Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection

Affiliations


Abstract

Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.

Keywords: MCV1; immunity; immunosuppression; measles; vaccine.

Conflict of interest statement

The authors declare no conflict of interest.


Similar articles

Global control and regional elimination of measles, 2000-2011.

Centers for Disease Control and Prevention (CDC).MMWR Morb Mortal Wkly Rep. 2013 Jan 18;62(2):27-31.PMID: 23325353 Free PMC article.

Prospects for the eradication of infectious diseases.

Stuart-Harris C.Rev Infect Dis. 1984 May-Jun;6(3):405-11. doi: 10.1093/clinids/6.3.405.PMID: 6377445 Review.

Progress Toward Regional Measles Elimination - Worldwide, 2000-2017.

Dabbagh A, Laws RL, Steulet C, Dumolard L, Mulders MN, Kretsinger K, Alexander JP, Rota PA, Goodson JL.MMWR Morb Mortal Wkly Rep. 2018 Nov 30;67(47):1323-1329. doi: 10.15585/mmwr.mm6747a6.PMID: 30496160 Free PMC article.

Progress Toward Regional Measles Elimination - Worldwide, 2000-2018.

Patel MK, Dumolard L, Nedelec Y, Sodha SV, Steulet C, Gacic-Dobo M, Kretsinger K, McFarland J, Rota PA, Goodson JL.MMWR Morb Mortal Wkly Rep. 2019 Dec 6;68(48):1105-1111. doi: 10.15585/mmwr.mm6848a1.PMID: 31805033 Free PMC article.

Eradication of measles: remaining challenges.

Holzmann H, Hengel H, Tenbusch M, Doerr HW.Med Microbiol Immunol. 2016 Jun;205(3):201-8. doi: 10.1007/s00430-016-0451-4. Epub 2016 Mar 2.PMID: 26935826 Free PMC article. Review.


Cited by

The Occurrence of Acute Pancreatitis in Adult Patients during a Measles Outbreak from November 2017 to May 2018 in Southeastern Serbia.

Popović Dragonjić L, Jovanović M, Vrbić M, Nastić A, Djordjević M, Veljković M.Medicina (Kaunas). 2022 Nov 15;58(11):1650. doi: 10.3390/medicina58111650.PMID: 36422189 Free PMC article.


