College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia.
College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia.
School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia.
Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia.
Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia.
Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia.
Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, King Saud University Medical City, Riyadh 11451, Saudi Arabia.
Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait.
Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait.
Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK.
Microbiology Department, College of Medicine, Jabriya 46300, Kuwait.
Core Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia.
Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia.
Division of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA.
Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia.
Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan.
Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan.
Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia.
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.
Popović Dragonjić L, Jovanović M, Vrbić M, Nastić A, Djordjević M, Veljković M.Medicina (Kaunas). 2022 Nov 15;58(11):1650. doi: 10.3390/medicina58111650.PMID: 36422189 Free PMC article.
References
Gay N.J. The theory of measles elimination: Implications for the design of elimination strategies. J. Infect. Dis. 2004;189:S27–S35. - PubMed
Nambulli S., Sharp C.R., Acciardo A.S., Drexler J.F., Duprex W.P. Mapping the evolutionary trajectories of morbilliviruses: What, where and whither. Curr. Opin. Virol. 2016;16:95–105. doi: 10.1016/j.coviro.2016.01.019. - DOI - PMC - PubMed
Gibney K.B., Attwood L.O., Nicholson S., Tran T., Druce J., Healy J., Strachan J., Franklin L., Hall R., Cross G.B. Emergence of attenuated measles illness among IgG-positive/IgM-negative measles cases: Victoria, Australia, 2008–2017. Clin. Infect. Dis. 2020;70:1060–1067. doi: 10.1093/cid/ciz363. - DOI - PubMed
Moss W.J., Strebel P. Biological feasibility of measles eradication. J. Infect. Dis. 2011;204:S47–S53. doi: 10.1093/infdis/jir065. - DOI - PMC - PubMed
Dabbagh A., Laws R.L., Steulet C., Dumolard L., Mulders M.N., Kretsinger K., Alexander J.P., Rota P.A., Goodson J.L. Progress toward regional measles elimination—Worldwide, 2000–2017. Morb. Mortal. Wkly. Rep. 2018;67:1323. doi: 10.15585/mmwr.mm6747a6. - DOI - PMC - PubMed
Ayasoufi K., Pfaller C.K. Seek and hide: The manipulating interplay of measles virus with the innate immune system. Curr. Opin. Virol. 2020;41:18–30. doi: 10.1016/j.coviro.2020.03.001. - DOI - PubMed
De Pietro C., Camenzind P., Sturny I., Crivelli L., Edwards-Garavoglia S., Spranger A., Wittenbecher F., Quentin W., World Health Organization . Health Systems in Transition. Volume 17 Regional Office for Europe, World Health Organization; Copenhagen, Denmark: 2015. Switzerland: Health system review. - PubMed
Memish Z.A., Bamgboye E.A., Mohammed M., AlHakeem R., Al-Tawfiq J.A., Assiri A. Secular trend and epidemiology of measles in the Kingdom of Saudi Arabia: 2009–2012. Travel Med. Infect. Dis. 2015;13:74–79. doi: 10.1016/j.tmaid.2014.11.009. - DOI - PubMed
Ferreira C.S.A., Frenzke M., Leonard V.H., Welstead G.G., Richardson C.D., Cattaneo R. Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150) J. Virol. 2010;84:3033–3042. doi: 10.1128/JVI.01559-09. - DOI - PMC - PubMed
