Generalizability of GWA-Identified Genetic Risk Variants for Metabolic Traits to Populations from the Arabian Peninsula

Affiliations

01 October 2021

-

doi: 10.3390/genes12101637


Abstract

The Arabian Peninsula, located at the nexus of Africa, Europe, and Asia, was implicated in early human migration. The Arab population is characterized by consanguinity and endogamy leading to inbreeding. Global genome-wide association (GWA) studies on metabolic traits under-represent the Arab population. Replicability of GWA-identified association signals in the Arab population has not been satisfactorily explored. It is important to assess how well GWA-identified findings generalize if their clinical interpretations are to benefit the target population. Our recent study from Kuwait, which performed genome-wide imputation and meta-analysis, observed 304 (from 151 genes) of the 4746 GWA-identified metabolic risk variants replicable in the Arab population. A recent large GWA study from Qatar found replication of 30 GWA-identified lipid risk variants. These complementing studies from the Peninsula increase the confidence in generalizing metabolic risk loci to the Arab population. However, both the studies reported a low extent of transferability. In this review, we examine the observed low transferability in the context of differences in environment, genetic correlations (allele frequencies, linkage disequilibrium, effect sizes, and heritability), and phenotype variance. We emphasize the need for large-scale GWA studies on deeply phenotyped cohorts of at least 20,000 Arab individuals. The review further presents GWA-identified metabolic risk variants generalizable to the Arab population.

Keywords: Arab ancestry; GWAS; metabolic traits; population diversity; risk loci; transferability of risk loci.

Conflict of interest statement

The authors declare no conflict of interest.


Similar articles

Genome-wide landscape establishes novel association signals for metabolic traits in the Arab population.

Hebbar P, Abubaker JA, Abu-Farha M, Alsmadi O, Elkum N, Alkayal F, John SE, Channanath A, Iqbal R, Pitkaniemi J, Tuomilehto J, Sladek R, Al-Mulla F, Thanaraj TA.Hum Genet. 2021 Mar;140(3):505-528. doi: 10.1007/s00439-020-02222-7. Epub 2020 Sep 9.PMID: 32902719 Free PMC article.

Genetic risk variants for metabolic traits in Arab populations.

Hebbar P, Elkum N, Alkayal F, John SE, Thanaraj TA, Alsmadi O.Sci Rep. 2017 Jan 20;7:40988. doi: 10.1038/srep40988.PMID: 28106113 Free PMC article.

A Perception on Genome-Wide Genetic Analysis of Metabolic Traits in Arab Populations.

Hebbar P, Abubaker JA, Abu-Farha M, Tuomilehto J, Al-Mulla F, Thanaraj TA.Front Endocrinol (Lausanne). 2019 Jan 28;10:8. doi: 10.3389/fendo.2019.00008. eCollection 2019.PMID: 30761081 Free PMC article.

Genetic diversity among the Arabs.

Teebi AS, Teebi SA.Community Genet. 2005;8(1):21-6. doi: 10.1159/000083333.PMID: 15767750 Review.

Ethnic differences in genetic predisposition to hypertension.

Kato N.Hypertens Res. 2012 Jun;35(6):574-81. doi: 10.1038/hr.2012.44. Epub 2012 Apr 5.PMID: 22476227 Review.


Cited by

Caveolin-1 rs1997623 variant and adult metabolic syndrome-Assessing the association in three ethnic cohorts of Arabs, South Asians and South East Asians.

Al Madhoun A, Hebbar P, Nizam R, Haddad D, Melhem M, Abu-Farha M, Thanaraj TA, Al-Mulla F.Front Genet. 2022 Oct 21;13:1034892. doi: 10.3389/fgene.2022.1034892. eCollection 2022.PMID: 36338969 Free PMC article.


