Neutral sphingomyelinase-2 and cardiometabolic diseases

Affiliations

01 August 2021

-

doi: 10.1111/obr.13248


Abstract

Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.

Keywords: cardiometabolic diseases; ceramide; nSMase2; sphingolipid.

Conflict of interest statement

No conflict of interest was declared.


Similar articles

Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi.

Gu L, Huang B, Shen W, Gao L, Ding Z, Wu H, Guo J.J Neuroinflammation. 2013 Sep 3;10:109. doi: 10.1186/1742-2094-10-109.PMID: 24007266 Free PMC article.

Sphingomyelinases and Liver Diseases.

Insausti-Urkia N, Solsona-Vilarrasa E, Garcia-Ruiz C, Fernandez-Checa JC.Biomolecules. 2020 Oct 30;10(11):1497. doi: 10.3390/biom10111497.PMID: 33143193 Free PMC article. Review.

Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties.

Figuera-Losada M, Stathis M, Dorskind JM, Thomas AG, Bandaru VV, Yoo SW, Westwood NJ, Rogers GW, McArthur JC, Haughey NJ, Slusher BS, Rojas C.PLoS One. 2015 May 26;10(5):e0124481. doi: 10.1371/journal.pone.0124481. eCollection 2015.PMID: 26010541 Free PMC article.

Stress-induced sphingolipid signaling: role of type-2 neutral sphingomyelinase in murine cell apoptosis and proliferation.

Devillard R, Galvani S, Thiers JC, Guenet JL, Hannun Y, Bielawski J, Nègre-Salvayre A, Salvayre R, Augé N.PLoS One. 2010 Mar 23;5(3):e9826. doi: 10.1371/journal.pone.0009826.PMID: 20352118 Free PMC article.

Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes.

Shamseddine AA, Airola MV, Hannun YA.Adv Biol Regul. 2015 Jan;57:24-41. doi: 10.1016/j.jbior.2014.10.002. Epub 2014 Oct 27.PMID: 25465297 Free PMC article. Review.


Cited by

Abnormalities of Sphingolipids Metabolic Pathways in the Pathogenesis of Psoriasis.

Burger B, Sagiorato RN, Cavenaghi I, Rodrigues HG.Metabolites. 2023 Feb 16;13(2):291. doi: 10.3390/metabo13020291.PMID: 36837912 Free PMC article. Review.

Role of ceramides in diabetic foot ulcers (Review).

Wang Y, Sun Z, Zang G, Zhang L, Wang Z.Int J Mol Med. 2023 Mar;51(3):26. doi: 10.3892/ijmm.2023.5229. Epub 2023 Feb 17.PMID: 36799149 Free PMC article. Review.

Characterization of a Neutral Sphingomyelinase Activity in Human Serum and Plasma.

Mühle C, Kornhuber J.Int J Mol Sci. 2023 Jan 27;24(3):2467. doi: 10.3390/ijms24032467.PMID: 36768790 Free PMC article.

Serum metabolomic analysis in patients with Hashimoto's thyroiditis.

Jiang X, Zhao X, Gu X, Luo T, Li P, Wan C, Liu H.Front Endocrinol (Lausanne). 2022 Dec 22;13:1046159. doi: 10.3389/fendo.2022.1046159. eCollection 2022.PMID: 36619550 Free PMC article.

Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review.

Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC.Diagnostics (Basel). 2022 Dec 13;12(12):3141. doi: 10.3390/diagnostics12123141.PMID: 36553147 Free PMC article. Review.