Ludlow M., McQuaid S., Milner D., de Swart R.L., Duprex W.P. Pathological consequences of systemic measles virus infection. J. Pathol. 2015;235:253–265. doi: 10.1002/path.4457. - DOI - PubMed
Hope K., Boyd R., Conaty S., Maywood P. Measles transmission in health care waiting rooms: Implications for public health response. West. Pac. Surveill. Response J. WPSAR. 2012;3:33. doi: 10.5365/wpsar.2012.3.3.009. - DOI - PMC - PubMed
Lessler J., Reich N.G., Brookmeyer R., Perl T.M., Nelson K.E., Cummings D.A. Incubation periods of acute respiratory viral infections: A systematic review. Lancet Infect. Dis. 2009;9:291–300. doi: 10.1016/S1473-3099(09)70069-6. - DOI - PMC - PubMed
Riddell M.A., Moss W.J., Hauer D., Monze M., Griffin D.E. Slow clearance of measles virus RNA after acute infection. J. Clin. Virol. 2007;39:312–317. doi: 10.1016/j.jcv.2007.05.006. - DOI - PubMed
Guerra F.M., Bolotin S., Lim G., Heffernan J., Deeks S.L., Li Y., Crowcroft N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect. Dis. 2017;17:e420–e428. doi: 10.1016/S1473-3099(17)30307-9. - DOI - PubMed
Griffin D.E. Handbook of Clinical Neurology. Volume 123. Elsevier; New York, NY, USA: 2014. Measles virus and the nervous system; pp. 577–590. - PubMed
Wallinga J., Heijne J.C.M., Kretzschmar M. A measles epidemic threshold in a highly vaccinated population. PLoS Med. 2005;2:e316. doi: 10.1371/journal.pmed.0020316. - DOI - PMC - PubMed
Moss W.J., Ryon J.J., Monze M., Griffin D.E. Differential regulation of interleukin (IL)–4, IL-5, and IL-10 during measles in Zambian children. J. Infect. Dis. 2002;186:879–887. doi: 10.1086/344230. - DOI - PubMed
Jones-Engel L., Engel G.A., Schillaci M.A., Lee B., Heidrich J., Chalise M., Kyes R.C. Considering human–primate transmission of measles virus through the prism of risk analysis. Am. J. Primatol. 2006;68:868–879. doi: 10.1002/ajp.20294. - DOI - PubMed
Ferrari M.J., Grais R.F., Bharti N., Conlan A.J., Bjørnstad O.N., Wolfson L.J., Guerin P.J., Djibo A., Grenfell B.T. The dynamics of measles in sub-Saharan Africa. Nature. 2008;451:679–684. doi: 10.1038/nature06509. - DOI - PubMed
Leuridan E., Hens N., Hutse V., Ieven M., Aerts M., Van Damme P. Early waning of maternal measles antibodies in era of measles elimination: Longitudinal study. BMJ. 2010;340:c1626. doi: 10.1136/bmj.c1626. - DOI - PubMed
Waaijenborg S., Hahné S.J., Mollema L., Smits G.P., Berbers G.A., van der Klis F.R., de Melker H.E., Wallinga J. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 2013;208:10–16. doi: 10.1093/infdis/jit143. - DOI - PMC - PubMed
Durrheim D.N., Crowcroft N.S., Strebel P.M. Measles–The epidemiology of elimination. Vaccine. 2014;32:6880–6883. doi: 10.1016/j.vaccine.2014.10.061. - DOI - PubMed
De Vries R.D., McQuaid S., Van Amerongen G., Yüksel S., Verburgh R.J., Osterhaus A.D., Duprex W.P., De Swart R.L. Measles immune suppression: Lessons from the macaque model. PLoS Pathog. 2012;8:e1002885. doi: 10.1371/journal.ppat.1002885. - DOI - PMC - PubMed
Mühlebach M.D., Mateo M., Sinn P.L., Prüfer S., Uhlig K.M., Leonard V.H., Navaratnarajah C.K., Frenzke M., Wong X.X., Sawatsky B. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480:530–533. doi: 10.1038/nature10639. - DOI - PMC - PubMed
Tatsuo H., Ono N., Tanaka K., Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406:893–897. doi: 10.1038/35022579. - DOI - PubMed