References

  1.  
    1. Crouch D.J.M., Bodmer W.F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl. Acad. Sci. USA. 2020;117:18924–18933. doi: 10.1073/pnas.2005634117. - DOI - PMC - PubMed
  2.  
    1. Lichou F., Trynka G. Functional studies of GWAS variants are gaining momentum. Nat. Commun. 2020;11:6283. doi: 10.1038/s41467-020-20188-y. - DOI - PMC - PubMed
  3.  
    1. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., et al. The NHGRI GWAS catalog, a curated resource of snp-trait associations. Nucleic Acids Res. 2014;42:D1001–D1006. doi: 10.1093/nar/gkt1229. - DOI - PMC - PubMed
  4.  
    1. Hebbar P., Abubaker J.A., Abu-Farha M., Alsmadi O., Elkum N., Alkayal F., John S.E., Channanath A., Iqbal R., Pitkaniemi J., et al. Genome-wide landscape establishes novel association signals for metabolic traits in the Arab population. Hum. Genet. 2021;140:505–528. doi: 10.1007/s00439-020-02222-7. - DOI - PMC - PubMed
  5.  
    1. Abou Tayoun A.N., Rehm H.L. Genetic variation in the middle east-an opportunity to advance the human genetics field. Genome Med. 2020;12:116. doi: 10.1186/s13073-020-00821-7. - DOI - PMC - PubMed
  6.  
    1. Fernandes V., Brucato N., Ferreira J.C., Pedro N., Cavadas B., Ricaut F.X., Alshamali F., Pereira L. Genome-wide characterization of arabian peninsula populations: Shedding light on the history of a fundamental bridge between continents. Mol. Biol. Evol. 2019;36:575–586. doi: 10.1093/molbev/msz005. - DOI - PubMed
  7.  
    1. Sirugo G., Williams S.M., Tishkoff S.A. The missing diversity in human genetic studies. Cell. 2019;177:26–31. doi: 10.1016/j.cell.2019.02.048. - DOI - PMC - PubMed
  8.  
    1. Almarri M.A., Haber M., Lootah R.A., Hallast P., Al Turki S., Martin H.C., Xue Y., Tyler-Smith C. The genomic history of the middle east. Cell. 2021;184:4612–4625. doi: 10.1016/j.cell.2021.07.013. - DOI - PMC - PubMed
  9.  
    1. Mills M.C., Rahal C. The GWAS diversity monitor tracks diversity by disease in real time. Nat. Genet. 2020;52:242–243. doi: 10.1038/s41588-020-0580-y. - DOI - PubMed
  10.  
    1. Eaaswarkhanth M., Pathak A.K., Ongaro L., Montinaro F., Hebbar P., Alsmadi O., Metspalu M., Al-Mulla F., Thanaraj T.A. Unraveling a fine-scale high genetic heterogeneity and recent continental connections of an Arabian Peninsula population. Eur. J. Hum. Genet. 2021:1–3. - PubMed
  11.  
    1. Hunter-Zinck H., Musharoff S., Salit J., Al-Ali K.A., Chouchane L., Gohar A., Matthews R., Butler M.W., Fuller J., Hackett N.R., et al. Population genetic structure of the people of Qatar. Am. J. Hum. Genet. 2010;87:17–25. doi: 10.1016/j.ajhg.2010.05.018. - DOI - PMC - PubMed
  12.  
    1. Alsmadi O., Thareja G., Alkayal F., Rajagopalan R., John S.E., Hebbar P., Behbehani K., Thanaraj T.A. Genetic substructure of kuwaiti population reveals migration history. PLoS ONE. 2013;8:e74913. doi: 10.1371/journal.pone.0074913. - DOI - PMC - PubMed
  13.  
    1. Petraglia M.D., Groucutt H.S., Guagnin M., Breeze P.S., Boivin N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. USA. 2020;117:8263–8270. doi: 10.1073/pnas.1920211117. - DOI - PMC - PubMed
  14.  
    1. Eaaswarkhanth M., Dos Santos A.L.C., Gokcumen O., Al-Mulla F., Thanaraj T.A. Genome-wide selection scan in an arabian peninsula population identifies a TNKS haplotype linked to metabolic traits and hypertension. Genome Biol. Evol. 2020;12:77–87. doi: 10.1093/gbe/evaa033. - DOI - PMC - PubMed
  15.  
    1. Hebbar P., Elkum N., Alkayal F., John S.E., Thanaraj T.A., Alsmadi O. Genetic risk variants for metabolic traits in Arab populations. Sci. Rep. 2017;7:40988. doi: 10.1038/srep40988. - DOI - PMC - PubMed
  16.  
    1. Hebbar P., Nizam R., Melhem M., Alkayal F., Elkum N., John S.E., Tuomilehto J., Alsmadi O., Thanaraj T.A. Genome-wide association study identifies novel recessive genetic variants for high TGS in an Arab population. J. Lipid Res. 2018;59:1951–1966. doi: 10.1194/jlr.P080218. - DOI - PMC - PubMed