References

  1.  
    1. Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J Lipids. 2013;2013:178910. - PMC - PubMed
  2.  
    1. Russo SB, Ross JS, Cowart LA. Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol. 2013;216:373‐401. - PMC - PubMed
  3.  
    1. Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‐associated pathologies (Review). Int J Mol Med. 2017;39(2):243‐252. - PMC - PubMed
  4.  
    1. Sui J, He M, Wang Y, Zhao X, He Y, Shi B. Sphingolipid metabolism in type 2 diabetes and associated cardiovascular complications. Exp Ther Med. 2019;18(5):3603‐3614. - PMC - PubMed
  5.  
    1. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18(1):33‐50. - PMC - PubMed
  6.  
    1. Ghidoni R, Caretti A, Signorelli P. Role of sphingolipids in the pathobiology of lung inflammation. Mediators Inflamm. 2015;2015:487508. - PMC - PubMed
  7.  
    1. Chakinala RC, Khatri A, Gupta K, Koike K, Epelbaum O. Sphingolipids in COPD. Eur Respir Rev. 2019;28(154):190047. - PubMed
  8.  
    1. Platt FM. Sphingolipid lysosomal storage disorders. Nature. 2014;510(7503):68‐75. - PubMed
  9.  
    1. Bielawska A, Linardic CM, Hannun YA. Ceramide‐mediated biology. Determination of structural and stereospecific requirements through the use of N‐acyl‐phenylaminoalcohol analogs. J Biol Chem. 1992;267(26):18493‐18497. - PubMed
  10.  
    1. Clarke CJ, Mediwala K, Jenkins RW, Sutton CA, Tholanikunnel BG, Hannun YA. Neutral sphingomyelinase‐2 mediates growth arrest by retinoic acid through modulation of ribosomal S6 kinase. J Biol Chem. 2011;286(24):21565‐21576. - PMC - PubMed
  11.  
    1. Sharma K, Shi Y. The yins and yangs of ceramide. Cell Res. 1999;9(1):1‐10. - PubMed
  12.  
    1. Arana L, Gangoiti P, Ouro A, Trueba M, Gómez‐Muñoz A. Ceramide and ceramide 1‐phosphate in health and disease. Lipids Health Dis. 2010;9(1):15. - PMC - PubMed
  13.  
    1. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem. 1995;270(51):30701‐30708. - PubMed
  14.  
    1. Kuzmenko DI, Klimentyeva TK. Role of ceramide in apoptosis and development of insulin resistance. Biochemistry (Mosc). 2016;81(9):913‐927. - PubMed
  15.  
    1. Sokolowska E, Blachnio‐Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol. 2019;10(577). - PMC - PubMed
  16.  
    1. Schmitz‐Peiffer C. Targeting ceramide synthesis to reverse insulin resistance. Diabetes. 2010;59(10):2351‐2353. - PMC - PubMed
  17.  
    1. Andrieu‐Abadie N, Gouazé V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med. 2001;31(6):717‐728. - PubMed
  18.  
    1. Bismuth J, Lin P, Yao Q, Chen C. Ceramide: a common pathway for atherosclerosis? Atherosclerosis. 2008;196(2):497‐504. - PMC - PubMed
  19.  
    1. de Wit NM, den Hoedt S, Martinez‐Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation. 2019;16(1):48. - PMC - PubMed
  20.  
    1. Schneider PB, Kennedy EP. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann‐Pick disease. J Lipid Res. 1967;8(3):202‐209. - PubMed
  21.  
    1. Rao BG, Spence MW. Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J Lipid Res. 1976;17(5):506‐515. - PubMed
  22.  
    1. Clarke CJ, Hannun YA. Neutral sphingomyelinases and nSMase2: bridging the gaps. Biochim Biophys Acta. 2006;1758(12):1893‐1901. - PubMed
  23.  
    1. Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase‐2 in cellular and pathological processes. Adv Biol Regul. 2015;57:24‐41. - PMC - PubMed
  24.  
    1. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA. The extended family of neutral sphingomyelinases. Biochemistry. 2006;45(38):11247‐11256. - PubMed
  25.  
    1. Karakashian AA, Giltiay NV, Smith GM, Nikolova‐Karakashian MN. Expression of neutral sphingomyelinase‐2 (NSMase‐2) in primary rat hepatocytes modulates IL‐beta‐induced JNK activation. FASEB J. 2004;18(9):968‐970. - PubMed
  26.  
    1. Airola MV, Shanbhogue P, Shamseddine AA, et al. Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc Natl Acad Sci U S A. 2017;114(28):E5549‐E5558. - PMC - PubMed
  27.  
    1. Clarke CJ, Cloessner EA, Roddy PL, Hannun YA. Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor‐alpha in MCF‐7 cells. Biochem J. 2011;435(2):381‐390. - PMC - PubMed
  28.  
    1. Kim MY, Linardic C, Obeid L, Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma‐interferon. Specific role in cell differentiation. J Biol Chem. 1991;266(1):484‐489. - PubMed
  29.  
    1. Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A. 2005;102(12):4554‐4559. - PMC - PubMed
  30.  
    1. Khavandgar Z, Poirier C, Clarke CJ, et al. A cell‐autonomous requirement for neutral sphingomyelinase 2 in bone mineralization. J Cell Biol. 2011;194(2):277‐289. - PMC - PubMed
  31.  
    1. Strum JC, Ghosh S, Bell RM. Lipid second messengers. A role in cell growth regulation and cell cycle progression. Adv Exp Med Biol. 1997;407:421‐431. - PubMed
  32.  
    1. Devillard R, Galvani S, Thiers JC, et al. Stress‐induced sphingolipid signaling: role of type‐2 neutral sphingomyelinase in murine cell apoptosis and proliferation. PLoS One. 2010;5(3):e9826. - PMC - PubMed
  33.  
    1. Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age‐related diseases. J Clin Invest. 2018;128(7):2702‐2712. - PMC - PubMed
  34.  
    1. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S a. 1994;91(1):73‐77. - PMC - PubMed
  35.  
    1. Gills JJ, Zhang C, Abu‐Asab MS, et al. Ceramide mediates nanovesicle shedding and cell death in response to phosphatidylinositol ether lipid analogs and perifosine. Cell Death Dis. 2012;3:e340. - PMC - PubMed