References

  1.  
    1. Gay N.J. The theory of measles elimination: Implications for the design of elimination strategies. J. Infect. Dis. 2004;189:S27–S35. - PubMed
  2.  
    1. Nambulli S., Sharp C.R., Acciardo A.S., Drexler J.F., Duprex W.P. Mapping the evolutionary trajectories of morbilliviruses: What, where and whither. Curr. Opin. Virol. 2016;16:95–105. doi: 10.1016/j.coviro.2016.01.019. - DOI - PMC - PubMed
  3.  
    1. Gibney K.B., Attwood L.O., Nicholson S., Tran T., Druce J., Healy J., Strachan J., Franklin L., Hall R., Cross G.B. Emergence of attenuated measles illness among IgG-positive/IgM-negative measles cases: Victoria, Australia, 2008–2017. Clin. Infect. Dis. 2020;70:1060–1067. doi: 10.1093/cid/ciz363. - DOI - PubMed
  4.  
    1. Moss W.J., Strebel P. Biological feasibility of measles eradication. J. Infect. Dis. 2011;204:S47–S53. doi: 10.1093/infdis/jir065. - DOI - PMC - PubMed
  5.  
    1. Dabbagh A., Laws R.L., Steulet C., Dumolard L., Mulders M.N., Kretsinger K., Alexander J.P., Rota P.A., Goodson J.L. Progress toward regional measles elimination—Worldwide, 2000–2017. Morb. Mortal. Wkly. Rep. 2018;67:1323. doi: 10.15585/mmwr.mm6747a6. - DOI - PMC - PubMed
  6.  
    1. Patel M.K., Dumolard L., Nedelec Y., Sodha S.V., Steulet C., Gacic-Dobo M., Kretsinger K., McFarland J., Rota P.A., Goodson J.L. Progress toward regional measles elimination—Worldwide, 2000–2018. Morb. Mortal. Wkly. Rep. 2019;68:1105. doi: 10.15585/mmwr.mm6848a1. - DOI - PMC - PubMed
  7.  
    1. Ayasoufi K., Pfaller C.K. Seek and hide: The manipulating interplay of measles virus with the innate immune system. Curr. Opin. Virol. 2020;41:18–30. doi: 10.1016/j.coviro.2020.03.001. - DOI - PubMed
  8.  
    1. Measles, Mumps, and Rubella (MMR) Vaccination: What Everyone Should Know. [(accessed on 16 March 2022)]. Available online: https://www.cdc.gov/vaccines/vpd/mmr/public/index.html.
  9.  
    1. De Pietro C., Camenzind P., Sturny I., Crivelli L., Edwards-Garavoglia S., Spranger A., Wittenbecher F., Quentin W., World Health Organization . Health Systems in Transition. Volume 17 Regional Office for Europe, World Health Organization; Copenhagen, Denmark: 2015. Switzerland: Health system review. - PubMed
  10.  
    1. Memish Z.A., Bamgboye E.A., Mohammed M., AlHakeem R., Al-Tawfiq J.A., Assiri A. Secular trend and epidemiology of measles in the Kingdom of Saudi Arabia: 2009–2012. Travel Med. Infect. Dis. 2015;13:74–79. doi: 10.1016/j.tmaid.2014.11.009. - DOI - PubMed
  11.  
    1. Ferreira C.S.A., Frenzke M., Leonard V.H., Welstead G.G., Richardson C.D., Cattaneo R. Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150) J. Virol. 2010;84:3033–3042. doi: 10.1128/JVI.01559-09. - DOI - PMC - PubMed
  12.  
    1. Ludlow M., McQuaid S., Milner D., de Swart R.L., Duprex W.P. Pathological consequences of systemic measles virus infection. J. Pathol. 2015;235:253–265. doi: 10.1002/path.4457. - DOI - PubMed
  13.  
    1. Hope K., Boyd R., Conaty S., Maywood P. Measles transmission in health care waiting rooms: Implications for public health response. West. Pac. Surveill. Response J. WPSAR. 2012;3:33. doi: 10.5365/wpsar.2012.3.3.009. - DOI - PMC - PubMed
  14.  
    1. Lessler J., Reich N.G., Brookmeyer R., Perl T.M., Nelson K.E., Cummings D.A. Incubation periods of acute respiratory viral infections: A systematic review. Lancet Infect. Dis. 2009;9:291–300. doi: 10.1016/S1473-3099(09)70069-6. - DOI - PMC - PubMed
  15.  
    1. Riddell M.A., Moss W.J., Hauer D., Monze M., Griffin D.E. Slow clearance of measles virus RNA after acute infection. J. Clin. Virol. 2007;39:312–317. doi: 10.1016/j.jcv.2007.05.006. - DOI - PubMed
  16.  
    1. Guerra F.M., Bolotin S., Lim G., Heffernan J., Deeks S.L., Li Y., Crowcroft N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect. Dis. 2017;17:e420–e428. doi: 10.1016/S1473-3099(17)30307-9. - DOI - PubMed
  17.  
    1. Griffin D.E. Handbook of Clinical Neurology. Volume 123. Elsevier; New York, NY, USA: 2014. Measles virus and the nervous system; pp. 577–590. - PubMed
  18.  
