Characterization and Roles of Membrane Lipids in Fatty Liver Disease

Affiliations


Abstract

Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.

Keywords: fatty liver disease; insulin resistance; membrane lipids; metabolic syndrome; obesity.

Conflict of interest statement

No potential conflicts of interest relevant to this article were reported.


Similar articles

Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J.Mol Cell Endocrinol. 2016 Jan 5;419:44-59. doi: 10.1016/j.mce.2015.09.033. Epub 2015 Nov 2.PMID: 26433072 Review.

An unbiased lipidomics approach identifies key lipid molecules as potential therapeutic targets of Dohongsamul-tang against non-alcoholic fatty liver diseases in a mouse model of obesity.

Park SH, Lee JE, Lee SM, Lee J, Seo CS, Hwang GS, Jung J.J Ethnopharmacol. 2020 Oct 5;260:112999. doi: 10.1016/j.jep.2020.112999. Epub 2020 May 23.PMID: 32454173

Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment.

Ertunc ME, Hotamisligil GS.J Lipid Res. 2016 Dec;57(12):2099-2114. doi: 10.1194/jlr.R066514. Epub 2016 Jun 21.PMID: 27330055 Free PMC article. Review.

An emerging role of mTOR in lipid biosynthesis.

Laplante M, Sabatini DM.Curr Biol. 2009 Dec 1;19(22):R1046-52. doi: 10.1016/j.cub.2009.09.058.PMID: 19948145 Free PMC article. Review.

Lipid-Induced Mechanisms of Metabolic Syndrome.

Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA.J Obes. 2020 Aug 26;2020:5762395. doi: 10.1155/2020/5762395. eCollection 2020.PMID: 32963827 Free PMC article. Review.