Tahara M., Ohno S., Sakai K., Ito Y., Fukuhara H., Komase K., Brindley M.A., Rota P.A., Plemper R.K., Maenaka K. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J. Virol. 2013;87:3583–3586. doi: 10.1128/JVI.03029-12. - DOI - PMC - PubMed
Plattet P., Alves L., Herren M., Aguilar H.C. Measles virus fusion protein: Structure, function and inhibition. Viruses. 2016;8:112. doi: 10.3390/v8040112. - DOI - PMC - PubMed
Jiang Y., Qin Y., Chen M. Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses. 2016;8:308. doi: 10.3390/v8110308. - DOI - PMC - PubMed
Penedos A.R., Myers R., Hadef B., Aladin F., Brown K.E. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS ONE. 2015;10:e0143081. doi: 10.1371/journal.pone.0143081. - DOI - PMC - PubMed
Perry R.T., Murray J.S., Gacic-Dobo M., Dabbagh A., Mulders M.N., Strebel P.M., Okwo-Bele J.-M., Rota P.A., Goodson J.L. Progress toward regional measles elimination—Worldwide, 2000–2014. Morb. Mortal. Wkly. Rep. 2015;64:1246–1251. doi: 10.15585/mmwr.mm6444a4. - DOI - PubMed
Fulton B.O., Sachs D., Beaty S.M., Won S.T., Lee B., Palese P., Heaton N.S. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep. 2015;11:1331–1338. doi: 10.1016/j.celrep.2015.04.054. - DOI - PMC - PubMed
De Swart R.L., Ludlow M., De Witte L., Yanagi Y., Van Amerongen G., McQuaid S., Yüksel S., Geijtenbeek T.B.H., Duprex W.P., Osterhaus A.D.E. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 2007;3:e178. doi: 10.1371/journal.ppat.0030178. - DOI - PMC - PubMed
Singh B.K., Li N., Mark A.C., Mateo M., Cattaneo R., Sinn P.L. Cell-to-cell contact and nectin-4 govern spread of measles virus from primary human myeloid cells to primary human airway epithelial cells. J. Virol. 2016;90:6808–6817. doi: 10.1128/JVI.00266-16. - DOI - PMC - PubMed
Noyce R.S., Bondre D.G., Ha M.N., Lin L.-T., Sisson G., Tsao M.-S., Richardson C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011;7:e1002240. doi: 10.1371/journal.ppat.1002240. - DOI - PMC - PubMed
Nimmerjahn F., Ravetch J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008;8:34–47. doi: 10.1038/nri2206. - DOI - PubMed
Gonçalves-Carneiro D., McKeating J.A., Bailey D. The measles virus receptor SLAMF1 can mediate particle endocytosis. J. Virol. 2017;91:e02216–e02255. doi: 10.1128/JVI.02255-16. - DOI - PMC - PubMed
Lamb R.A. Fields Virology. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. Paramyxoviridae: The viruses and their replication.
Leonard V.H., Sinn P.L., Hodge G., Miest T., Devaux P., Oezguen N., Braun W., McCray P.B., McChesney M.B., Cattaneo R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008;118:2448–2458. doi: 10.1172/JCI35454. - DOI - PMC - PubMed
Lin W.-H.W., Kouyos R.D., Adams R.J., Grenfell B.T., Griffin D.E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc. Natl. Acad. Sci. USA. 2012;109:14989–14994. doi: 10.1073/pnas.1211138109. - DOI - PMC - PubMed
Gupta S.N., Gupta N., Gupta S. Modified measles versus rubella versus atypical measles: One and same thing. J. Fam. Med. Prim. Care. 2015;4:566. doi: 10.4103/2249-4863.174290. - DOI - PMC - PubMed
Mizumoto K., Kobayashi T., Chowell G. Transmission potential of modified measles during an outbreak, Japan, March–May 2018. Eurosurveillance. 2018;23:1800239. doi: 10.2807/1560-7917.ES.2018.23.24.1800239. - DOI - PMC - PubMed
Griffin D., Pan C.-H. Measles: Old vaccines, new vaccines. Measles. 2009;330:191–212. - PubMed