    1. Wallinga J., Heijne J.C.M., Kretzschmar M. A measles epidemic threshold in a highly vaccinated population. PLoS Med. 2005;2:e316. doi: 10.1371/journal.pmed.0020316. - DOI - PMC - PubMed
  19.  
    1. Moss W.J., Ryon J.J., Monze M., Griffin D.E. Differential regulation of interleukin (IL)–4, IL-5, and IL-10 during measles in Zambian children. J. Infect. Dis. 2002;186:879–887. doi: 10.1086/344230. - DOI - PubMed
  20.  
    1. Jones-Engel L., Engel G.A., Schillaci M.A., Lee B., Heidrich J., Chalise M., Kyes R.C. Considering human–primate transmission of measles virus through the prism of risk analysis. Am. J. Primatol. 2006;68:868–879. doi: 10.1002/ajp.20294. - DOI - PubMed
  21.  
    1. Ferrari M.J., Grais R.F., Bharti N., Conlan A.J., Bjørnstad O.N., Wolfson L.J., Guerin P.J., Djibo A., Grenfell B.T. The dynamics of measles in sub-Saharan Africa. Nature. 2008;451:679–684. doi: 10.1038/nature06509. - DOI - PubMed
  22.  
    1. Leuridan E., Hens N., Hutse V., Ieven M., Aerts M., Van Damme P. Early waning of maternal measles antibodies in era of measles elimination: Longitudinal study. BMJ. 2010;340:c1626. doi: 10.1136/bmj.c1626. - DOI - PubMed
  23.  
    1. Waaijenborg S., Hahné S.J., Mollema L., Smits G.P., Berbers G.A., van der Klis F.R., de Melker H.E., Wallinga J. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 2013;208:10–16. doi: 10.1093/infdis/jit143. - DOI - PMC - PubMed
  24.  
    1. Durrheim D.N., Crowcroft N.S., Strebel P.M. Measles–The epidemiology of elimination. Vaccine. 2014;32:6880–6883. doi: 10.1016/j.vaccine.2014.10.061. - DOI - PubMed
  25.  
    1. De Vries R.D., McQuaid S., Van Amerongen G., Yüksel S., Verburgh R.J., Osterhaus A.D., Duprex W.P., De Swart R.L. Measles immune suppression: Lessons from the macaque model. PLoS Pathog. 2012;8:e1002885. doi: 10.1371/journal.ppat.1002885. - DOI - PMC - PubMed
  26.  
    1. Mühlebach M.D., Mateo M., Sinn P.L., Prüfer S., Uhlig K.M., Leonard V.H., Navaratnarajah C.K., Frenzke M., Wong X.X., Sawatsky B. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480:530–533. doi: 10.1038/nature10639. - DOI - PMC - PubMed
  27.  
    1. Tatsuo H., Ono N., Tanaka K., Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406:893–897. doi: 10.1038/35022579. - DOI - PubMed
  28.  
    1. Tahara M., Ohno S., Sakai K., Ito Y., Fukuhara H., Komase K., Brindley M.A., Rota P.A., Plemper R.K., Maenaka K. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope. J. Virol. 2013;87:3583–3586. doi: 10.1128/JVI.03029-12. - DOI - PMC - PubMed
  29.  
    1. Plattet P., Alves L., Herren M., Aguilar H.C. Measles virus fusion protein: Structure, function and inhibition. Viruses. 2016;8:112. doi: 10.3390/v8040112. - DOI - PMC - PubMed
  30.  
    1. Jiang Y., Qin Y., Chen M. Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses. 2016;8:308. doi: 10.3390/v8110308. - DOI - PMC - PubMed
  31.  
    1. Penedos A.R., Myers R., Hadef B., Aladin F., Brown K.E. Assessment of the utility of whole genome sequencing of measles virus in the characterisation of outbreaks. PLoS ONE. 2015;10:e0143081. doi: 10.1371/journal.pone.0143081. - DOI - PMC - PubMed
  32.  
    1. Perry R.T., Murray J.S., Gacic-Dobo M., Dabbagh A., Mulders M.N., Strebel P.M., Okwo-Bele J.-M., Rota P.A., Goodson J.L. Progress toward regional measles elimination—Worldwide, 2000–2014. Morb. Mortal. Wkly. Rep. 2015;64:1246–1251. doi: 10.15585/mmwr.mm6444a4. - DOI - PubMed
  33.  
    1. Fulton B.O., Sachs D., Beaty S.M., Won S.T., Lee B., Palese P., Heaton N.S. Mutational analysis of measles virus suggests constraints on antigenic variation of the glycoproteins. Cell Rep. 2015;11:1331–1338. doi: 10.1016/j.celrep.2015.04.054. - DOI - PMC - PubMed
  34.  
    1. De Swart R.L., Ludlow M., De Witte L., Yanagi Y., Van Amerongen G., McQuaid S., Yüksel S., Geijtenbeek T.B.H., Duprex W.P., Osterhaus A.D.E. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog. 2007;3:e178. doi: 10.1371/journal.ppat.0030178. - DOI - PMC - PubMed
  35.  