  36.  
    1. Back MJ, Ha HC, Fu Z, et al. Activation of neutral sphingomyelinase 2 by starvation induces cell‐protective autophagy via an increase in Golgi‐localized ceramide. Cell Death Dis. 2018;9(6):670. - PMC - PubMed
  37.  
    1. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569‐579. - PubMed
  38.  
    1. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)‐dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849‐10859. - PMC - PubMed
  39.  
    1. Yang Z, Costanzo M, Golde DW, Kolesnick RN. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL‐60 cells. J Biol Chem. 1993;268(27):20520‐20523. - PubMed
  40.  
    1. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57(3):642‐654. - PubMed
  41.  
    1. Dobierzewska A, Shi L, Karakashian AA, Nikolova‐Karakashian MN. Interleukin 1beta regulation of FoxO1 protein content and localization: evidence for a novel ceramide‐dependent mechanism. J Biol Chem. 2012;287(53):44749‐44760. - PMC - PubMed
  42.  
    1. Henry B, Moller C, Dimanche‐Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett. 2013;332(2):286‐294. - PubMed
  43.  
    1. Park B, Lee YM, Kim JS, et al. Neutral sphingomyelinase 2 modulates cytotoxic effects of protopanaxadiol on different human cancer cells. BMC Complement Altern Med. 2013;13:194. - PMC - PubMed
  44.  
    1. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol. 2001;64(6):575‐611. - PubMed
  45.  
    1. Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71(1):35‐48. - PubMed
  46.  
    1. Poirier C, Berdyshev EV, Dimitropoulou C, Bogatcheva NV, Biddinger PW, Verin AD. Neutral sphingomyelinase 2 deficiency is associated with lung anomalies similar to emphysema. Mamm Genome. 2012;23(11–12):758‐763. - PMC - PubMed
  47.  
    1. Cogolludo A, Moreno L, Frazziano G, et al. Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovasc Res. 2009;82(2):296‐302. - PMC - PubMed
  48.  
    1. Smith AR, Visioli F, Frei B, Hagen TM. Age‐related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide‐activated phosphatase 2A. Aging Cell. 2006;5(5):391‐400. - PubMed
  49.  
    1. Mogami K, Kishi H, Kobayashi S. Sphingomyelinase causes endothelium‐dependent vasorelaxation through endothelial nitric oxide production without cytosolic Ca(2+) elevation. FEBS Lett. 2005;579(2):393‐397. - PubMed
  50.  
    1. Ohanian J, Forman SP, Katzenberg G, Ohanian V. Endothelin‐1 stimulates small artery VCAM‐1 expression through p38MAPK‐dependent neutral sphingomyelinase. J Vasc Res. 2012;49(4):353‐362. - PubMed
  51.  
    1. Altura BM, Shah NC, Shah GJ, et al. Magnesium deficiency upregulates sphingomyelinases in cardiovascular tissues and cells: cross‐talk among proto‐oncogenes, Mg(2+), NF‐kappaB and ceramide and their potential relationships to resistant hypertension, atherogenesis and cardiac failure. Int J Clin Exp Med. 2013;6(10):861‐879. - PMC - PubMed
  52.  
    1. Altura BM, Shah NC, Shah GJ, et al. Short‐term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF‐kB, cytokines, ceramide salvage sphingolipid pathway and PKC‐zeta: hypothesis and review. Int J Clin Exp Med. 2014;7(1):1‐21. - PMC - PubMed
  53.  
    1. Shah NC, Shah GJ, Li Z, Jiang XC, Altura BT, Altura BM. Short‐term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med. 2014;7(3):497‐514. - PMC - PubMed
  54.  
    1. Hernandez OM, Discher DJ, Bishopric NH, Webster KA. Rapid activation of neutral sphingomyelinase by hypoxia‐reoxygenation of cardiac myocytes. Circ Res. 2000;86(2):198‐204. - PubMed
  55.  
    1. Baranowski M, Blachnio‐Zabielska A, Hirnle T, et al. Myocardium of type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide. J Lipid Res. 2010;51(1):74‐80. - PMC - PubMed
  56.  
    1. Thudichum JLW. A Treatise on the Chemical Constitution of Brain. Vol. 22. London: Bailliere, Tindall, and Cox; 1884:146.
  57.  
    1. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139‐150. - PubMed
  58.  
    1. Hannun YA, Luberto C. Lipid metabolism: ceramide transfer protein adds a new dimension. Curr Biol. 2004;14(4):R163‐R165. - PubMed
  59.  
    1. Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1‐23. - PMC - PubMed
  60.  
    1. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(3):175‐191. - PMC - PubMed
  61.  
    1. Menaldino DS, Bushnev A, Sun A, et al. Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res. 2003;47(5):373‐381. - PubMed
  62.  
    1. Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol. 2005;21:81‐103. - PubMed
  63.  
    1. Snook CF, Jones JA, Hannun YA. Sphingolipid‐binding proteins. Biochim Biophys Acta. 2006;1761(8):927‐946. - PubMed
  64.  
    1. Zeidan YH, Hannun YA. Translational aspects of sphingolipid metabolism. Trends Mol Med. 2007;13(8):327‐336. - PubMed
  65.  
    1. Aburasayn H, Al Batran R, Ussher JR. Targeting ceramide metabolism in obesity. Am J Physiol Endocrinol Metab. 2016;311(2):E423‐E435. - PubMed
  66.  
    1. Garcia‐Gonzalez V, Diaz‐Villanueva JF, Galindo‐Hernandez O, Martinez‐Navarro I, Hurtado‐Ureta G, Perez‐Arias AA. Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. Int J Mol Sci. 2018;19(9):2527. - PMC - PubMed
  67.  
    1. Weiss B, Stoffel W. Human and murine serine‐palmitoyl‐CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997;249(1):239‐247. - PubMed
  68.  
    1. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995;20(2):73‐77. - PubMed