Barbosa J.R., Martins A.S., Ruivo J., Carvalho L. Fever and rash: Revisiting measles. Acta Médica Port. 2018;31:341–345. doi: 10.20344/amp.9776. - DOI - PubMed
Sindhu T., Geeta M., Krishnakumar P., Sabitha S., Ajina K. Clinical profile of measles in children with special reference to infants. Trop. Dr. 2019;49:20–23. doi: 10.1177/0049475518804695. - DOI - PubMed
Lemon K., de Vries R.D., Mesman A.W., McQuaid S., van Amerongen G., Yüksel S., Ludlow M., Rennick L.J., Kuiken T., Rima B.K. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 2011;7:e1001263. doi: 10.1371/journal.ppat.1001263. - DOI - PMC - PubMed
Devaux P., Hodge G., McChesney M.B., Cattaneo R. Attenuation of V-or C-defective measles viruses: Infection control by the inflammatory and interferon responses of rhesus monkeys. J. Virol. 2008;82:5359–5367. doi: 10.1128/JVI.00169-08. - DOI - PMC - PubMed
Marie J.C., Kehren J., Trescol-Biémont M.-C., Evlashev A., Valentin H., Walzer T., Tedone R., Loveland B., Nicolas J.-F., Rabourdin-Combe C. Mechanism of measles virus–induced suppression of inflammatory immune responses. Immunity. 2001;14:69–79. doi: 10.1016/S1074-7613(01)00090-5. - DOI - PubMed
Erlenhöfer C., Duprex W.P., Rima B.K., Ter Meulen V., Schneider-Schaulies J. Analysis of receptor (CD46, CD150) usage by measles virus. J. Gen. Virol. 2002;83:1431–1436. doi: 10.1099/0022-1317-83-6-1431. - DOI - PubMed
Bieback K., Lien E., Klagge I.M., Avota E., Schneider-Schaulies J.R., Duprex W.P., Wagner H., Kirschning C.J., Ter Meulen V., Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 2002;76:8729–8736. doi: 10.1128/JVI.76.17.8729-8736.2002. - DOI - PMC - PubMed
Hayden M., West A., Ghosh S. NF-κB and the immune response. Oncogene. 2006;25:6758–6780. doi: 10.1038/sj.onc.1209943. - DOI - PubMed
Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. - DOI - PMC - PubMed
Laksono B.M., de Vries R.D., Verburgh R.J., Visser E.G., de Jong A., Fraaij P.L., Ruijs W.L., Nieuwenhuijse D.F., van den Ham H.-J., Koopmans M.P. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat. Commun. 2018;9:4944. doi: 10.1038/s41467-018-07515-0. - DOI - PMC - PubMed
Polack F.P., Hoffman S.J., Moss W.J., Griffin D.E. Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J. Infect. Dis. 2002;185:13–19. doi: 10.1086/338009. - DOI - PubMed
Griffin D.E. The immune response in measles: Virus control, clearance and protective immunity. Viruses. 2016;8:282. doi: 10.3390/v8100282. - DOI - PMC - PubMed
Couper K.N., Blount D.G., Riley E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008;180:5771–5777. doi: 10.4049/jimmunol.180.9.5771. - DOI - PubMed
Yu X.-l., Cheng Y.-M., Shi B.-S., Qian F.-X., Wang F.-B., Liu X.-N., Yang H.-Y., Xu Q.-N., Qi T.-K., Zha L.-J. Measles virus infection in adults induces production of IL-10 and is associated with increased CD4+ CD25+ regulatory T cells. J. Immunol. 2008;181:7356–7366. doi: 10.4049/jimmunol.181.10.7356. - DOI - PubMed
Petrova V.N., Sawatsky B., Han A.X., Laksono B.M., Walz L., Parker E., Pieper K., Anderson C.A., de Vries R.D., Lanzavecchia A. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci. Immunol. 2019;4:eaay6125. doi: 10.1126/sciimmunol.aay6125. - DOI - PubMed
Stebegg M., Kumar S.D., Silva-Cayetano A., Fonseca V.R., Linterman M.A., Graca L. Regulation of the germinal center response. Front. Immunol. 2018;9:2469. doi: 10.3389/fimmu.2018.02469. - DOI - PMC - PubMed