    1. Singh B.K., Li N., Mark A.C., Mateo M., Cattaneo R., Sinn P.L. Cell-to-cell contact and nectin-4 govern spread of measles virus from primary human myeloid cells to primary human airway epithelial cells. J. Virol. 2016;90:6808–6817. doi: 10.1128/JVI.00266-16. - DOI - PMC - PubMed
  36.  
    1. Noyce R.S., Bondre D.G., Ha M.N., Lin L.-T., Sisson G., Tsao M.-S., Richardson C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011;7:e1002240. doi: 10.1371/journal.ppat.1002240. - DOI - PMC - PubMed
  37.  
    1. Nimmerjahn F., Ravetch J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008;8:34–47. doi: 10.1038/nri2206. - DOI - PubMed
  38.  
    1. Gonçalves-Carneiro D., McKeating J.A., Bailey D. The measles virus receptor SLAMF1 can mediate particle endocytosis. J. Virol. 2017;91:e02216–e02255. doi: 10.1128/JVI.02255-16. - DOI - PMC - PubMed
  39.  
    1. Lamb R.A. Fields Virology. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. Paramyxoviridae: The viruses and their replication.
  40.  
    1. Leonard V.H., Sinn P.L., Hodge G., Miest T., Devaux P., Oezguen N., Braun W., McCray P.B., McChesney M.B., Cattaneo R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Investig. 2008;118:2448–2458. doi: 10.1172/JCI35454. - DOI - PMC - PubMed
  41.  
    1. Lin W.-H.W., Kouyos R.D., Adams R.J., Grenfell B.T., Griffin D.E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc. Natl. Acad. Sci. USA. 2012;109:14989–14994. doi: 10.1073/pnas.1211138109. - DOI - PMC - PubMed
  42.  
    1. Gupta S.N., Gupta N., Gupta S. Modified measles versus rubella versus atypical measles: One and same thing. J. Fam. Med. Prim. Care. 2015;4:566. doi: 10.4103/2249-4863.174290. - DOI - PMC - PubMed
  43.  
    1. Mizumoto K., Kobayashi T., Chowell G. Transmission potential of modified measles during an outbreak, Japan, March–May 2018. Eurosurveillance. 2018;23:1800239. doi: 10.2807/1560-7917.ES.2018.23.24.1800239. - DOI - PMC - PubMed
  44.  
    1. Griffin D., Pan C.-H. Measles: Old vaccines, new vaccines. Measles. 2009;330:191–212. - PubMed
  45.  
    1. Barbosa J.R., Martins A.S., Ruivo J., Carvalho L. Fever and rash: Revisiting measles. Acta Médica Port. 2018;31:341–345. doi: 10.20344/amp.9776. - DOI - PubMed
  46.  
    1. Sindhu T., Geeta M., Krishnakumar P., Sabitha S., Ajina K. Clinical profile of measles in children with special reference to infants. Trop. Dr. 2019;49:20–23. doi: 10.1177/0049475518804695. - DOI - PubMed
  47.  
    1. Lemon K., de Vries R.D., Mesman A.W., McQuaid S., van Amerongen G., Yüksel S., Ludlow M., Rennick L.J., Kuiken T., Rima B.K. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 2011;7:e1001263. doi: 10.1371/journal.ppat.1001263. - DOI - PMC - PubMed
  48.  
    1. Devaux P., Hodge G., McChesney M.B., Cattaneo R. Attenuation of V-or C-defective measles viruses: Infection control by the inflammatory and interferon responses of rhesus monkeys. J. Virol. 2008;82:5359–5367. doi: 10.1128/JVI.00169-08. - DOI - PMC - PubMed
  49.  
    1. Marie J.C., Kehren J., Trescol-Biémont M.-C., Evlashev A., Valentin H., Walzer T., Tedone R., Loveland B., Nicolas J.-F., Rabourdin-Combe C. Mechanism of measles virus–induced suppression of inflammatory immune responses. Immunity. 2001;14:69–79. doi: 10.1016/S1074-7613(01)00090-5. - DOI - PubMed
  50.  
    1. Erlenhöfer C., Duprex W.P., Rima B.K., Ter Meulen V., Schneider-Schaulies J. Analysis of receptor (CD46, CD150) usage by measles virus. J. Gen. Virol. 2002;83:1431–1436. doi: 10.1099/0022-1317-83-6-1431. - DOI - PubMed
  51.  
    1. Bieback K., Lien E., Klagge I.M., Avota E., Schneider-Schaulies J.R., Duprex W.P., Wagner H., Kirschning C.J., Ter Meulen V., Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 2002;76:8729–8736. doi: 10.1128/JVI.76.17.8729-8736.2002. - DOI - PMC - PubMed
  52.  
    1. Hayden M., West A., Ghosh S. NF-κB and the immune response. Oncogene. 2006;25:6758–6780. doi: 10.1038/sj.onc.1209943. - DOI - PubMed
  53.  
    1. Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. - DOI - PMC - PubMed
  54.  