References

  1.  
    1. Rocchini A.P. Childhood obesity and a diabetes epidemic. N. Engl. J. Med. 2002;346:854–855. doi: 10.1056/NEJM200203143461112. - DOI - PubMed
  2.  
    1. Ard J. Obesity in the US: What is the best role for primary care? BMJ. 2015;350:g7846. doi: 10.1136/bmj.g7846. - DOI - PubMed
  3.  
    1. Arroyo-Johnson C., Mincey K.D. Obesity Epidemiology Worldwide. Gastroenterol. Clin. N. Am. 2016;45:571–579. doi: 10.1016/j.gtc.2016.07.012. - DOI - PMC - PubMed
  4.  
    1. Petta S., Gastaldelli A., Rebelos E., Bugianesi E., Messa P., Miele L., Svegliati-Baroni G., Valenti L., Bonino F. Pathophysiology of Non Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2016;17:2082. doi: 10.3390/ijms17122082. - DOI - PMC - PubMed
  5.  
    1. Williams V.F., Taubman S.B., Stahlman S. Non-alcoholic fatty liver disease (NAFLD), active component, U.S. Armed Forces, 2000–2017. MSMR. 2019;26:2–11. - PubMed
  6.  
    1. Rada P., González-Rodríguez Á., García-Monzón C., Valverde Á. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020;11:802. doi: 10.1038/s41419-020-03003-w. - DOI - PMC - PubMed
  7.  
    1. Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019;70:151–171. doi: 10.1016/j.jhep.2018.09.014. - DOI - PubMed
  8.  
    1. Stepanova M., De Avila L., Afendy M., Younossi I., Pham H., Cable R., Younossi Z.M. Direct and Indirect Economic Burden of Chronic Liver Disease in the United States. Clin. Gastroenterol. Hepatol. 2017;15:759–766.e755. doi: 10.1016/j.cgh.2016.07.020. - DOI - PubMed
  9.  
    1. Younossi Z.M., Blissett D., Blissett R., Henry L., Stepanova M., Younossi Y., Racila A., Hunt S., Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–1586. doi: 10.1002/hep.28785. - DOI - PubMed
  10.  
    1. Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. - DOI - PubMed
  11.  
    1. Gundermann K.J., Gundermann S., Drozdzik M., Mohan Prasad V.G. Essential phospholipids in fatty liver: A scientific update. Clin. Exp. Gastroenterol. 2016;9:105–117. doi: 10.2147/CEG.S96362. - DOI - PMC - PubMed
  12.  
    1. Perry R.J., Samuel V.T., Petersen K.F., Shulman G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510:84–91. doi: 10.1038/nature13478. - DOI - PMC - PubMed
  13.  
    1. Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139–150. doi: 10.1038/nrm2329. - DOI - PubMed
  14.  
    1. Bogdanov M., Heacock P.N., Dowhan W. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 2002;21:2107–2116. doi: 10.1093/emboj/21.9.2107. - DOI - PMC - PubMed
  15.  
    1. Marí M., Fernández-Checa J.C. Sphingolipid signalling and liver diseases. Liver Int. 2007;27:440–450. doi: 10.1111/j.1478-3231.2007.01475.x. - DOI - PubMed
  16.  
    1. Insausti-Urkia N., Solsona-Vilarrasa E., Garcia-Ruiz C., Fernandez-Checa J.C. Sphingomyelinases and Liver Diseases. Biomolecules. 2020;10:1497. doi: 10.3390/biom10111497. - DOI - PMC - PubMed
  17.  
    1. Lawler J.F., Yin M., Diehl A.M., Roberts E., Chatterjee S. Tumor necrosis factor-alpha stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J. Biol. Chem. 1998;273:5053–5059. doi: 10.1074/jbc.273.9.5053. - DOI - PubMed
  18.  
    1. Nikolova-Karakashian M.N., Rozenova K.A. Ceramide in stress response. Sphingolipids Signal. Regul. Mol. 2010:86–108. - PMC - PubMed
  19.  
    1. Aslan M., Özcan F., Tuzcu H., Kıraç E., Elpek G.O. Inhibition of neutral sphingomyelinase decreases arachidonic acid mediated inflammation in liver ischemia-reperfusion injury. Int. J. Clin. Exp. Pathol. 2014;7:7814. - PMC - PubMed
  20.  
    1. Schwabe R.F., Brenner D.A. Mechanisms of liver injury. I. TNF-α-induced liver injury: Role of IKK, JNK, and ROS pathways. Am. J. Physiol.-Gastrointest. Liver Physiol. 2006;290:G583–G589. doi: 10.1152/ajpgi.00422.2005. - DOI - PubMed
  21.  
    1. Claus R.A., Dorer M.J., Bunck A.C., Deigner H.P. Inhibition of sphingomyelin hydrolysis: Targeting the lipid mediator ceramide as a key regulator of cellular fate. Curr. Med. Chem. 2009;16:1978–2000. doi: 10.2174/092986709788682182. - DOI - PubMed
