Phosphofructokinase: a mediator of glycolytic flux in cancer progression

Affiliations


Abstract

In view of the current limitations of cancer chemotherapy, there has been resurgent interest in re-visiting glycolysis to determine whether tumors could be killed by energy deprivation rather than solely by strategies to inhibit proliferation. Cancer cells exhibit a uniquely high rate of glucose utilization, converting it into lactate whose export subsequently creates an acidic extracellular environment that is thought to promote invasion and metastasis, in preference to its complete oxidation even in the presence of adequate oxygen supply. Reductive analysis of each step of glycolysis shows that, of the three rate limiting enzymes of the pathway, isoforms of phosphofructokinase may afford the greatest opportunity as targets to deprive cancer cells from essential energy and substrates for macromolecular synthesis for proliferation while allowing normal cells to survive. Strategies discussed include restricting the substrate for this enzyme. While prospects for monotherapy with glycolytic inhibitors are poor, combination therapy may be productive.

Keywords: Aerobic glycolysis; Cancer; Fructose-1,6-bisphosphate; PFK.


Similar articles

Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.

Yalcin A, Telang S, Clem B, Chesney J.Exp Mol Pathol. 2009 Jun;86(3):174-9. doi: 10.1016/j.yexmp.2009.01.003. Epub 2009 Jan 14.PMID: 19454274 Review.

Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis.

Arundhathi JRD, Mathur SR, Gogia A, Deo SVS, Mohapatra P, Prasad CP.Mol Biol Rep. 2021 May;48(5):4733-4745. doi: 10.1007/s11033-021-06414-w. Epub 2021 May 28.PMID: 34047880 Review.

Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer.

Chaneton B, Gottlieb E.Trends Biochem Sci. 2012 Aug;37(8):309-16. doi: 10.1016/j.tibs.2012.04.003. Epub 2012 May 23.PMID: 22626471 Review.

PKM2 contributes to cancer metabolism.

Wong N, Ojo D, Yan J, Tang D.Cancer Lett. 2015 Jan 28;356(2 Pt A):184-91. doi: 10.1016/j.canlet.2014.01.031. Epub 2014 Feb 4.PMID: 24508027 Review.

Mechanisms for increased glycolysis in the hypertrophied rat heart.

Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R.Hypertension. 2004 Nov;44(5):662-7. doi: 10.1161/01.HYP.0000144292.69599.0c. Epub 2004 Oct 4.PMID: 15466668


Cited by

Nuclear Fructose-1,6-Bisphosphate Inhibits Tumor Growth and Sensitizes Chemotherapy by Targeting HMGB1.

Li Y, Fu Y, Zhang Y, Duan B, Zhao Y, Shang M, Cheng Y, Zhang K, Yu Q, Wang T.Adv Sci (Weinh). 2023 Mar;10(7):e2203528. doi: 10.1002/advs.202203528. Epub 2023 Jan 15.PMID: 36642839 Free PMC article.

A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma.

Zhou RW, Xu J, Martin TC, Zachem AL, He J, Ozturk S, Demircioglu D, Bansal A, Trotta AP, Giotti B, Gryder B, Shen Y, Wu X, Carcamo S, Bosch K, Hopkins B, Tsankov A, Steinhagen R, Jones DR, Asara J, Chipuk JE, Brody R, Itzkowitz S, Chio IIC, Hasson D, Bernstein E, Parsons RE.Nat Commun. 2022 Oct 17;13(1):6041. doi: 10.1038/s41467-022-33377-8.PMID: 36253360 Free PMC article.

Dysregulated glycolysis as an oncogenic event.

Mikawa T, LLeonart ME, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H.Cell Mol Life Sci. 2015 May;72(10):1881-92. doi: 10.1007/s00018-015-1840-3. Epub 2015 Jan 22.PMID: 25609364 Review.


References

https://pubmed.ncbi.nlm.nih.gov/