    1. Laksono B.M., de Vries R.D., Verburgh R.J., Visser E.G., de Jong A., Fraaij P.L., Ruijs W.L., Nieuwenhuijse D.F., van den Ham H.-J., Koopmans M.P. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat. Commun. 2018;9:4944. doi: 10.1038/s41467-018-07515-0. - DOI - PMC - PubMed
  55.  
    1. Polack F.P., Hoffman S.J., Moss W.J., Griffin D.E. Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J. Infect. Dis. 2002;185:13–19. doi: 10.1086/338009. - DOI - PubMed
  56.  
    1. Griffin D.E. The immune response in measles: Virus control, clearance and protective immunity. Viruses. 2016;8:282. doi: 10.3390/v8100282. - DOI - PMC - PubMed
  57.  
    1. Couper K.N., Blount D.G., Riley E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008;180:5771–5777. doi: 10.4049/jimmunol.180.9.5771. - DOI - PubMed
  58.  
    1. Yu X.-l., Cheng Y.-M., Shi B.-S., Qian F.-X., Wang F.-B., Liu X.-N., Yang H.-Y., Xu Q.-N., Qi T.-K., Zha L.-J. Measles virus infection in adults induces production of IL-10 and is associated with increased CD4+ CD25+ regulatory T cells. J. Immunol. 2008;181:7356–7366. doi: 10.4049/jimmunol.181.10.7356. - DOI - PubMed
  59.  
    1. Schneider-Schaulies S., Schneider-Schaulies J. Measles virus-induced immunosuppression. Measles. 2009;330:243–269. - PubMed
  60.  
    1. Petrova V.N., Sawatsky B., Han A.X., Laksono B.M., Walz L., Parker E., Pieper K., Anderson C.A., de Vries R.D., Lanzavecchia A. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci. Immunol. 2019;4:eaay6125. doi: 10.1126/sciimmunol.aay6125. - DOI - PubMed
  61.  
    1. Stebegg M., Kumar S.D., Silva-Cayetano A., Fonseca V.R., Linterman M.A., Graca L. Regulation of the germinal center response. Front. Immunol. 2018;9:2469. doi: 10.3389/fimmu.2018.02469. - DOI - PMC - PubMed
  62.  
    1. Griffin D.E. Measles virus-induced suppression of immune responses. Immunol. Rev. 2010;236:176–189. doi: 10.1111/j.1600-065X.2010.00925.x. - DOI - PMC - PubMed
  63.  
    1. Tough D.F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma. 2004;45:257–264. doi: 10.1080/1042819031000149368. - DOI - PubMed
  64.  
    1. Takeuchi O., Akira S. Innate immunity to virus infection. Immunol. Rev. 2009;227:75–86. doi: 10.1111/j.1600-065X.2008.00737.x. - DOI - PMC - PubMed
  65.  
    1. Taniguchi M., Yanagi Y., Ohno S. Both type I and type III interferons are required to restrict measles virus growth in lung epithelial cells. Arch. Virol. 2019;164:439–446. doi: 10.1007/s00705-018-4087-0. - DOI - PubMed
  66.  
    1. Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019;19:614–625. doi: 10.1038/s41577-019-0182-z. - DOI - PubMed
  67.  
    1. Ikegame S., Takeda M., Ohno S., Nakatsu Y., Nakanishi Y., Yanagi Y. Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J. Virol. 2010;84:372–379. doi: 10.1128/JVI.01690-09. - DOI - PMC - PubMed
  68.  
    1. Mura M., Combredet C., Najburg V., Sanchez David R.Y., Tangy F., Komarova A.V. Nonencapsidated 5′ copy-back defective interfering genomes produced by recombinant measles viruses are recognized by RIG-I and LGP2 but not MDA5. J. Virol. 2017;91:e00617–e00643. doi: 10.1128/JVI.00643-17. - DOI - PMC - PubMed
  69.  
    1. Takeuchi K., Kadota S.-I., Takeda M., Miyajima N., Nagata K. Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett. 2003;545:177–182. doi: 10.1016/S0014-5793(03)00528-3. - DOI - PubMed
  70.  
    1. Platanitis E., Demiroz D., Schneller A., Fischer K., Capelle C., Hartl M., Gossenreiter T., Müller M., Novatchkova M., Decker T. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat. Commun. 2019;10:2921. doi: 10.1038/s41467-019-10970-y. - DOI - PMC - PubMed
  71.  
    1. Kurokawa C., Iankov I.D., Galanis E. A key anti-viral protein, RSAD2/VIPERIN, restricts the release of measles virus from infected cells. Virus Res. 2019;263:145–150. doi: 10.1016/j.virusres.2019.01.014. - DOI - PMC - PubMed
  72.  
    1. Hartner J.C., Walkley C.R., Lu J., Orkin S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. - DOI - PMC - PubMed
  73.  
    1. Liddicoat B.J., Piskol R., Chalk A.M., Ramaswami G., Higuchi M., Hartner J.C., Li J.B., Seeburg P.H., Walkley C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–1120. doi: 10.1126/science.aac7049. - DOI - PMC - PubMed