Griffin D.E. Measles virus-induced suppression of immune responses. Immunol. Rev. 2010;236:176–189. doi: 10.1111/j.1600-065X.2010.00925.x. - DOI - PMC - PubMed
Tough D.F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma. 2004;45:257–264. doi: 10.1080/1042819031000149368. - DOI - PubMed
Takeuchi O., Akira S. Innate immunity to virus infection. Immunol. Rev. 2009;227:75–86. doi: 10.1111/j.1600-065X.2008.00737.x. - DOI - PMC - PubMed
Taniguchi M., Yanagi Y., Ohno S. Both type I and type III interferons are required to restrict measles virus growth in lung epithelial cells. Arch. Virol. 2019;164:439–446. doi: 10.1007/s00705-018-4087-0. - DOI - PubMed
Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019;19:614–625. doi: 10.1038/s41577-019-0182-z. - DOI - PubMed
Ikegame S., Takeda M., Ohno S., Nakatsu Y., Nakanishi Y., Yanagi Y. Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J. Virol. 2010;84:372–379. doi: 10.1128/JVI.01690-09. - DOI - PMC - PubMed
Mura M., Combredet C., Najburg V., Sanchez David R.Y., Tangy F., Komarova A.V. Nonencapsidated 5′ copy-back defective interfering genomes produced by recombinant measles viruses are recognized by RIG-I and LGP2 but not MDA5. J. Virol. 2017;91:e00617–e00643. doi: 10.1128/JVI.00643-17. - DOI - PMC - PubMed
Takeuchi K., Kadota S.-I., Takeda M., Miyajima N., Nagata K. Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett. 2003;545:177–182. doi: 10.1016/S0014-5793(03)00528-3. - DOI - PubMed
Platanitis E., Demiroz D., Schneller A., Fischer K., Capelle C., Hartl M., Gossenreiter T., Müller M., Novatchkova M., Decker T. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat. Commun. 2019;10:2921. doi: 10.1038/s41467-019-10970-y. - DOI - PMC - PubMed
Kurokawa C., Iankov I.D., Galanis E. A key anti-viral protein, RSAD2/VIPERIN, restricts the release of measles virus from infected cells. Virus Res. 2019;263:145–150. doi: 10.1016/j.virusres.2019.01.014. - DOI - PMC - PubMed
Hartner J.C., Walkley C.R., Lu J., Orkin S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. - DOI - PMC - PubMed
Liddicoat B.J., Piskol R., Chalk A.M., Ramaswami G., Higuchi M., Hartner J.C., Li J.B., Seeburg P.H., Walkley C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–1120. doi: 10.1126/science.aac7049. - DOI - PMC - PubMed
Pfaller C.K., Cattaneo R., Schnell M.J. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology. 2015;479:331–344. doi: 10.1016/j.virol.2015.01.029. - DOI - PMC - PubMed
Ramachandran A., Horvath C.M. Dissociation of paramyxovirus interferon evasion activities: Universal and virus-specific requirements for conserved V protein amino acids in MDA5 interference. J. Virol. 2010;84:11152–11163. doi: 10.1128/JVI.01375-10. - DOI - PMC - PubMed
Caignard G., Guerbois M., Labernardière J.-L., Jacob Y., Jones L.M., The Infectious Mapping Project I-MAP, Wild F., Tangy F., Vidalain P.O. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-α/β signaling. Virology. 2007;368:351–362. doi: 10.1016/j.virol.2007.06.037. - DOI - PubMed
Ramachandran A., Parisien J.-P., Horvath C.M. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J. Virol. 2008;82:8330–8338. doi: 10.1128/JVI.00831-08. - DOI - PMC - PubMed
Devaux P., Priniski L., Cattaneo R. The measles virus phosphoprotein interacts with the linker domain of STAT1. Virology. 2013;444:250–256. doi: 10.1016/j.virol.2013.06.019. - DOI - PMC - PubMed