  22.  
    1. Holland W.L., Miller R.A., Wang Z.V., Sun K., Barth B.M., Bui H.H., Davis K.E., Bikman B.T., Halberg N., Rutkowski J.M. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011;17:55–63. doi: 10.1038/nm.2277. - DOI - PMC - PubMed
  23.  
    1. Hannun Y.A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000;10:73–80. doi: 10.1016/S0962-8924(99)01694-3. - DOI - PubMed
  24.  
    1. Malaguarnera M., Di Rosa M., Nicoletti F., Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 2009;87:679–695. doi: 10.1007/s00109-009-0464-1. - DOI - PubMed
  25.  
    1. Kannan R., Jin M., Gamulescu M.-A., Hinton D. Ceramide-induced apoptosis: Role of catalase and hepatocyte growth factor. Free Radic. Biol. Med. 2004;37:166–175. doi: 10.1016/j.freeradbiomed.2004.04.011. - DOI - PubMed
  26.  
    1. Ding W.X., Yin X.M. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J. Cell. Mol. Med. 2004;8:445–454. doi: 10.1111/j.1582-4934.2004.tb00469.x. - DOI - PMC - PubMed
  27.  
    1. Alkhouri N., Dixon L.J., Feldstein A.E. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009;3:445–451. doi: 10.1586/egh.09.32. - DOI - PMC - PubMed
  28.  
    1. Kim M.H., Ahn H.K., Lee E.J., Kim S.J., Kim Y.R., Park J.W., Park W.J. Hepatic inflammatory cytokine production can be regulated by modulating sphingomyelinase and ceramide synthase 6. Int. J. Mol. Med. 2017;39:453–462. doi: 10.3892/ijmm.2016.2835. - DOI - PubMed
  29.  
    1. Ichi I., Nakahara K., Fujii K., Iida C., Miyashita Y., Kojo S. Increase of ceramide in the liver and plasma after carbon tetrachloride intoxication in the rat. J. Nutr. Sci. Vitaminol. 2007;53:53–56. doi: 10.3177/jnsv.53.53. - DOI - PubMed
  30.  
    1. Jiang M., Li C., Liu Q., Wang A., Lei M. Inhibiting Ceramide Synthesis Attenuates Hepatic Steatosis and Fibrosis in Rats with Non-alcoholic Fatty Liver Disease. Front. Endocrinol. 2019;10:665. doi: 10.3389/fendo.2019.00665. - DOI - PMC - PubMed
  31.  
    1. Kotronen A., Seppänen-Laakso T., Westerbacka J., Kiviluoto T., Arola J., Ruskeepää A.L., Yki-Järvinen H., Oresic M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity. 2010;18:937–944. doi: 10.1038/oby.2009.326. - DOI - PubMed
  32.  
    1. Promrat K., Longato L., Wands J.R., de la Monte S.M. Weight loss amelioration of non-alcoholic steatohepatitis linked to shifts in hepatic ceramide expression and serum ceramide levels. Hepatol. Res. 2011;41:754–762. doi: 10.1111/j.1872-034X.2011.00815.x. - DOI - PMC - PubMed
  33.  
    1. Aerts J.M., Ottenhoff R., Powlson A.S., Grefhorst A., van Eijk M., Dubbelhuis P.F., Aten J., Kuipers F., Serlie M.J., Wennekes T., et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes. 2007;56:1341–1349. doi: 10.2337/db06-1619. - DOI - PMC - PubMed
  34.  
    1. Tagami S., Inokuchi Ji J., Kabayama K., Yoshimura H., Kitamura F., Uemura S., Ogawa C., Ishii A., Saito M., Ohtsuka Y., et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002;277:3085–3092. doi: 10.1074/jbc.M103705200. - DOI - PubMed
  35.  
    1. Kabayama K., Sato T., Kitamura F., Uemura S., Kang B.W., Igarashi Y., Inokuchi J. TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: Involvement of ganglioside GM3. Glycobiology. 2005;15:21–29. doi: 10.1093/glycob/cwh135. - DOI - PubMed
  36.  
    1. Mitsutake S., Date T., Yokota H., Sugiura M., Kohama T., Igarashi Y. Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett. 2012;586:1300–1305. doi: 10.1016/j.febslet.2012.03.032. - DOI - PubMed
  37.  
    1. Hanamatsu H., Ohnishi S., Sakai S., Yuyama K., Mitsutake S., Takeda H., Hashino S., Igarashi Y. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes. 2014;4:e141. doi: 10.1038/nutd.2014.38. - DOI - PMC - PubMed
  38.  
    1. Kim C.W., Addy C., Kusunoki J., Anderson N.N., Deja S., Fu X., Burgess S.C., Li C., Ruddy M., Chakravarthy M., et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017;26:576. doi: 10.1016/j.cmet.2017.08.011. - DOI - PubMed
