Neutral sphingomyelinase-2 and cardiometabolic diseases
Affiliations
Affiliations
- Animal and Imaging core facility, Dasman Diabetes Institute, Dasman, Kuwait.
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, Montréal, Quebec, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, Quebec, Canada.
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait.
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait.
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Keywords: cardiometabolic diseases; ceramide; nSMase2; sphingolipid.
Conflict of interest statement
No conflict of interest was declared.
Similar articles
Gu L, Huang B, Shen W, Gao L, Ding Z, Wu H, Guo J.J Neuroinflammation. 2013 Sep 3;10:109. doi: 10.1186/1742-2094-10-109.PMID: 24007266 Free PMC article.
Sphingomyelinases and Liver Diseases.
Insausti-Urkia N, Solsona-Vilarrasa E, Garcia-Ruiz C, Fernandez-Checa JC.Biomolecules. 2020 Oct 30;10(11):1497. doi: 10.3390/biom10111497.PMID: 33143193 Free PMC article. Review.
Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties.
Figuera-Losada M, Stathis M, Dorskind JM, Thomas AG, Bandaru VV, Yoo SW, Westwood NJ, Rogers GW, McArthur JC, Haughey NJ, Slusher BS, Rojas C.PLoS One. 2015 May 26;10(5):e0124481. doi: 10.1371/journal.pone.0124481. eCollection 2015.PMID: 26010541 Free PMC article.
Devillard R, Galvani S, Thiers JC, Guenet JL, Hannun Y, Bielawski J, Nègre-Salvayre A, Salvayre R, Augé N.PLoS One. 2010 Mar 23;5(3):e9826. doi: 10.1371/journal.pone.0009826.PMID: 20352118 Free PMC article.
Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes.
Shamseddine AA, Airola MV, Hannun YA.Adv Biol Regul. 2015 Jan;57:24-41. doi: 10.1016/j.jbior.2014.10.002. Epub 2014 Oct 27.PMID: 25465297 Free PMC article. Review.
Cited by
Abnormalities of Sphingolipids Metabolic Pathways in the Pathogenesis of Psoriasis.
Burger B, Sagiorato RN, Cavenaghi I, Rodrigues HG.Metabolites. 2023 Feb 16;13(2):291. doi: 10.3390/metabo13020291.PMID: 36837912 Free PMC article. Review.
Role of ceramides in diabetic foot ulcers (Review).
Wang Y, Sun Z, Zang G, Zhang L, Wang Z.Int J Mol Med. 2023 Mar;51(3):26. doi: 10.3892/ijmm.2023.5229. Epub 2023 Feb 17.PMID: 36799149 Free PMC article. Review.
Characterization of a Neutral Sphingomyelinase Activity in Human Serum and Plasma.
Mühle C, Kornhuber J.Int J Mol Sci. 2023 Jan 27;24(3):2467. doi: 10.3390/ijms24032467.PMID: 36768790 Free PMC article.
Serum metabolomic analysis in patients with Hashimoto's thyroiditis.
Jiang X, Zhao X, Gu X, Luo T, Li P, Wan C, Liu H.Front Endocrinol (Lausanne). 2022 Dec 22;13:1046159. doi: 10.3389/fendo.2022.1046159. eCollection 2022.PMID: 36619550 Free PMC article.
Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review.
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC.Diagnostics (Basel). 2022 Dec 13;12(12):3141. doi: 10.3390/diagnostics12123141.PMID: 36553147 Free PMC article. Review.