Devaux P., von Messling V., Songsungthong W., Springfeld C., Cattaneo R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology. 2007;360:72–83. doi: 10.1016/j.virol.2006.09.049. - DOI - PubMed
Yokota S.-I., Saito H., Kubota T., Yokosawa N., Amano K.-I., Fujii N. Measles virus suppresses interferon-α signaling pathway: Suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology. 2003;306:135–146. doi: 10.1016/S0042-6822(02)00026-0. - DOI - PubMed
Childs K., Randall R., Goodbourn S. Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction. J. Virol. 2012;86:3411–3421. doi: 10.1128/JVI.06405-11. - DOI - PMC - PubMed
Rodriguez K.R., Horvath C.M. Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition. J. Virol. 2014;88:8180–8188. doi: 10.1128/JVI.00737-14. - DOI - PMC - PubMed
Nakatsu Y., Takeda M., Ohno S., Shirogane Y., Iwasaki M., Yanagi Y. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol. 2008;82:8296–8306. doi: 10.1128/JVI.00108-08. - DOI - PMC - PubMed
Pfaller C.K., Radeke M.J., Cattaneo R., Samuel C.E. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J. Virol. 2014;88:456–468. doi: 10.1128/JVI.02572-13. - DOI - PMC - PubMed
Runge S., Sparrer K.M., Lässig C., Hembach K., Baum A., Garcia-Sastre A., Söding J., Conzelmann K.-K., Hopfner K.-P. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 2014;10:e1004081. doi: 10.1371/journal.ppat.1004081. - DOI - PMC - PubMed
Chung H., Calis J.J., Wu X., Sun T., Yu Y., Sarbanes S.L., Thi V.L.D., Shilvock A.R., Hoffmann H.-H., Rosenberg B.R. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell. 2018;172:811–824.e14. doi: 10.1016/j.cell.2017.12.038. - DOI - PMC - PubMed
Bellini W.J., Helfand R.F. The challenges and strategies for laboratory diagnosis of measles in an international setting. J. Infect. Dis. 2003;187:S283–S290. doi: 10.1086/368040. - DOI - PubMed
Young M.K., Nimmo G.R., Cripps A.W., Jones M.A. Post-exposure passive immunisation for preventing measles. Cochrane Database Syst. Rev. 2014;4:CD010056. doi: 10.1002/14651858.CD010056.pub2. - DOI - PubMed
Permar S.R., Klumpp S.A., Mansfield K.G., Carville A.A., Gorgone D.A., Lifton M.A., Schmitz J.E., Reimann K.A., Polack F.P., Griffin D.E. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J. Infect. Dis. 2004;190:998–1005. doi: 10.1086/422846. - DOI - PubMed
Moss W.J., Cutts F., Griffin D.E. Implications of the human immunodeficiency virus epidemic for control and eradication of measles. Clin. Infect. Dis. 1999;29:106–112. doi: 10.1086/520136. - DOI - PubMed
Leone M., Mönkäre J., Bouwstra J.A., Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017;34:2223–2240. doi: 10.1007/s11095-017-2223-2. - DOI - PMC - PubMed
Ludlow M., de Vries R.D., Lemon K., McQuaid S., Millar E., van Amerongen G., Yüksel S., Verburgh R.J., Osterhaus A.D., de Swart R.L. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. J. Gen. Virol. 2013;94:1933–1944. doi: 10.1099/vir.0.054650-0. - DOI - PubMed
Abt M., Gassert E., Schneider-Schaulies S. Measles virus modulates chemokine release and chemotactic responses of dendritic cells. J. Gen. Virol. 2009;90:909–914. doi: 10.1099/vir.0.008581-0. - DOI - PubMed
De Vries R.D., de Swart R.L. Measles immune suppression: Functional impairment or numbers game? PLoS Pathog. 2014;10:e1004482. doi: 10.1371/journal.ppat.1004482. - DOI - PMC - PubMed
Mina M.J., Kula T., Leng Y., Li M., De Vries R.D., Knip M., Siljander H., Rewers M., Choy D.F., Wilson M.S. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366:599–606. doi: 10.1126/science.aay6485. - DOI - PMC - PubMed
