5. - DOI - PubMed
  73.  
    1. Tsimafeyeu I., Ludes-Meyers J., Stepanova E., Daeyaert F., Khochenkov D., Joose J.-B., Solomko E., Van Akene K., Peretolchina N., Yin W., et al. Targeting FGFR2 with alofanib (RPT835) shows potent activity in tumour models. Eur. J. Cancer. 2016;61:20–28. doi: 10.1016/j.ejca.2016.03.068. - DOI - PubMed
  74.  
    1. Li J., Ye Y., Wang M., Lu L., Han C., Zhou Y., Zhang J., Yu Z., Zhang X., Zhao C., et al. The over-expression of FGFR4 could influence the features of gastric cancer cells and inhibit the efficacy of PD173074 and 5-fluorouracil towards gastric cancer. Tumor Biol. 2015;37:6881–6891. doi: 10.1007/s13277-015-4411-1. - DOI - PubMed
  75.  
    1. Kim S.B., Meric-Bernstam F., Kalyan A., Babich A., Liu R., Tanigawa T., Sommer A., Osada M., Reetz F., Laurent D., et al. First-in-Human Phase I Study of Aprutumab Ixadotin, a Fibroblast Growth Factor Receptor 2 Antibody-Drug Conjugate (BAY 1187982) in Patients with Advanced Cancer. Target Oncol. 2019;14:591–601. doi: 10.1007/s11523-019-00670-4. - DOI - PMC - PubMed
  76.  
    1. De Vita F., Di Martino N., Fabozzi A., Laterza M.M., Ventriglia J., Savastano B., Petrillo A., Gambardella V., Sforza V., Marano L., et al. Clinical management of advanced gastric cancer: The role of new molecular drugs. World J. Gastroenterol. 2014;20:14537–14558. doi: 10.3748/wjg.v20.i40.14537. - DOI - PMC - PubMed
  77.  
    1. Van Cutsem E., Bang Y.J., Mansoor W., Petty R.D., Chao Y., Cunningham D., Ferry D.R., Smith N.R., Frewer P., Ratnayake J., et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017;28:1316–1324. doi: 10.1093/annonc/mdx107. - DOI - PubMed
  78.  
    1. Wang J., Wu D.X., Meng L., Ji G. Anlotinib combined with SOX regimen (S1 (tegafur, gimeracil and oteracil porassium capsules) + oxaliplatin) in treating stage IV gastric cancer: Study protocol for a single-armed and single-centred clinical trial. BMJ Open. 2020;10:e034685. doi: 10.1136/bmjopen-2019-034685. - DOI - PMC - PubMed
  79.  
    1. Wainberg Z.A., Enzinger P.C., Kang Y.-K., Yamaguchi K., Qin S., Lee K.-W., Oh S.C., Li J., Turk H.M., Teixeira A.C., et al. Randomized double-blind placebo-controlled phase 2 study of bemarituzumab combined with modified FOLFOX6 (mFOLFOX6) in first-line (1L) treatment of advanced gastric/gastroesophageal junction adenocarcinoma (FIGHT) J. Clin. Oncol. 2021;39:160. doi: 10.1200/JCO.2021.39.3_suppl.160. - DOI
  80.  
    1. Catenacci D.V., Kang Y.-K., Saeed A., Yamaguchi K., Qin S., Lee K.-W., Kim I.-H., Oh S.C., Li J., Turk H.M., et al. FIGHT: A randomized, double-blind, placebo-controlled, phase II study of bemarituzumab (bema) combined with modified FOLFOX6 in 1L FGFR2b+ advanced gastric/gastroesophageal junction adenocarcinoma (GC) J. Clin. Oncol. 2021;39:4010. doi: 10.1200/JCO.2021.39.15_suppl.4010. - DOI
  81.  
    1. Zhang J., Tang P.M.K., Zhou Y., Cheng A.S.L., Yu J., Kang W., To K.F. Targeting the Oncogenic FGF-FGFR Axis in Gastric Carcinogenesis. Cells. 2019;8:637. doi: 10.3390/cells8060637. - DOI - PMC - PubMed
  82.  
    1. Lau D.K., Luk I.Y., Jenkins L.J., Martin A., Williams D.S., Schoffer K.L., Chionh F., Buchert M., Sjoquist K., Boussioutas A., et al. Rapid Resistance of FGFR-driven Gastric Cancers to Regorafenib and Targeted FGFR Inhibitors can be Overcome by Parallel Inhibition of MEK. Mol. Cancer Ther. 2021;20:704–715. doi: 10.1158/1535-7163.MCT-20-0836. - DOI - PubMed
  83.  
    1. Zhao B., Dierichs L., Gu J.-N., Trajkovic-Arsic M., Hilger R.A., Savvatakis K., Vega-Rubin-De-Celis S., Liffers S.-T., Peña-Llopis S., Behrens D., et al. TFEB-mediated lysosomal biogenesis and lysosomal drug sequestration confer resistance to MEK inhibition in pancreatic cancer. Cell Death Discov. 2020;6:12. doi: 10.1038/s41420-020-0246-7. - DOI - PMC - PubMed
  84.  
    1. Englinger B., Kallus S., Senkiv J., Heilos D., Gabler L., Van Schoonhoven S., Terenzi A., Moser P., Pirker C., Timelthaler G., et al. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. J. Exp. Clin. Cancer Res. 2017;36:122. doi: 10.1186/s13046-017-0592-3. - DOI - PMC - PubMed
  85.  
    1. de Klerk D.J., Honeywell R.J., Jansen G., Peters G.J. Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers. 2018;10:503. doi: 10.3390/cancers10120503. - DOI - PMC - PubMed
  86.  
    1. Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., Erdin S.U., Huynh T., Medina D., Colella P., et al. TFEB Links Autophagy to Lysosomal Biogenesis. Science. 2011;332:1429–1433. doi: 10.1126/science.1204592. - DOI - PMC - PubMed
  87.  
    1. Medina D.L., Di Paola S., Peluso I., Armani A., De Stefani D., Venditti R., Montefusco S., Rosato A.S., Prezioso C., Forrester A., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015;17:288–299. doi: 10.1038/ncb3114. - DOI - PMC - PubMed
  88.  
    1. Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. - DOI - PMC - PubMed
  89.  
    1. Palakurthi S., Kuraguchi M., Zacharek S.J., Zudaire E., Huang W., Bonal D.M., Liu J., Dhaneshwar A., Depeaux K., Gowaski M.R., et al. The Combined Effect of FGFR Inhibition and PD-1 Blockade Promotes Tumor-Intrinsic Induction of Antitumor Immunity. Cancer Immunol. Res. 2019;7:1457–1471. doi: 10.1158/2326-6066.CIR-18-0595. - DOI - PubMed
  90.  
    1. Akhand S.S., Liu Z., Purdy S.C., Abdullah A., Lin H., Cresswell G.M., Ratliff T.L., Wendt M.K. Pharmacologic Inhibition of FGFR Modulates the Metastatic Immune Microenvironment and Promotes Response to Immune Checkpoint Blockade. Cancer Immunol. Res. 2020;8:1542–1553. doi: 10.1158/2326-6066.CIR-20-0235. - DOI - PMC - PubMed