  69.  
    1. Kitatani K, Idkowiak‐Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 2008;20(6):1010‐1018. - PMC - PubMed
  70.  
    1. Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 2002;531(1):38‐46. - PubMed
  71.  
    1. Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol. 2004;82(1):27‐44. - PubMed
  72.  
    1. Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E. Acid sphingomyelinase. Handb Exp Pharmacol. 2013;215:77‐88. - PubMed
  73.  
    1. Barnholz Y, Roitman A, Gatt S. Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J Biol Chem. 1966;241(16):3731‐3737. - PubMed
  74.  
    1. Tabas I. Secretory sphingomyelinase. Chem Phys Lipids. 1999;102(1–2):123‐130. - PubMed
  75.  
    1. Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I. The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem. 1998;273(29):18250‐18259. - PubMed
  76.  
    1. Schissel SL, Jiang X, Tweedie‐Hardman J, et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem. 1998;273(5):2738‐2746. - PubMed
  77.  
    1. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M. Novel tumor necrosis factor‐responsive mammalian neutral sphingomyelinase‐3 is a C‐tail‐anchored protein. J Biol Chem. 2006;281(19):13784‐13793. - PubMed
  78.  
    1. Tani M, Ito M, Igarashi Y. Ceramide/sphingosine/sphingosine 1‐phosphate metabolism on the cell surface and in the extracellular space. Cell Signal. 2007;19(2):229‐237. - PubMed
  79.  
    1. Andrieu‐Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta. 2002;1585(2–3):126‐134. - PubMed
  80.  
    1. Czarny M, Schnitzer JE. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol. 2004;287(3):H1344‐H1352. - PubMed
  81.  
    1. Auge N, Andrieu N, Negre‐Salvayre A, Thiers JC, Levade T, Salvayre R. The sphingomyelin‐ceramide signaling pathway is involved in oxidized low density lipoprotein‐induced cell proliferation. J Biol Chem. 1996;271(32):19251‐19255. - PubMed
  82.  
    1. Chatterjee S. Neutral sphingomyelinase: past, present and future. Chem Phys Lipids. 1999;102(1–2):79‐96. - PubMed
  83.  
    1. Ghosh N, Sabbadini R, Chatterjee S. Identification, partial purification, and localization of a neutral sphingomyelinase in rabbit skeletal muscle: neutral sphingomyelinase in skeletal muscle. Mol Cell Biochem. 1998;189(1–2):161‐168. - PubMed
  84.  
    1. Okazaki T, Bielawska A, Domae N, Bell RM, Hannun YA. Characteristics and partial purification of a novel cytosolic, magnesium‐independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25‐dihydroxyvitamin D3‐induced HL‐60 cell differentiation. J Biol Chem. 1994;269(6):4070‐4077. - PubMed
  85.  
    1. Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids. 1999;102(1–2):97‐105. - PubMed
  86.  
    1. Cheng Y, Nilsson A, Tomquist E, Duan RD. Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43(2):316‐324. - PubMed
  87.  
    1. Duan RD. Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta. 2006;1761(3):281‐291. - PubMed
  88.  
    1. Liu B, Hassler DF, Smith GK, Weaver K, Hannun YA. Purification and characterization of a membrane bound neutral pH optimum magnesium‐dependent and phosphatidylserine‐stimulated sphingomyelinase from rat brain. J Biol Chem. 1998;273(51):34472‐34479. - PubMed
  89.  
    1. Bernardo K, Krut O, Wiegmann K, et al. Purification and characterization of a magnesium‐dependent neutral sphingomyelinase from bovine brain. J Biol Chem. 2000;275(11):7641‐7647. - PubMed
  90.  
    1. Tomiuk S, Zumbansen M, Stoffel W. Characterization and subcellular localization of murine and human magnesium‐dependent neutral sphingomyelinase. J Biol Chem. 2000;275(8):5710‐5717. - PubMed
  91.  
    1. Hofmann K, Tomiuk S, Wolff G, Stoffel W. Cloning and characterization of the mammalian brain‐specific, Mg2+‐dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2000;97(11):5895‐5900. - PMC - PubMed
  92.  
    1. Aubin I, Adams CP, Opsahl S, et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet. 2005;37(8):803‐805. - PubMed
  93.  
    1. Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA. Role for mammalian neutral sphingomyelinase 2 in confluence‐induced growth arrest of MCF7 cells. J Biol Chem. 2004;279(24):25101‐25111. - PubMed
  94.  
    1. Tani M, Hannun YA. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 2007;581(7):1323‐1328. - PMC - PubMed
  95.  
    1. Ito H, Tanaka K, Hagiwara K, et al. Transcriptional regulation of neutral sphingomyelinase 2 in all‐trans retinoic acid‐treated human breast cancer cell line, MCF‐7. J Biochem. 2012;151(6):599‐610. - PubMed
  96.  
    1. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579‐2587. - PubMed
  97.  
    1. Blachnio‐Zabielska AU, Koutsari C, Tchkonia T, Jensen MD. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity (Silver Spring). 2012;20(12):2341‐2347. - PMC - PubMed
  98.  
    1. Levy M, Castillo SS, Goldkorn T. nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun. 2006;344(3):900‐905. - PMC - PubMed
  99.  
    1. Clarke CJ, Truong TG, Hannun YA. Role for neutral sphingomyelinase‐2 in tumor necrosis factor alpha‐stimulated expression of vascular cell adhesion molecule‐1 (VCAM) and intercellular adhesion molecule‐1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem. 2007;282(2):1384‐1396. - PubMed
  100.  
    1. Clarke CJ, Guthrie JM, Hannun YA. Regulation of neutral sphingomyelinase‐2 (nSMase2) by tumor necrosis factor‐alpha involves protein kinase C‐delta in lung epithelial cells. Mol Pharmacol. 2008;74(4):1022‐1032. - PMC - PubMed