Mina M.J., Metcalf C.J.E., De Swart R.L., Osterhaus A., Grenfell B.T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348:694–699. doi: 10.1126/science.aaa3662. - DOI - PMC - PubMed
Hasham K., Ahmed N., Zeshan B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN Appl. Sci. 2020;2:442. doi: 10.1007/s42452-020-2251-0. - DOI
Maltezou H.C., Wicker S. Measles in health-care settings. Am. J. Infect. Control. 2013;41:661–663. doi: 10.1016/j.ajic.2012.09.017. - DOI - PubMed
Cohen B., Doblas D., Andrews N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine. 2008;26:6392–6397. doi: 10.1016/j.vaccine.2008.08.074. - DOI - PubMed
Dimech W., Mulders M.N. A review of testing used in seroprevalence studies on measles and rubella. Vaccine. 2016;34:4119–4122. doi: 10.1016/j.vaccine.2016.06.006. - DOI - PubMed
Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C.P., McLaughlin P.J. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. - DOI - PMC - PubMed
Choe Y.J., Hu J.K., Song K.M., Cho H., Yoon H.S., Kim S.T., Lee H.J., Kim K., Bae G.-R., Lee J.-K. Evaluation of an expanded case definition for vaccine-modified measles in a school outbreak in South Korea in 2010. Jpn. J. Infect. Dis. 2012;65:371–375. doi: 10.7883/yoken.65.371. - DOI - PubMed
Mulders M.N., Rota P.A., Icenogle J.P., Brown K.E., Takeda M., Rey G.J., Mamou M.C.B., Dosseh A.R., Byabamazima C.R., Ahmed H.J. Global measles and rubella laboratory network support for elimination goals, 2010–2015. Morb. Mortal. Wkly. Rep. 2016;65:438–442. doi: 10.15585/mmwr.mm6517a3. - DOI - PubMed
Stevens G.A., Bennett J.E., Hennocq Q., Lu Y., De-Regil L.M., Rogers L., Danaei G., Li G., White R.A., Flaxman S.R. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health. 2015;3:e528–e536. doi: 10.1016/S2214-109X(15)00039-X. - DOI - PubMed
Ogbuanu I.U., Zeko S., Chu S.Y., Muroua C., Gerber S., De Wee R., Kretsinger K., Wannemuehler K., Gerndt K., Allies M. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009–2010. Clin. Infect. Dis. 2014;58:1086–1092. doi: 10.1093/cid/ciu037. - DOI - PubMed
Hardie D.R., Albertyn C., Heckmann J.M., Smuts H.E. Molecular characterisation of virus in the brains of patients with measles inclusion body encephalitis (MIBE) Virol. J. 2013;10:283. doi: 10.1186/1743-422X-10-283. - DOI - PMC - PubMed
Wendorf K.A., Winter K., Zipprich J., Schechter R., Hacker J.K., Preas C., Cherry J.D., Glaser C., Harriman K. Subacute sclerosing panencephalitis: The devastating measles complication that might be more common than previously estimated. Clin. Infect. Dis. 2017;65:226–232. doi: 10.1093/cid/cix302. - DOI - PubMed
Ahmed E.M., Solyman S.M., Mohamed N., Boseila A.A., Hanora A. Antiviral activity of Ribavirin nano-particles against measles virus. Cell. Mol. Biol. 2018;64:24–32. doi: 10.14715/cmb/2018.64.9.4. - DOI - PubMed
Kabra S.K., Lodha R. Antibiotics for preventing complications in children with measles. Cochrane Database Syst. Rev. 2013;8:CD001477. doi: 10.1002/14651858.CD001477.pub4. - DOI - PMC - PubMed
Kauffmann F., Heffernan C., Meurice F., Ota M.O., Vetter V., Casabona G. Measles, mumps, rubella prevention: How can we do better? Expert Rev. Vaccines. 2021;20:811–826. doi: 10.1080/14760584.2021.1927722. - DOI - PubMed
Danova I. A review of measles virus. PROBLEMS Infect. Parasit. Dis. 2021;49:5–13.