  17.  
    1. Alhabib K.F., Al-Rasadi K., Almigbal T.H., Batais M.A., Al-Zakwani I., Al-Allaf F.A., Al-Waili K., Zadjali F., Alghamdi M., Alnouri F., et al. Familial hypercholesterolemia in the Arabian Gulf region: Clinical results of the gulf fh registry. PLoS ONE. 2021;16:e0251560. doi: 10.1371/journal.pone.0251560. - DOI - PMC - PubMed
  18.  
    1. Arfa I., Abid A., Malouche D., Ben Alaya N., Azegue T.R., Mannai I., Zorgati M.M., Ben Rayana M.C., Ben Ammar S., Blousa-Chabchoub S., et al. Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia. Postgrad. Med J. 2007;83:348–351. doi: 10.1136/pgmj.2006.053744. - DOI - PMC - PubMed
  19.  
    1. Benrahma H., Arfa I., Charif M., Bounaceur S., Eloualid A., Boulouiz R., Nahili H., Abidi O., Rouba H., Chadli A., et al. Maternal effect and familial aggregation in a type 2 diabetic Moroccan population. J. Community Health. 2011;36:943–948. doi: 10.1007/s10900-011-9393-3. - DOI - PubMed
  20.  
    1. Bener A., Yousafzai M.T., Al-Hamaq A.O., Mohammad A.G., Defronzo R.A. Parental transmission of type 2 diabetes mellitus in a highly endogamous population. World J. Diabetes. 2013;4:40–46. doi: 10.4239/wjd.v4.i2.40. - DOI - PMC - PubMed
  21.  
    1. Al-Sinani S., Al-Shafaee M., Al-Mamari A., Woodhouse N., Al-Shafie O., Hassan M., Al-Yahyaee S., Albarwani S., Jaju D., Al-Hashmi K., et al. Familial clustering of type 2 diabetes among Omanis. Oman Med. J. 2014;29:51–54. doi: 10.5001/omj.2014.11. - DOI - PMC - PubMed
  22.  
    1. Zayed H. Genetic epidemiology of type 1 diabetes in the 22 Arab countries. Curr. Diabetes Rep. 2016;16:37. doi: 10.1007/s11892-016-0736-4. - DOI - PubMed
  23.  
    1. Klautzer L., Becker J., Mattke S. The curse of wealth-middle eastern countries need to address the rapidly rising burden of diabetes. Int. J. Health Policy Manag. 2014;2:109–114. doi: 10.15171/ijhpm.2014.33. - DOI - PMC - PubMed
  24.  
    1. Fahed A.C., El-Hage-Sleiman A.K., Farhat T.I., Nemer G.M. Diet, genetics, and disease: A focus on the middle east and north Africa region. J. Nutr. Metab. 2012;2012:109037. doi: 10.1155/2012/109037. - DOI - PMC - PubMed
  25.  
    1. Jaber L.A., Brown M.B., Hammad A., Nowak S.N., Zhu Q., Ghafoor A., Herman W.H. Epidemiology of diabetes among Arab Americans. Diabetes Care. 2003;26:308–313. doi: 10.2337/diacare.26.2.308. - DOI - PubMed
  26.  
    1. Bennet L., Nilsson C., Mansour-Aly D., Christensson A., Groop L., Ahlqvist E. Adult-onset diabetes in middle eastern immigrants to Sweden: Novel subgroups and diabetic complications-the all new diabetes in scania cohort diabetic complications and ethnicity. Diabetes Metab. Res. Rev. 2020;37:e3419. doi: 10.1002/dmrr.3419. - DOI - PMC - PubMed
  27.  
    1. Hebbar P., Abubaker J.A., Abu-Farha M., Tuomilehto J., Al-Mulla F., Thanaraj T.A. A perception on genome-wide genetic analysis of metabolic traits in Arab populations. Front. Endocrinol. 2019;10:8. doi: 10.3389/fendo.2019.00008. - DOI - PMC - PubMed
  28.  
    1. Thareja G., Al-Sarraj Y., Belkadi A., Almotawa M., Qatar Genome Program Research C., Suhre K., Albagha O.M.E. Whole genome sequencing in the middle eastern Qatari population identifies genetic associations with 45 clinically relevant traits. Nat. Commun. 2021;12:1250. doi: 10.1038/s41467-021-21381-3. - DOI - PMC - PubMed
  29.  
    1. Zuk O., Schaffner S.F., Samocha K., Do R., Hechter E., Kathiresan S., Daly M.J., Neale B.M., Sunyaev S.R., Lander E.S. Searching for missing heritability: Designing rare variant association studies. Proc. Natl. Acad. Sci. USA. 2014;111:E455–E464. doi: 10.1073/pnas.1322563111. - DOI - PMC - PubMed
  30.  
    1. Moazzam-Jazi M., Najd Hassan Bonab L., Zahedi A.S., Daneshpour M.S. High genetic burden of type 2 diabetes can promote the high prevalence of disease: A longitudinal cohort study in Iran. Sci. Rep. 2020;10:14006. doi: 10.1038/s41598-020-70725-4. - DOI - PMC - PubMed