  74.  
    1. Pfaller C.K., Cattaneo R., Schnell M.J. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology. 2015;479:331–344. doi: 10.1016/j.virol.2015.01.029. - DOI - PMC - PubMed
  75.  
    1. Ramachandran A., Horvath C.M. Dissociation of paramyxovirus interferon evasion activities: Universal and virus-specific requirements for conserved V protein amino acids in MDA5 interference. J. Virol. 2010;84:11152–11163. doi: 10.1128/JVI.01375-10. - DOI - PMC - PubMed
  76.  
    1. Caignard G., Guerbois M., Labernardière J.-L., Jacob Y., Jones L.M., The Infectious Mapping Project I-MAP, Wild F., Tangy F., Vidalain P.O. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-α/β signaling. Virology. 2007;368:351–362. doi: 10.1016/j.virol.2007.06.037. - DOI - PubMed
  77.  
    1. Ramachandran A., Parisien J.-P., Horvath C.M. STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J. Virol. 2008;82:8330–8338. doi: 10.1128/JVI.00831-08. - DOI - PMC - PubMed
  78.  
    1. Devaux P., Priniski L., Cattaneo R. The measles virus phosphoprotein interacts with the linker domain of STAT1. Virology. 2013;444:250–256. doi: 10.1016/j.virol.2013.06.019. - DOI - PMC - PubMed
  79.  
    1. Devaux P., von Messling V., Songsungthong W., Springfeld C., Cattaneo R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology. 2007;360:72–83. doi: 10.1016/j.virol.2006.09.049. - DOI - PubMed
  80.  
    1. Yokota S.-I., Saito H., Kubota T., Yokosawa N., Amano K.-I., Fujii N. Measles virus suppresses interferon-α signaling pathway: Suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology. 2003;306:135–146. doi: 10.1016/S0042-6822(02)00026-0. - DOI - PubMed
  81.  
    1. Childs K., Randall R., Goodbourn S. Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction. J. Virol. 2012;86:3411–3421. doi: 10.1128/JVI.06405-11. - DOI - PMC - PubMed
  82.  
    1. Rodriguez K.R., Horvath C.M. Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition. J. Virol. 2014;88:8180–8188. doi: 10.1128/JVI.00737-14. - DOI - PMC - PubMed
  83.  
    1. Nakatsu Y., Takeda M., Ohno S., Shirogane Y., Iwasaki M., Yanagi Y. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol. 2008;82:8296–8306. doi: 10.1128/JVI.00108-08. - DOI - PMC - PubMed
  84.  
    1. Pfaller C.K., Radeke M.J., Cattaneo R., Samuel C.E. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J. Virol. 2014;88:456–468. doi: 10.1128/JVI.02572-13. - DOI - PMC - PubMed
  85.  
    1. Runge S., Sparrer K.M., Lässig C., Hembach K., Baum A., Garcia-Sastre A., Söding J., Conzelmann K.-K., Hopfner K.-P. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 2014;10:e1004081. doi: 10.1371/journal.ppat.1004081. - DOI - PMC - PubMed
  86.  
    1. Chung H., Calis J.J., Wu X., Sun T., Yu Y., Sarbanes S.L., Thi V.L.D., Shilvock A.R., Hoffmann H.-H., Rosenberg B.R. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell. 2018;172:811–824.e14. doi: 10.1016/j.cell.2017.12.038. - DOI - PMC - PubMed
  87.  
    1. Bellini W.J., Helfand R.F. The challenges and strategies for laboratory diagnosis of measles in an international setting. J. Infect. Dis. 2003;187:S283–S290. doi: 10.1086/368040. - DOI - PubMed
  88.  
    1. Young M.K., Nimmo G.R., Cripps A.W., Jones M.A. Post-exposure passive immunisation for preventing measles. Cochrane Database Syst. Rev. 2014;4:CD010056. doi: 10.1002/14651858.CD010056.pub2. - DOI - PubMed
  89.  
    1. Permar S.R., Klumpp S.A., Mansfield K.G., Carville A.A., Gorgone D.A., Lifton M.A., Schmitz J.E., Reimann K.A., Polack F.P., Griffin D.E. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys. J. Infect. Dis. 2004;190:998–1005. doi: 10.1086/422846. - DOI - PubMed
  90.  
    1. Moss W.J., Cutts F., Griffin D.E. Implications of the human immunodeficiency virus epidemic for control and eradication of measles. Clin. Infect. Dis. 1999;29:106–112. doi: 10.1086/520136. - DOI - PubMed
  91.  
    1. Leone M., Mönkäre J., Bouwstra J.A., Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017;34:2223–2240. doi: 10.1007/s11095-017-2223-2. - DOI - PMC - PubMed