References
-
- Chakinala RC, Khatri A, Gupta K, Koike K, Epelbaum O. Sphingolipids in COPD. Eur Respir Rev. 2019;28(154):190047. - PubMed
-
- Platt FM. Sphingolipid lysosomal storage disorders. Nature. 2014;510(7503):68‐75. - PubMed
-
- Bielawska A, Linardic CM, Hannun YA. Ceramide‐mediated biology. Determination of structural and stereospecific requirements through the use of N‐acyl‐phenylaminoalcohol analogs. J Biol Chem. 1992;267(26):18493‐18497. - PubMed
-
- Sharma K, Shi Y. The yins and yangs of ceramide. Cell Res. 1999;9(1):1‐10. - PubMed
-
- Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem. 1995;270(51):30701‐30708. - PubMed
-
- Kuzmenko DI, Klimentyeva TK. Role of ceramide in apoptosis and development of insulin resistance. Biochemistry (Mosc). 2016;81(9):913‐927. - PubMed
-
- Andrieu‐Abadie N, Gouazé V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med. 2001;31(6):717‐728. - PubMed
-
- Schneider PB, Kennedy EP. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann‐Pick disease. J Lipid Res. 1967;8(3):202‐209. - PubMed
-
- Rao BG, Spence MW. Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J Lipid Res. 1976;17(5):506‐515. - PubMed
-
- Clarke CJ, Hannun YA. Neutral sphingomyelinases and nSMase2: bridging the gaps. Biochim Biophys Acta. 2006;1758(12):1893‐1901. - PubMed
-
- Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA. The extended family of neutral sphingomyelinases. Biochemistry. 2006;45(38):11247‐11256. - PubMed
-
- Karakashian AA, Giltiay NV, Smith GM, Nikolova‐Karakashian MN. Expression of neutral sphingomyelinase‐2 (NSMase‐2) in primary rat hepatocytes modulates IL‐beta‐induced JNK activation. FASEB J. 2004;18(9):968‐970. - PubMed
-
- Kim MY, Linardic C, Obeid L, Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma‐interferon. Specific role in cell differentiation. J Biol Chem. 1991;266(1):484‐489. - PubMed
-
- Strum JC, Ghosh S, Bell RM. Lipid second messengers. A role in cell growth regulation and cell cycle progression. Adv Exp Med Biol. 1997;407:421‐431. - PubMed
-
- Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569‐579. - PubMed
-
- Yang Z, Costanzo M, Golde DW, Kolesnick RN. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL‐60 cells. J Biol Chem. 1993;268(27):20520‐20523. - PubMed
-
- Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57(3):642‐654. - PubMed
-
- Henry B, Moller C, Dimanche‐Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett. 2013;332(2):286‐294. - PubMed
-
- Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol. 2001;64(6):575‐611. - PubMed
-
- Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71(1):35‐48. - PubMed
-
- Smith AR, Visioli F, Frei B, Hagen TM. Age‐related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide‐activated phosphatase 2A. Aging Cell. 2006;5(5):391‐400. - PubMed
-
- Mogami K, Kishi H, Kobayashi S. Sphingomyelinase causes endothelium‐dependent vasorelaxation through endothelial nitric oxide production without cytosolic Ca(2+) elevation. FEBS Lett. 2005;579(2):393‐397. - PubMed
-
- Ohanian J, Forman SP, Katzenberg G, Ohanian V. Endothelin‐1 stimulates small artery VCAM‐1 expression through p38MAPK‐dependent neutral sphingomyelinase. J Vasc Res. 2012;49(4):353‐362. - PubMed
-
- Altura BM, Shah NC, Shah GJ, et al. Magnesium deficiency upregulates sphingomyelinases in cardiovascular tissues and cells: cross‐talk among proto‐oncogenes, Mg(2+), NF‐kappaB and ceramide and their potential relationships to resistant hypertension, atherogenesis and cardiac failure. Int J Clin Exp Med. 2013;6(10):861‐879. - PMC - PubMed
-
- Shah NC, Shah GJ, Li Z, Jiang XC, Altura BT, Altura BM. Short‐term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med. 2014;7(3):497‐514. - PMC - PubMed
-
- Hernandez OM, Discher DJ, Bishopric NH, Webster KA. Rapid activation of neutral sphingomyelinase by hypoxia‐reoxygenation of cardiac myocytes. Circ Res. 2000;86(2):198‐204. - PubMed
-
- Thudichum JLW. A Treatise on the Chemical Constitution of Brain. Vol. 22. London: Bailliere, Tindall, and Cox; 1884:146.