  31.  
    1. Martin A.R., Kanai M., Kamatani Y., Okada Y., Neale B.M., Daly M.J. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 2019;51:584–591. doi: 10.1038/s41588-019-0379-x. - DOI - PMC - PubMed
  32.  
    1. Ahsan T., Urmi N.J., Sajib A.A. Heterogeneity in the distribution of 159 drug-response related snps in world populations and their genetic relatedness. PLoS ONE. 2020;15:e0228000. doi: 10.1371/journal.pone.0228000. - DOI - PMC - PubMed
  33.  
    1. Sawyer S.L., Mukherjee N., Pakstis A.J., Feuk L., Kidd J.R., Brookes A.J., Kidd K.K. Linkage disequilibrium patterns vary substantially among populations. Eur. J. Hum. Genet. 2005;13:677–686. doi: 10.1038/sj.ejhg.5201368. - DOI - PubMed
  34.  
    1. Kraft P., Zeggini E., Ioannidis J.P. Replication in genome-wide association studies. Stat. Sci. 2009;24:561–573. doi: 10.1214/09-STS290. - DOI - PMC - PubMed
  35.  
    1. Scott E.M., Halees A., Itan Y., Spencer E.G., He Y., Azab M.A., Gabriel S.B., Belkadi A., Boisson B., Abel L., et al. Characterization of greater middle eastern genetic variation for enhanced disease gene discovery. Nat. Genet. 2016;48:1071–1076. doi: 10.1038/ng.3592. - DOI - PMC - PubMed
  36.  
    1. Mathieson I. The omnigenic model and polygenic prediction of complex traits. Am. J. Hum. Genet. 2021;108:1558–1563. doi: 10.1016/j.ajhg.2021.07.003. - DOI - PMC - PubMed
  37.  
    1. Boyle E.A., Li Y.I., Pritchard J.K. An expanded view of complex traits: From polygenic to omnigenic. Cell. 2017;169:1177–1186. doi: 10.1016/j.cell.2017.05.038. - DOI - PMC - PubMed
  38.  
    1. Lin Z., Lebrun N., Clarke J., Duriez P., Gorwood P., Ramoz N., Bienvenu T. Identification of rare variants in cadm1 in patients with anorexia nervosa. Psychiatry Res. 2020;291:113191. doi: 10.1016/j.psychres.2020.113191. - DOI - PubMed
  39.  
    1. Al Rasadi K., Almahmeed W., AlHabib K.F., Abifadel M., Farhan H.A., AlSifri S., Jambart S., Zubaid M., Awan Z., Al-Waili K., et al. Dyslipidaemia in the middle east: Current status and a call for action. Atherosclerosis. 2016;252:182–187. doi: 10.1016/j.atherosclerosis.2016.07.925. - DOI - PubMed
  40.  
    1. Al Sifri S.N., Almahmeed W., Azar S., Okkeh O., Bramlage P., Junger C., Halawa I., Ambegaonkar B., Wajih S., Brudi P. Results of the dyslipidemia international study (dysis)-middle east: Clinical perspective on the prevalence and characteristics of lipid abnormalities in the setting of chronic statin treatment. PLoS ONE. 2014;9:e84350. doi: 10.1371/journal.pone.0084350. - DOI - PMC - PubMed
  41.  
    1. Gitt A.K., Drexel H., Feely J., Ferrieres J., Gonzalez-Juanatey J.R., Thomsen K.K., Leiter L.A., Lundman P., da Silva P.M., Pedersen T., et al. Persistent lipid abnormalities in statin-treated patients and predictors of ldl-cholesterol goal achievement in clinical practice in Europe and Canada. Eur. J. Prev. Cardiol. 2012;19:221–230. doi: 10.1177/1741826711400545. - DOI - PubMed
  42.  
    1. Hassoun S., Al-Atrash M., Alkasim M., Dabbous Z., Mujahed O., DeFronzo R.A., Jayyousi A., Zirie M., Abdul-Ghani M. Impact of ethnicity and obesity on insulin resistance in two ethnic groups at very high risk of type 2 diabetes. Diabetes Metab. 2017;43:292–294. doi: 10.1016/j.diabet.2016.11.002. - DOI - PubMed
  43.  
    1. Ji Y., Yiorkas A.M., Frau F., Mook-Kanamori D., Staiger H., Thomas E.L., Atabaki-Pasdar N., Campbell A., Tyrrell J., Jones S.E., et al. Genome-wide and abdominal mri data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes. 2019;68:207–219. doi: 10.2337/db18-0708. - DOI - PubMed
  44.  
    1. Hebbar P., Abu-Farha M., Mohammad A., Alkayal F., Melhem M., Abubaker J., Al-Mulla F., Thanaraj T.A. Fto variant rs1421085 associates with increased body weight, soft lean mass, and total body water through interaction with ghrelin and apolipoproteins in Arab population. Front. Genet. 2019;10:1411. doi: 10.3389/fgene.2019.01411. - DOI - PMC - PubMed