Roberts L. How COVID hurt the fight against other dangerous diseases. Nature. 2021:502–504. doi: 10.1038/d41586-021-01022-x. - DOI - PubMed
Al-Abdullah N. A measles outbreak in a refugee community in Jeddah City, Saudi Arabia. J. Hosp. Infect. 2018;100:e264–e265. doi: 10.1016/j.jhin.2018.05.018. - DOI - PubMed
Mostafa I., Islam S.F., Mondal P., Faruque A., Ahmed T., Hossain M.I. Factors affecting low coverage of the vitamin A supplementation program among young children admitted in an urban diarrheal treatment facility in Bangladesh. Glob. Health Action. 2019;12:1588513. doi: 10.1080/16549716.2019.1588513. - DOI - PMC - PubMed
Barnard D.L. Inhibitors of measles virus. Antivir. Chem. Chemother. 2004;15:111–119. doi: 10.1177/095632020401500301. - DOI - PubMed
VanderEnde K., Gacic-Dobo M., Diallo M.S., Conklin L.M., Wallace A.S. Global routine vaccination coverage—2017. Morb. Mortal. Wkly. Rep. 2018;67:1261. doi: 10.15585/mmwr.mm6745a2. - DOI - PMC - PubMed
Edens C., Collins M.L., Ayers J., Rota P.A., Prausnitz M.R. Measles vaccination using a microneedle patch. Vaccine. 2013;31:3403–3409. doi: 10.1016/j.vaccine.2012.09.062. - DOI - PMC - PubMed
Joyce J.C., Carroll T.D., Collins M.L., Chen M.-H., Fritts L., Dutra J.C., Rourke T.L., Goodson J.L., McChesney M.B., Prausnitz M.R. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J. Infect. Dis. 2018;218:124–132. doi: 10.1093/infdis/jiy139. - DOI - PMC - PubMed
Edens C., Collins M.L., Goodson J.L., Rota P.A., Prausnitz M.R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33:4712–4718. doi: 10.1016/j.vaccine.2015.02.074. - DOI - PMC - PubMed
Lochlainn L.M.N., de Gier B., van der Maas N., Strebel P.M., Goodman T., van Binnendijk R.S., de Melker H.E., Hahné S.J. Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: A systematic review and meta-analysis. Lancet Infect. Dis. 2019;19:1235–1245. doi: 10.1016/S1473-3099(19)30395-0. - DOI - PMC - PubMed
Hughes S.L., Bolotin S., Khan S., Li Y., Johnson C., Friedman L., Tricco A.C., Hahné S.J., Heffernan J.M., Dabbagh A. The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness–A systematic review. Vaccine. 2020;38:460–469. doi: 10.1016/j.vaccine.2019.10.090. - DOI - PMC - PubMed
Carazo S., Billard M.-N., Boutin A., De Serres G. Effect of age at vaccination on the measles vaccine effectiveness and immunogenicity: Systematic review and meta-analysis. BMC Infect. Dis. 2020;20:251. doi: 10.1186/s12879-020-4870-x. - DOI - PMC - PubMed
Venekamp R.P., Sanders S.L., Glasziou P.P., Del Mar C.B., Rovers M.M. Antibiotics for acute otitis media in children. Cochrane Database Syst. Rev. 2015;1:CD000219. doi: 10.1002/14651858.CD000219.pub4. - DOI - PMC - PubMed
Khalil M.K., Al-Mazrou Y.Y., AlHowasi M.N., Al-Jeffri M. Measles in Saudi Arabia: From control to elimination. Ann. Saudi Med. 2005;25:324–328. doi: 10.5144/0256-4947.2005.324. - DOI - PMC - PubMed
Jahan S., Al Saigul A.M., Abu Baker M.A.M., Alataya A.O., Hamed S.A.R. Measles outbreak in Qassim, Saudi Arabia 2007: Epidemiology and evaluation of outbreak response. J. Public Health. 2008;30:384–390. doi: 10.1093/pubmed/fdn070. - DOI - PubMed