-
- Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139‐150. - PubMed
-
- Hannun YA, Luberto C. Lipid metabolism: ceramide transfer protein adds a new dimension. Curr Biol. 2004;14(4):R163‐R165. - PubMed
-
- Menaldino DS, Bushnev A, Sun A, et al. Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res. 2003;47(5):373‐381. - PubMed
-
- Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol. 2005;21:81‐103. - PubMed
-
- Snook CF, Jones JA, Hannun YA. Sphingolipid‐binding proteins. Biochim Biophys Acta. 2006;1761(8):927‐946. - PubMed
-
- Zeidan YH, Hannun YA. Translational aspects of sphingolipid metabolism. Trends Mol Med. 2007;13(8):327‐336. - PubMed
-
- Aburasayn H, Al Batran R, Ussher JR. Targeting ceramide metabolism in obesity. Am J Physiol Endocrinol Metab. 2016;311(2):E423‐E435. - PubMed
-
- Weiss B, Stoffel W. Human and murine serine‐palmitoyl‐CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997;249(1):239‐247. - PubMed
-
- Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995;20(2):73‐77. - PubMed
-
- Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 2002;531(1):38‐46. - PubMed
-
- Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol. 2004;82(1):27‐44. - PubMed
-
- Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E. Acid sphingomyelinase. Handb Exp Pharmacol. 2013;215:77‐88. - PubMed
-
- Barnholz Y, Roitman A, Gatt S. Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J Biol Chem. 1966;241(16):3731‐3737. - PubMed
-
- Tabas I. Secretory sphingomyelinase. Chem Phys Lipids. 1999;102(1–2):123‐130. - PubMed
-
- Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I. The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem. 1998;273(29):18250‐18259. - PubMed
-
- Schissel SL, Jiang X, Tweedie‐Hardman J, et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem. 1998;273(5):2738‐2746. - PubMed
-
- Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M. Novel tumor necrosis factor‐responsive mammalian neutral sphingomyelinase‐3 is a C‐tail‐anchored protein. J Biol Chem. 2006;281(19):13784‐13793. - PubMed
-
- Tani M, Ito M, Igarashi Y. Ceramide/sphingosine/sphingosine 1‐phosphate metabolism on the cell surface and in the extracellular space. Cell Signal. 2007;19(2):229‐237. - PubMed
-
- Andrieu‐Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta. 2002;1585(2–3):126‐134. - PubMed
-
- Czarny M, Schnitzer JE. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol. 2004;287(3):H1344‐H1352. - PubMed
-
- Auge N, Andrieu N, Negre‐Salvayre A, Thiers JC, Levade T, Salvayre R. The sphingomyelin‐ceramide signaling pathway is involved in oxidized low density lipoprotein‐induced cell proliferation. J Biol Chem. 1996;271(32):19251‐19255. - PubMed
-
- Chatterjee S. Neutral sphingomyelinase: past, present and future. Chem Phys Lipids. 1999;102(1–2):79‐96. - PubMed
-
- Ghosh N, Sabbadini R, Chatterjee S. Identification, partial purification, and localization of a neutral sphingomyelinase in rabbit skeletal muscle: neutral sphingomyelinase in skeletal muscle. Mol Cell Biochem. 1998;189(1–2):161‐168. - PubMed
-
- Okazaki T, Bielawska A, Domae N, Bell RM, Hannun YA. Characteristics and partial purification of a novel cytosolic, magnesium‐independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25‐dihydroxyvitamin D3‐induced HL‐60 cell differentiation. J Biol Chem. 1994;269(6):4070‐4077. - PubMed
-
- Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids. 1999;102(1–2):97‐105. - PubMed
-
- Cheng Y, Nilsson A, Tomquist E, Duan RD. Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43(2):316‐324. - PubMed
-
- Duan RD. Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta. 2006;1761(3):281‐291. - PubMed
-
- Liu B, Hassler DF, Smith GK, Weaver K, Hannun YA. Purification and characterization of a membrane bound neutral pH optimum magnesium‐dependent and phosphatidylserine‐stimulated sphingomyelinase from rat brain. J Biol Chem. 1998;273(51):34472‐34479. - PubMed
-