  92.  
    1. Ludlow M., de Vries R.D., Lemon K., McQuaid S., Millar E., van Amerongen G., Yüksel S., Verburgh R.J., Osterhaus A.D., de Swart R.L. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. J. Gen. Virol. 2013;94:1933–1944. doi: 10.1099/vir.0.054650-0. - DOI - PubMed
  93.  
    1. Abt M., Gassert E., Schneider-Schaulies S. Measles virus modulates chemokine release and chemotactic responses of dendritic cells. J. Gen. Virol. 2009;90:909–914. doi: 10.1099/vir.0.008581-0. - DOI - PubMed
  94.  
    1. De Vries R.D., de Swart R.L. Measles immune suppression: Functional impairment or numbers game? PLoS Pathog. 2014;10:e1004482. doi: 10.1371/journal.ppat.1004482. - DOI - PMC - PubMed
  95.  
    1. Mina M.J., Kula T., Leng Y., Li M., De Vries R.D., Knip M., Siljander H., Rewers M., Choy D.F., Wilson M.S. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366:599–606. doi: 10.1126/science.aay6485. - DOI - PMC - PubMed
  96.  
    1. Mina M.J., Metcalf C.J.E., De Swart R.L., Osterhaus A., Grenfell B.T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348:694–699. doi: 10.1126/science.aaa3662. - DOI - PMC - PubMed
  97.  
    1. Hasham K., Ahmed N., Zeshan B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN Appl. Sci. 2020;2:442. doi: 10.1007/s42452-020-2251-0. - DOI
  98.  
    1. Maltezou H.C., Wicker S. Measles in health-care settings. Am. J. Infect. Control. 2013;41:661–663. doi: 10.1016/j.ajic.2012.09.017. - DOI - PubMed
  99.  
    1. Cohen B., Doblas D., Andrews N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine. 2008;26:6392–6397. doi: 10.1016/j.vaccine.2008.08.074. - DOI - PubMed
  100.  
    1. Dimech W., Mulders M.N. A review of testing used in seroprevalence studies on measles and rubella. Vaccine. 2016;34:4119–4122. doi: 10.1016/j.vaccine.2016.06.006. - DOI - PubMed
  101.  
    1. Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C.P., McLaughlin P.J. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. - DOI - PMC - PubMed
  102.  
    1. Choe Y.J., Hu J.K., Song K.M., Cho H., Yoon H.S., Kim S.T., Lee H.J., Kim K., Bae G.-R., Lee J.-K. Evaluation of an expanded case definition for vaccine-modified measles in a school outbreak in South Korea in 2010. Jpn. J. Infect. Dis. 2012;65:371–375. doi: 10.7883/yoken.65.371. - DOI - PubMed
  103.  
    1. Mulders M.N., Rota P.A., Icenogle J.P., Brown K.E., Takeda M., Rey G.J., Mamou M.C.B., Dosseh A.R., Byabamazima C.R., Ahmed H.J. Global measles and rubella laboratory network support for elimination goals, 2010–2015. Morb. Mortal. Wkly. Rep. 2016;65:438–442. doi: 10.15585/mmwr.mm6517a3. - DOI - PubMed
  104.  
    1. Stevens G.A., Bennett J.E., Hennocq Q., Lu Y., De-Regil L.M., Rogers L., Danaei G., Li G., White R.A., Flaxman S.R. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health. 2015;3:e528–e536. doi: 10.1016/S2214-109X(15)00039-X. - DOI - PubMed
  105.  
    1. Ogbuanu I.U., Zeko S., Chu S.Y., Muroua C., Gerber S., De Wee R., Kretsinger K., Wannemuehler K., Gerndt K., Allies M. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009–2010. Clin. Infect. Dis. 2014;58:1086–1092. doi: 10.1093/cid/ciu037. - DOI - PubMed
  106.  
    1. Hardie D.R., Albertyn C., Heckmann J.M., Smuts H.E. Molecular characterisation of virus in the brains of patients with measles inclusion body encephalitis (MIBE) Virol. J. 2013;10:283. doi: 10.1186/1743-422X-10-283. - DOI - PMC - PubMed
  107.  
    1. Wendorf K.A., Winter K., Zipprich J., Schechter R., Hacker J.K., Preas C., Cherry J.D., Glaser C., Harriman K. Subacute sclerosing panencephalitis: The devastating measles complication that might be more common than previously estimated. Clin. Infect. Dis. 2017;65:226–232. doi: 10.1093/cid/cix302. - DOI - PubMed
  108.  
    1. Ahmed E.M., Solyman S.M., Mohamed N., Boseila A.A., Hanora A. Antiviral activity of Ribavirin nano-particles against measles virus. Cell. Mol. Biol. 2018;64:24–32. doi: 10.14715/cmb/2018.64.9.4. - DOI - PubMed
  109.  