  101.  
    1. Horres CR, Hannun YA. The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res. 2012;37(6):1137‐1149. - PubMed
  102.  
    1. Rutkute K, Asmis RH, Nikolova‐Karakashian MN. Regulation of neutral sphingomyelinase‐2 by GSH: a new insight to the role of oxidative stress in aging‐associated inflammation. J Lipid Res. 2007;48(11):2443‐2452. - PMC - PubMed
  103.  
    1. Luberto C, Hassler DF, Signorelli P, et al. Inhibition of tumor necrosis factor‐induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem. 2002;277(43):41128‐41139. - PubMed
  104.  
    1. de Palma C, Meacci E, Perrotta C, Bruni P, Clementi E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol. 2006;26(1):99‐105. - PubMed
  105.  
    1. Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J. Amyloid‐beta peptide enhances tumor necrosis factor‐alpha‐induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem. 2005;94(3):703‐712. - PubMed
  106.  
    1. Marchesini N, Luberto C, Hannun YA. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem. 2003;278(16):13775‐13783. - PubMed
  107.  
    1. Ito H, Murakami M, Furuhata A, et al. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF‐7, induced by the anti‐cancer drug, daunorubicin. Biochim Biophys Acta. 2009;1789(11–12):681‐690. - PubMed
  108.  
    1. Dressler KA, Mathias S, Kolesnick RN. Tumor necrosis factor‐alpha activates the sphingomyelin signal transduction pathway in a cell‐free system. Science. 1992;255(5052):1715‐1718. - PubMed
  109.  
    1. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell. 1994;78(6):1005‐1015. - PubMed
  110.  
    1. Ishii T, Warabi E. Mechanism of rapid nuclear factor‐E2‐related factor 2 (Nrf2) activation via membrane‐associated estrogen receptors: roles of NADPH oxidase 1, neutral sphingomyelinase 2 and epidermal growth factor receptor (EGFR). Antioxidants (Basel). 2019;8(3):69. - PMC - PubMed
  111.  
    1. Grimm MO, Grimm HS, Patzold AJ, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid‐beta and presenilin. Nat Cell Biol. 2005;7(11):1118‐1123. - PubMed
  112.  
    1. Filosto S, Ashfaq M, Chung S, Fry W, Goldkorn T. Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J Biol Chem. 2012;287(1):514‐522. - PMC - PubMed
  113.  
    1. Filosto S, Fry W, Knowlton AA, Goldkorn T. Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J Biol Chem. 2010;285(14):10213‐10222. - PMC - PubMed
  114.  
    1. Liu B, Andrieu‐Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor‐alpha‐induced cell death. J Biol Chem. 1998;273(18):11313‐11320. - PubMed
  115.  
    1. Airola MV, Hannun YA. Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol. 2013;215:57‐76. - PMC - PubMed
  116.  
    1. Shanbhogue P, Hoffmann RM, Airola MV, et al. The juxtamembrane linker in neutral sphingomyelinase‐2 functions as an intramolecular allosteric switch that activates the enzyme. J Biol Chem. 2019;294(18):7488‐7502. - PMC - PubMed
  117.  
    1. Ago H, Oda M, Takahashi M, et al. Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem. 2006;281(23):16157‐16167. - PubMed
  118.  
    1. Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res. 2009;50 Suppl(Suppl):S91‐S96. - PMC - PubMed
  119.  
    1. Pavoine C, Pecker F. Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res. 2009;82(2):175‐183. - PMC - PubMed
  120.  
    1. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549‐1564. - PMC - PubMed
  121.  
    1. Li Y, Talbot CL, Chaurasia B. Ceramides in adipose tissue. Front Endocr (Lausanne). 2020;11:407. - PMC - PubMed
  122.  
    1. Nikolova‐Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem. 2008;49:469‐486. - PubMed
  123.  
    1. Ghosh N, Patel N, Jiang K, et al. Ceramide‐activated protein phosphatase involvement in insulin resistance via Akt, serine/arginine‐rich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells. Endocrinology. 2007;148(3):1359‐1366. - PMC - PubMed
  124.  
    1. Powell DJ, Hajduch E, Kular G, Hundal HS. Ceramide disables 3‐phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta‐dependent mechanism. Mol Cell Biol. 2003;23(21):7794‐7808. - PMC - PubMed
  125.  
    1. Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278(12):10297‐10303. - PubMed
  126.  
    1. Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal. 2002;14(3):231‐238. - PubMed
  127.  
    1. Turpin SM, Nicholls HT, Willmes DM, et al. Obesity‐induced CerS6‐dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678‐686. - PubMed
  128.  
    1. Konstantynowicz‐Nowicka K, Harasim E, Baranowski M, Chabowski A. New evidence for the role of ceramide in the development of hepatic insulin resistance. PLoS One. 2015;10(1):e0116858. - PMC - PubMed
  129.  
    1. Fernandez‐Veledo S, Hernandez R, Teruel T, Mas JA, Ros M, Lorenzo M. Ceramide mediates TNF‐alpha‐induced insulin resistance on GLUT4 gene expression in brown adipocytes. Arch Physiol Biochem. 2006;112(1):13‐22. - PubMed
  130.  
    1. Hajduch E, Balendran A, Batty IH, et al. Ceramide impairs the insulin‐dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia. 2001;44(2):173‐183. - PubMed
  131.  
    1. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457‐461. - PubMed
  132.  
    1. Verma MK, Yateesh AN, Neelima K, et al. Inhibition of neutral sphingomyelinases in skeletal muscle attenuates fatty‐acid induced defects in metabolism and stress. Springerplus. 2014;3:255. - PMC - PubMed