- Bernardo K, Krut O, Wiegmann K, et al. Purification and characterization of a magnesium‐dependent neutral sphingomyelinase from bovine brain. J Biol Chem. 2000;275(11):7641‐7647. - PubMed
-
- Tomiuk S, Zumbansen M, Stoffel W. Characterization and subcellular localization of murine and human magnesium‐dependent neutral sphingomyelinase. J Biol Chem. 2000;275(8):5710‐5717. - PubMed
-
- Aubin I, Adams CP, Opsahl S, et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet. 2005;37(8):803‐805. - PubMed
-
- Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA. Role for mammalian neutral sphingomyelinase 2 in confluence‐induced growth arrest of MCF7 cells. J Biol Chem. 2004;279(24):25101‐25111. - PubMed
-
- Ito H, Tanaka K, Hagiwara K, et al. Transcriptional regulation of neutral sphingomyelinase 2 in all‐trans retinoic acid‐treated human breast cancer cell line, MCF‐7. J Biochem. 2012;151(6):599‐610. - PubMed
-
- Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579‐2587. - PubMed
-
- Clarke CJ, Truong TG, Hannun YA. Role for neutral sphingomyelinase‐2 in tumor necrosis factor alpha‐stimulated expression of vascular cell adhesion molecule‐1 (VCAM) and intercellular adhesion molecule‐1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem. 2007;282(2):1384‐1396. - PubMed
-
- Horres CR, Hannun YA. The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res. 2012;37(6):1137‐1149. - PubMed
-
- Luberto C, Hassler DF, Signorelli P, et al. Inhibition of tumor necrosis factor‐induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem. 2002;277(43):41128‐41139. - PubMed
-
- de Palma C, Meacci E, Perrotta C, Bruni P, Clementi E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol. 2006;26(1):99‐105. - PubMed
-
- Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J. Amyloid‐beta peptide enhances tumor necrosis factor‐alpha‐induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem. 2005;94(3):703‐712. - PubMed
-
- Marchesini N, Luberto C, Hannun YA. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem. 2003;278(16):13775‐13783. - PubMed
-
- Ito H, Murakami M, Furuhata A, et al. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF‐7, induced by the anti‐cancer drug, daunorubicin. Biochim Biophys Acta. 2009;1789(11–12):681‐690. - PubMed
-
- Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor‐alpha activates the sphingomyelin signal transduction pathway in a cell‐free system. Science. 1992;255(5052):1715‐1718. - PubMed
-
- Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994;78(6):1005‐1015. - PubMed
-
- Grimm MO, Grimm HS, Patzold AJ, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid‐beta and presenilin. Nat Cell Biol. 2005;7(11):1118‐1123. - PubMed
-
- Liu B, Andrieu‐Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor‐alpha‐induced cell death. J Biol Chem. 1998;273(18):11313‐11320. - PubMed
-
- Ago H, Oda M, Takahashi M, et al. Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem. 2006;281(23):16157‐16167. - PubMed
-
- Nikolova‐Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem. 2008;49:469‐486. - PubMed
-
- Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278(12):10297‐10303. - PubMed
-
- Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal. 2002;14(3):231‐238. - PubMed
-
- Turpin SM, Nicholls HT, Willmes DM, et al. Obesity‐induced CerS6‐dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678‐686. - PubMed
-
- Fernandez‐Veledo S, Hernandez R, Teruel T, Mas JA, Ros M, Lorenzo M. Ceramide mediates TNF‐alpha‐induced insulin resistance on GLUT4 gene expression in brown adipocytes. Arch Physiol Biochem. 2006;112(1):13‐22. - PubMed
-
- Hajduch E, Balendran A, Batty IH, et al. Ceramide impairs the insulin‐dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia. 2001;44(2):173‐183. - PubMed
-
- Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457‐461. - PubMed
-
- Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid‐, saturated‐fat‐, and obesity‐induced insulin resistance. Cell Metab. 2007;5(3):167‐179. - PubMed
-