    1. Kabra S.K., Lodha R. Antibiotics for preventing complications in children with measles. Cochrane Database Syst. Rev. 2013;8:CD001477. doi: 10.1002/14651858.CD001477.pub4. - DOI - PMC - PubMed
  110.  
    1. Kauffmann F., Heffernan C., Meurice F., Ota M.O., Vetter V., Casabona G. Measles, mumps, rubella prevention: How can we do better? Expert Rev. Vaccines. 2021;20:811–826. doi: 10.1080/14760584.2021.1927722. - DOI - PubMed
  111.  
    1. Danova I. A review of measles virus. PROBLEMS Infect. Parasit. Dis. 2021;49:5–13.
  112.  
    1. Roberts L. How COVID hurt the fight against other dangerous diseases. Nature. 2021:502–504. doi: 10.1038/d41586-021-01022-x. - DOI - PubMed
  113.  
    1. Al-Abdullah N. A measles outbreak in a refugee community in Jeddah City, Saudi Arabia. J. Hosp. Infect. 2018;100:e264–e265. doi: 10.1016/j.jhin.2018.05.018. - DOI - PubMed
  114.  
    1. Mostafa I., Islam S.F., Mondal P., Faruque A., Ahmed T., Hossain M.I. Factors affecting low coverage of the vitamin A supplementation program among young children admitted in an urban diarrheal treatment facility in Bangladesh. Glob. Health Action. 2019;12:1588513. doi: 10.1080/16549716.2019.1588513. - DOI - PMC - PubMed
  115.  
    1. Barnard D.L. Inhibitors of measles virus. Antivir. Chem. Chemother. 2004;15:111–119. doi: 10.1177/095632020401500301. - DOI - PubMed
  116.  
    1. VanderEnde K., Gacic-Dobo M., Diallo M.S., Conklin L.M., Wallace A.S. Global routine vaccination coverage—2017. Morb. Mortal. Wkly. Rep. 2018;67:1261. doi: 10.15585/mmwr.mm6745a2. - DOI - PMC - PubMed
  117.  
    1. Edens C., Collins M.L., Ayers J., Rota P.A., Prausnitz M.R. Measles vaccination using a microneedle patch. Vaccine. 2013;31:3403–3409. doi: 10.1016/j.vaccine.2012.09.062. - DOI - PMC - PubMed
  118.  
    1. Joyce J.C., Carroll T.D., Collins M.L., Chen M.-H., Fritts L., Dutra J.C., Rourke T.L., Goodson J.L., McChesney M.B., Prausnitz M.R. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J. Infect. Dis. 2018;218:124–132. doi: 10.1093/infdis/jiy139. - DOI - PMC - PubMed
  119.  
    1. Rodgers A.M., Cordeiro A.S., Donnelly R.F. Technology update: Dissolvable microneedle patches for vaccine delivery. Med. Devices. 2019;12:379. doi: 10.2147/MDER.S198220. - DOI - PMC - PubMed
  120.  
    1. Edens C., Collins M.L., Goodson J.L., Rota P.A., Prausnitz M.R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33:4712–4718. doi: 10.1016/j.vaccine.2015.02.074. - DOI - PMC - PubMed
  121.  
    1. Lochlainn L.M.N., de Gier B., van der Maas N., Strebel P.M., Goodman T., van Binnendijk R.S., de Melker H.E., Hahné S.J. Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: A systematic review and meta-analysis. Lancet Infect. Dis. 2019;19:1235–1245. doi: 10.1016/S1473-3099(19)30395-0. - DOI - PMC - PubMed
  122.  
    1. Hughes S.L., Bolotin S., Khan S., Li Y., Johnson C., Friedman L., Tricco A.C., Hahné S.J., Heffernan J.M., Dabbagh A. The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness–A systematic review. Vaccine. 2020;38:460–469. doi: 10.1016/j.vaccine.2019.10.090. - DOI - PMC - PubMed
  123.  
    1. Carazo S., Billard M.-N., Boutin A., De Serres G. Effect of age at vaccination on the measles vaccine effectiveness and immunogenicity: Systematic review and meta-analysis. BMC Infect. Dis. 2020;20:251. doi: 10.1186/s12879-020-4870-x. - DOI - PMC - PubMed
  124.  
    1. Venekamp R.P., Sanders S.L., Glasziou P.P., Del Mar C.B., Rovers M.M. Antibiotics for acute otitis media in children. Cochrane Database Syst. Rev. 2015;1:CD000219. doi: 10.1002/14651858.CD000219.pub4. - DOI - PMC - PubMed
  125.  
    1. Khalil M.K., Al-Mazrou Y.Y., AlHowasi M.N., Al-Jeffri M. Measles in Saudi Arabia: From control to elimination. Ann. Saudi Med. 2005;25:324–328. doi: 10.5144/0256-4947.2005.324. - DOI - PMC - PubMed
  126.  
    1. Jahan S., Al Saigul A.M., Abu Baker M.A.M., Alataya A.O., Hamed S.A.R. Measles outbreak in Qassim, Saudi Arabia 2007: Epidemiology and evaluation of outbreak response. J. Public Health. 2008;30:384–390. doi: 10.1093/pubmed/fdn070. - DOI - PubMed