  133.  
    1. Al‐Rashed F, Ahmad Z, Thomas R, et al. Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF‐α. Sci Rep. 2020;10(1):16802. - PMC - PubMed
  134.  
    1. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid‐, saturated‐fat‐, and obesity‐induced insulin resistance. Cell Metab. 2007;5(3):167‐179. - PubMed
  135.  
    1. Miyazaki Y, Matsuda M, DeFronzo RA. Dose‐response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care. 2002;25(3):517‐523. - PubMed
  136.  
    1. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator‐activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun. 2000;278(3):704‐711. - PubMed
  137.  
    1. Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13‐18. - PubMed
  138.  
    1. Murase K, Odaka H, Suzuki M, Tayuki N, Ikeda H. Pioglitazone time‐dependently reduces tumour necrosis factor‐alpha level in muscle and improves metabolic abnormalities in Wistar fatty rats. Diabetologia. 1998;41(3):257‐264. - PubMed
  139.  
    1. Chaurasia B, Tippetts TS, Mayoral Monibas R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365(6451):386‐392. - PMC - PubMed
  140.  
    1. Apostolopoulou M, Gordillo R, Gancheva S, et al. Role of ceramide‐to‐dihydroceramide ratios for insulin resistance and non‐alcoholic fatty liver disease in humans. BMJ Open Diabetes Res Care. 2020;8(2):e001860. - PMC - PubMed
  141.  
    1. Apostolopoulou M, Gordillo R, Koliaki C, et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care. 2018;41(6):1235‐1243. - PubMed
  142.  
    1. Kolak M, Westerbacka J, Velagapudi VR, et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 2007;56(8):1960‐1968. - PubMed
  143.  
    1. Xia JY, Holland WL, Kusminski CM, et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 2015;22(2):266‐278. - PMC - PubMed
  144.  
    1. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802‐1812. - PMC - PubMed
  145.  
    1. Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient‐induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β‐cell. Diabetes. 2020;69(3):279‐290. - PubMed
  146.  
    1. Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH. Lipoapoptosis in beta‐cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998;273(49):32487‐32490. - PubMed
  147.  
    1. Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic β‐cell function and dysfunction. Islets. 2012;4(3):177‐187. - PMC - PubMed
  148.  
    1. Lei X, Bone RN, Ali T, et al. Evidence of contribution of iPLA2beta‐mediated events during islet beta‐cell apoptosis due to proinflammatory cytokines suggests a role for iPLA2beta in T1D development. Endocrinology. 2014;155(9):3352‐3364. - PMC - PubMed
  149.  
    1. Ying L, Tippetts TS, Chaurasia B. Ceramide dependent lipotoxicity in metabolic diseases. Nutr Heal Ag. 2019;5(1):1‐12.
  150.  
    1. Véret J, Bellini L, Giussani P, Ng C, Magnan C, Stunff HL. Roles of sphingolipid metabolism in pancreatic β cell dysfunction induced by lipotoxicity. J Clin Med. 2014;3(2):646‐662. - PMC - PubMed
  151.  
    1. Chipuk JE, McStay GP, Bharti A, et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell. 2012;148(5):988‐1000. - PMC - PubMed
  152.  
    1. Janikiewicz J, Hanzelka K, Kozinski K, Kolczynska K, Dobrzyn A. Islet β‐cell failure in type 2 diabetes—within the network of toxic lipids. Biochem Biophys Res Commun. 2015;460(3):491‐496. - PubMed
  153.  
    1. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro‐apoptotic effects on human pancreatic islets: evidence that beta‐cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl‐2 regulated. Diabetes. 2002;51(5):1437‐1442. - PubMed
  154.  
    1. Yano M, Watanabe K, Yamamoto T, et al. Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1‐null mice. J Biol Chem. 2011;286(5):3992‐4002. - PMC - PubMed
  155.  
    1. Tong X, Chaudhry Z, Lee CC, et al. Cigarette smoke exposure impairs beta‐cell function through activation of oxidative stress and ceramide accumulation. Mol Metab. 2020;37:100975. - PMC - PubMed
  156.  
    1. Kovilakath A, Cowart LA. Sphingolipid mediators of myocardial pathology. J Lipi Atheroscle. 2020;9(1):23‐49. - PMC - PubMed
  157.  
    1. Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol. 2011;163(4):694‐712. - PMC - PubMed
  158.  
    1. Deng P, Hoffman JB, Petriello MC, et al. Dietary inulin decreases circulating ceramides by suppressing neutral sphingomyelinase expression and activity in mice. J Lipid Res. 2020;61(1):45‐53. - PMC - PubMed
  159.  
    1. Simon J, Ouro A, Ala‐Ibanibo L, Presa N, Delgado TC, Martinez‐Chantar ML. Sphingolipids in non‐alcoholic fatty liver disease and hepatocellular carcinoma: ceramide turnover. Int J Mol Sci. 2019;21(1):40. - PMC - PubMed
  160.  
    1. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple‐hit pathogenesis of non‐alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038‐1048. - PubMed
  161.  
    1. Masarone M, Rosato V, Dallio M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. - PMC - PubMed
  162.  
    1. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly‐Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non‐alcoholic fatty liver disease. J Hepatol. 2018;69(4):927‐947. - PubMed
  163.  
    1. Wandrer F, Liebig S, Marhenke S, et al. TNF‐receptor‐1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis. 2020;11(3):212. - PMC - PubMed
  164.  
    1. Niederreiter L, Tilg H. Cytokines and fatty liver diseases. Liver Research. 2018;2(1):14‐20.