- Miyazaki Y, Matsuda M, DeFronzo RA. Dose‐response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care. 2002;25(3):517‐523. - PubMed
-
- Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator‐activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun. 2000;278(3):704‐711. - PubMed
-
- Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13‐18. - PubMed
-
- Murase K, Odaka H, Suzuki M, Tayuki N, Ikeda H. Pioglitazone time‐dependently reduces tumour necrosis factor‐alpha level in muscle and improves metabolic abnormalities in Wistar fatty rats. Diabetologia. 1998;41(3):257‐264. - PubMed
-
- Apostolopoulou M, Gordillo R, Koliaki C, et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care. 2018;41(6):1235‐1243. - PubMed
-
- Kolak M, Westerbacka J, Velagapudi VR, et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 2007;56(8):1960‐1968. - PubMed
-
- Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient‐induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β‐cell. Diabetes. 2020;69(3):279‐290. - PubMed
-
- Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH. Lipoapoptosis in beta‐cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998;273(49):32487‐32490. - PubMed
-
- Ying L, Tippetts TS, Chaurasia B. Ceramide dependent lipotoxicity in metabolic diseases. Nutr Heal Ag. 2019;5(1):1‐12.
-
- Janikiewicz J, Hanzelka K, Kozinski K, Kolczynska K, Dobrzyn A. Islet β‐cell failure in type 2 diabetes—within the network of toxic lipids. Biochem Biophys Res Commun. 2015;460(3):491‐496. - PubMed
-
- Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro‐apoptotic effects on human pancreatic islets: evidence that beta‐cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl‐2 regulated. Diabetes. 2002;51(5):1437‐1442. - PubMed
-
- Buzzetti E, Pinzani M, Tsochatzis EA. The multiple‐hit pathogenesis of non‐alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038‐1048. - PubMed
-
- Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly‐Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non‐alcoholic fatty liver disease. J Hepatol. 2018;69(4):927‐947. - PubMed
-
- Niederreiter L, Tilg H. Cytokines and fatty liver diseases. Liver Research. 2018;2(1):14‐20.
-
- Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits beta‐oxidation and confers susceptibility to diet‐induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687‐695. - PubMed
-
- Lee AY, Lee JW, Kim JE, et al. Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model. Biochem Biophys Res Commun. 2017;494(3–4):460‐469. - PubMed
-
- Chaurasia B, Kaddai VA, Lancaster GI, et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 2016;24(6):820‐834. - PubMed
-
- Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatol Res. 2007;37(1):50‐57. - PubMed
-
- Kurek K, Piotrowska D, Wiesiołek P, et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Intern: Official J Intern Asso Stud Liv. 2013;34. - PubMed
-
- Taltavull N, Ras R, Marine S, et al. Protective effects of fish oil on pre‐diabetes: a lipidomic analysis of liver ceramides in rats. Food Funct. 2016;7(9):3981‐3988. - PubMed
-
- Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79(3):502‐509. - PubMed
-
- Weyler J, Verrijken A, Hornemann T, et al. Association of 1‐deoxy‐sphingolipids with steatosis but not steatohepatitis nor fibrosis in non‐alcoholic fatty liver disease. Acta Diabetol. 2021;58(3):319–327. - PubMed
-
- Zitomer NC, Mitchell T, Voss KA, et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1‐deoxysphinganine: a novel category of bioactive 1‐deoxysphingoid bases and 1‐deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem. 2009;284(8):4786‐4795. - PMC - PubMed
-
- Dohrn MF, Othman A, Hirshman SK, et al. Elevation of plasma 1‐deoxy‐sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy? Eur J Neurol. 2015;22(5):806‐814, e855. - PubMed
-
- Insausti‐Urkia N, Solsona‐Vilarrasa E, Garcia‐Ruiz C, Fernandez‐Checa JC. Sphingomyelinases and liver diseases. Biomolecules. 2020;10(11):1497.
-
- Greco D, Kotronen A, Westerbacka J, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1281‐G1287. - PubMed
-
- Chiappini F, Barrier A, Saffroy R, et al. Exploration of global gene expression in human liver steatosis by high‐density oligonucleotide microarray. Lab Invest. 2006;86(2):154‐165. - PubMed
-
- Griffin JH, Fernandez JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb Haemost. 2001;86(1):386‐394. - PubMed
-
- Oörni K, Posio P, Ala‐Korpela M, Jauhiainen M, Kovanen PT. Sphingomyelinase induces aggregation and fusion of small very low‐density lipoprotein and intermediate‐density lipoprotein particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol. 2005;25(8):1678‐1683. - PubMed
-
- Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc Med. 2002;12(1):37‐42. - PubMed
-
- Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM. Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology. 1997;7(1):57‐65. - PubMed
-
- Levade T, Auge N, Veldman RJ, Cuvillier O, Negre‐Salvayre A, Salvayre R. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res. 2001;89(11):957‐968. - PubMed
-
- Martin SF, Williams N, Chatterjee S. Lactosylceramide is required in apoptosis induced by N‐Smase. Glycoconj J. 2006;23(3):147‐157. - PubMed
-
- Mu H, Wang X, Wang H, Lin P, Yao Q, Chen C. Lactosylceramide promotes cell migration and proliferation through activation of ERK1/2 in human aortic smooth muscle cells. Am J Physiol Heart Circ Physiol. 2009;297(1):H400‐H408. - PubMed
-
- Adamy C, Mulder P, Khouzami L, et al. Neutral sphingomyelinase inhibition participates to the benefits of N‐acetylcysteine treatment in post‐myocardial infarction failing heart rats. J Mol Cell Cardiol. 2007;43(3):344‐353. - PubMed
-
- Egea‐Jimenez AL, Zimmermann P. Lipids in exosome biology. Handb Exp Pharmacol. 2020;259:309‐336. - PubMed
-
- Engin A. Dark‐side of exosomes. Adv Exp Med Biol. 2021;1275:101‐131. - PubMed
-
- Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244‐1247. - PubMed
-
- Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116‐125. - PubMed
-
- Llorente A, Skotland T, Sylvänne T, et al. Molecular lipidomics of exosomes released by PC‐3 prostate cancer cells. Biochim Biophys Acta. 2013;1831(7):1302‐1309. - PubMed
-
- Liu Y, Wang Y, Wang C, et al. Maternal obesity increases the risk of fetal cardiac dysfunction via visceral adipose tissue derived exosomes. Placenta. 2021;105:85‐93. - PubMed
-
- Gu H, Yang K, Shen Z, et al. ER stress‐induced adipocytes secrete‐aldo‐keto reductase 1B7‐containing exosomes that cause nonalcoholic steatohepatitis in mice. Free Radic Biol Med. 2021;163:220‐233. - PubMed
-
- Burillo J, Fernández‐Rhodes M, Piquero M, et al. Human amylin aggregates release within exosomes as a protective mechanism in pancreatic β cells: Pancreatic β‐hippocampal cell communication. Biochimica et Biophysica Acta Mole Cell Res. 1868;2021(5):118971. - PubMed