  165.  
    1. Mendez‐Sanchez N, Cruz‐Ramon VC, Ramirez‐Perez OL, Hwang JP, Barranco‐Fragoso B, Cordova‐Gallardo J. New aspects of lipotoxicity in nonalcoholic steatohepatitis. Int J Mol Sci. 2018;19(7):2034. - PMC - PubMed
  166.  
    1. Di Sessa A, Cirillo G, Guarino S, Marzuillo P, Miraglia Del Giudice E. Pediatric non‐alcoholic fatty liver disease: current perspectives on diagnosis and management. Pediatric Health Med Ther. 2019;10:89‐97. - PMC - PubMed
  167.  
    1. Mauer AS, Hirsova P, Maiers JL, Shah VH, Malhi H. Inhibition of sphingosine 1‐phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2017;312(3):G300‐G313. - PMC - PubMed
  168.  
    1. Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits beta‐oxidation and confers susceptibility to diet‐induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687‐695. - PubMed
  169.  
    1. Lee AY, Lee JW, Kim JE, et al. Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model. Biochem Biophys Res Commun. 2017;494(3–4):460‐469. - PubMed
  170.  
    1. Kasumov T, Li L, Li M, et al. Ceramide as a mediator of non‐alcoholic Fatty liver disease and associated atherosclerosis. PLoS One. 2015;10(5):e0126910. - PMC - PubMed
  171.  
    1. Chaurasia B, Kaddai VA, Lancaster GI, et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 2016;24(6):820‐834. - PubMed
  172.  
    1. Sanyal AJ, Pacana T. A lipidomic readout of disease progression in a diet‐induced mouse model of nonalcoholic fatty liver disease. Trans Am Clin Climatol Assoc. 2015;126:271‐288. - PMC - PubMed
  173.  
    1. Sajan MP, Ivey RA, Lee MC, Farese RV. Hepatic insulin resistance in ob/ob mice involves increases in ceramide, aPKC activity, and selective impairment of Akt‐dependent FoxO1 phosphorylation. J Lipid Res. 2015;56(1):70‐80. - PMC - PubMed
  174.  
    1. Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatol Res. 2007;37(1):50‐57. - PubMed
  175.  
    1. Jiang M, Li C, Liu Q, Wang A, Lei M. Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with non‐alcoholic fatty liver disease. Front Endocrinol. 2019;10(665). - PMC - PubMed
  176.  
    1. Kurek K, Piotrowska D, Wiesiołek P, et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Intern: Official J Intern Asso Stud Liv. 2013;34. - PubMed
  177.  
    1. Taltavull N, Ras R, Marine S, et al. Protective effects of fish oil on pre‐diabetes: a lipidomic analysis of liver ceramides in rats. Food Funct. 2016;7(9):3981‐3988. - PubMed
  178.  
    1. Lieber CS, Leo MA, Mak KM, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79(3):502‐509. - PubMed
  179.  
    1. Weyler J, Verrijken A, Hornemann T, et al. Association of 1‐deoxy‐sphingolipids with steatosis but not steatohepatitis nor fibrosis in non‐alcoholic fatty liver disease. Acta Diabetol. 2021;58(3):319–327. - PubMed
  180.  
    1. Zitomer NC, Mitchell T, Voss KA, et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1‐deoxysphinganine: a novel category of bioactive 1‐deoxysphingoid bases and 1‐deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem. 2009;284(8):4786‐4795. - PMC - PubMed
  181.  
    1. Penno A, Reilly MM, Houlden H, et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem. 2010;285(15):11178‐11187. - PMC - PubMed
  182.  
    1. Alecu I, Othman A, Penno A, et al. Cytotoxic 1‐deoxysphingolipids are metabolized by a cytochrome P450‐dependent pathway. J Lipid Res. 2017;58(1):60‐71. - PMC - PubMed
  183.  
    1. Bertea M, Rutti MF, Othman A, et al. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9:84. - PMC - PubMed
  184.  
    1. Othman A, Saely CH, Muendlein A, et al. Plasma 1‐deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2015;3(1):e000073. - PMC - PubMed
  185.  
    1. Gorden DL, Myers DS, Ivanova PT, et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res. 2015;56(3):722‐736. - PMC - PubMed
  186.  
    1. Dohrn MF, Othman A, Hirshman SK, et al. Elevation of plasma 1‐deoxy‐sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy? Eur J Neurol. 2015;22(5):806‐814, e855. - PubMed
  187.  
    1. Insausti‐Urkia N, Solsona‐Vilarrasa E, Garcia‐Ruiz C, Fernandez‐Checa JC. Sphingomyelinases and liver diseases. Biomolecules. 2020;10(11):1497.
  188.  
    1. Greco D, Kotronen A, Westerbacka J, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1281‐G1287. - PubMed
  189.  
    1. Chiappini F, Barrier A, Saffroy R, et al. Exploration of global gene expression in human liver steatosis by high‐density oligonucleotide microarray. Lab Invest. 2006;86(2):154‐165. - PubMed
  190.  
    1. Deevska G, Sunkara M, Karakashian C, Peppers B, Morris AJ, Nikolova‐Karakashian MN. Effect of procysteine on aging‐associated changes in hepatic GSH and SMase: evidence for transcriptional regulation of smpd3. J Lipid Res. 2014;55(10):2041‐2052. - PMC - PubMed
  191.  
    1. Griffin JH, Fernandez JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb Haemost. 2001;86(1):386‐394. - PubMed
  192.  
    1. Oörni K, Posio P, Ala‐Korpela M, Jauhiainen M, Kovanen PT. Sphingomyelinase induces aggregation and fusion of small very low‐density lipoprotein and intermediate‐density lipoprotein particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol. 2005;25(8):1678‐1683. - PubMed
  193.  
    1. Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc Med. 2002;12(1):37‐42. - PubMed
  194.  
    1. Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM. Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology. 1997;7(1):57‐65. - PubMed
  195.  
    1. Levade T, Auge N, Veldman RJ, Cuvillier O, Negre‐Salvayre A, Salvayre R. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res. 2001;89(11):957‐968. - PubMed
  196.  
    1. Martin SF, Williams N, Chatterjee S. Lactosylceramide is required in apoptosis induced by N‐Smase. Glycoconj J. 2006;23(3):147‐157. - PubMed
  197.  
    1. Mu H, Wang X, Wang H, Lin P, Yao Q, Chen C. Lactosylceramide promotes cell migration and proliferation through activation of ERK1/2 in human aortic smooth muscle cells. Am J Physiol Heart Circ Physiol. 2009;297(1):H400‐H408. - PubMed
  198.  
    1. Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2009;297(1):E211‐E224. - PMC - PubMed
  199.  
    1. Lallemand T, Rouahi M, Swiader A, et al. nSMase2 (type 2‐neutral sphingomyelinase) deficiency or inhibition by GW4869 reduces inflammation and atherosclerosis in apoe(−/−) mice. Arterioscler Thromb Vasc Biol. 2018;38(7):1479‐1492. - PMC - PubMed
  200.  
    1. Park TS, Hu Y, Noh HL, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008;49(10):2101‐2112. - PMC - PubMed
  201.  
    1. Laaksonen R, Ekroos K, Sysi‐Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL‐cholesterol. Eur Heart J. 2016;37(25):1967‐1976. - PMC - PubMed
  202.  
    1. de Carvalho LP, Tan SH, Ow GS, et al. Plasma ceramides as prognostic biomarkers and their arterial and myocardial tissue correlates in acute myocardial infarction. JACC Basic Transl Sci. 2018;3(2):163‐175. - PMC - PubMed
  203.  
    1. Dotson PP II, Karakashian Alexander A, Nikolova‐Karakashian MN. Neutral sphingomyelinase‐2 is a redox sensitive enzyme: role of catalytic cysteine residues in regulation of enzymatic activity through changes in oligomeric state. Biochem J. 2015;465(3):371‐382. - PMC - PubMed
  204.  
    1. Tellier E, Negre‐Salvayre A, Bocquet B, et al. Role for furin in tumor necrosis factor alpha‐induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol. 2007;27(8):2997‐3007. - PMC - PubMed
  205.  
    1. Philipp S, Puchert M, Adam‐Klages S, et al. The polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc Natl Acad Sci U S A. 2010;107(3):1112‐1117. - PMC - PubMed
  206.  
    1. Adamy C, Mulder P, Khouzami L, et al. Neutral sphingomyelinase inhibition participates to the benefits of N‐acetylcysteine treatment in post‐myocardial infarction failing heart rats. J Mol Cell Cardiol. 2007;43(3):344‐353. - PubMed
  207.  
    1. Smith AR, Visioli F, Frei B, Hagen TM. Lipoic acid significantly restores, in rats, the age‐related decline in vasomotion. Br J Pharmacol. 2008;153(8):1615‐1622. - PMC - PubMed
  208.  
    1. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41(1):59‐72. - PMC - PubMed
  209.  
    1. Egea‐Jimenez AL, Zimmermann P. Lipids in exosome biology. Handb Exp Pharmacol. 2020;259:309‐336. - PubMed
  210.  
    1. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus‐like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1‐11. - PMC - PubMed
  211.  
    1. Engin A. Dark‐side of exosomes. Adv Exp Med Biol. 2021;1275:101‐131. - PubMed
  212.  
    1. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244‐1247. - PubMed
  213.  
    1. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116‐125. - PubMed
  214.  
    1. Llorente A, Skotland T, Sylvänne T, et al. Molecular lipidomics of exosomes released by PC‐3 prostate cancer cells. Biochim Biophys Acta. 2013;1831(7):1302‐1309. - PubMed
  215.  
    1. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442‐17452. - PMC - PubMed
  216.  
    1. Singh R, Pochampally R, Watabe K, Lu Z, Mo YY. Exosome‐mediated transfer of miR‐10b promotes cell invasion in breast cancer. Mol Cancer. 2014;13:256. - PMC - PubMed
  217.  
    1. Sackmann V, Sinha MS, Sackmann C, et al. Inhibition of nSMase2 reduces the transfer of oligomeric α‐synuclein irrespective of hypoxia. Fronti Molecu Neurosc. 2019;12:200. - PMC - PubMed
  218.  
    1. Bilousova T, Simmons BJ, Knapp RR, et al. Dual neutral sphingomyelinase‐2/acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. ACS Chem Biol. 2020;15(6):1671‐1684. - PMC - PubMed
  219.  
    1. Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015;290(6):3455‐3467. - PMC - PubMed
  220.  
    1. Liu Y, Wang Y, Wang C, et al. Maternal obesity increases the risk of fetal cardiac dysfunction via visceral adipose tissue derived exosomes. Placenta. 2021;105:85‐93. - PubMed
  221.  
    1. Gu H, Yang K, Shen Z, et al. ER stress‐induced adipocytes secrete‐aldo‐keto reductase 1B7‐containing exosomes that cause nonalcoholic steatohepatitis in mice. Free Radic Biol Med. 2021;163:220‐233. - PubMed
  222.  
    1. Kumar A, Sundaram K, Mu J, et al. High‐fat diet‐induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12(1):213. - PMC - PubMed
  223.  
    1. Li J, Zhang Y, Ye Y, et al. Pancreatic β cells control glucose homeostasis via the secretion of exosomal miR‐29 family. J Extracel Ves. 2021;10(3):e12055. - PMC - PubMed
  224.  
    1. Burillo J, Fernández‐Rhodes M, Piquero M, et al. Human amylin aggregates release within exosomes as a protective mechanism in pancreatic β cells: Pancreatic β‐hippocampal cell communication. Biochimica et Biophysica Acta Mole Cell Res. 1868;2021(5):118971. - PubMed
  225.  
    1. Ying W, Gao H, Dos Reis FCG, et al. MiR‐690, an exosomal‐derived miRNA from M2‐polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 2021. 10.1016/j.cmet.2020.12.019 - DOI - PMC - PubMed