  39.  
    1. Chung H.Y., Witt C.J., Jbeily N., Hurtado-Oliveros J., Giszas B., Lupp A., Gräler M.H., Bruns T., Stallmach A., Gonnert F.A., et al. Acid Sphingomyelinase Inhibition Prevents Development of Sepsis Sequelae in the Murine Liver. Sci. Rep. 2017;7:12348. doi: 10.1038/s41598-017-11837-2. - DOI - PMC - PubMed
  40.  
    1. Kolesnick R.N., Krönke M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 1998;60:643–665. doi: 10.1146/annurev.physiol.60.1.643. - DOI - PubMed
  41.  
    1. Andrieu-Abadie N., Gouazé V., Salvayre R., Levade T. Ceramide in apoptosis signaling: Relationship with oxidative stress. Free Radic. Biol. Med. 2001;31:717–728. doi: 10.1016/S0891-5849(01)00655-4. - DOI - PubMed
  42.  
    1. Jin J., Hou Q., Mullen T.D., Zeidan Y.H., Bielawski J., Kraveka J.M., Bielawska A., Obeid L.M., Hannun Y.A., Hsu Y.-T. Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J. Biol. Chem. 2008;283:26509–26517. doi: 10.1074/jbc.M801597200. - DOI - PMC - PubMed
  43.  
    1. García-Ruiz C., Colell A., Marí M., Morales A., Calvo M., Enrich C., Fernández-Checa J.C. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J. Clin. Investig. 2003;111:197–208. doi: 10.1172/JCI16010. - DOI - PMC - PubMed
  44.  
    1. Hoffmann C., Djerir N.E.H., Danckaert A., Fernandes J., Roux P., Charrueau C., Lachagès A.-M., Charlotte F., Brocheriou I., Clément K. Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Sci. Rep. 2020;10:3850. doi: 10.1038/s41598-020-60615-0. - DOI - PMC - PubMed
  45.  
    1. Bataller R., Brenner D.A. Liver fibrosis. J. Clin. Investig. 2005;115:209–218. doi: 10.1172/JCI24282. - DOI - PMC - PubMed
  46.  
    1. Yetukuri L., Katajamaa M., Medina-Gomez G., Seppänen-Laakso T., Vidal-Puig A., Oresic M. Bioinformatics strategies for lipidomics analysis: Characterization of obesity related hepatic steatosis. BMC Syst. Biol. 2007;1:12. doi: 10.1186/1752-0509-1-12. - DOI - PMC - PubMed
  47.  
    1. Shmarakov I.O., Jiang H., Liu J., Fernandez E.J., Blaner W.S. Hepatic stellate cell activation: A source for bioactive lipids. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 2019;1864:629–642. doi: 10.1016/j.bbalip.2019.02.004. - DOI - PMC - PubMed
  48.  
    1. Moles A., Tarrats N., Morales A., Domínguez M., Bataller R., Caballería J., García-Ruiz C., Fernández-Checa J.C., Marí M. Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am. J. Pathol. 2010;177:1214–1224. doi: 10.2353/ajpath.2010.091257. - DOI - PMC - PubMed
  49.  
    1. Hernández-Muñoz I., de la Torre P., Sánchez-Alcázar J.A., García I., Santiago E., Muñoz-Yagüe M.T., Solís-Herruzo J.A. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology. 1997;113:625–640. doi: 10.1053/gast.1997.v113.pm9247485. - DOI - PubMed
  50.  
    1. Li Z., Chiang Y.-p., He M., Worgall T.S., Zhou H., Jiang X.-C. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. Iscience. 2021;24:103449. doi: 10.1016/j.isci.2021.103449. - DOI - PMC - PubMed
  51.  
    1. Coskun Ü., Grzybek M., Drechsel D., Simons K. Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA. 2011;108:9044–9048. doi: 10.1073/pnas.1105666108. - DOI - PMC - PubMed
  52.  
    1. Hannun Y.A., Obeid L.M. The Ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J. Biol. Chem. 2002;277:25847–25850. doi: 10.1074/jbc.R200008200. - DOI - PubMed
  53.  
    1. Kirschbaum C., Greis K., Mucha E., Kain L., Deng S., Zappe A., Gewinner S., Schöllkopf W., von Helden G., Meijer G., et al. Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy. Nat. Commun. 2021;12:1201. doi: 10.1038/s41467-021-21480-1. - DOI - PMC - PubMed
  54.  
    1. Saddoughi S.A., Song P., Ogretmen B. Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem. 2008;49:413–440. doi: 10.1007/978-1-4020-8831-5_16. - DOI - PMC - PubMed
  55.  
    1. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–1838. doi: 10.1002/hep.23229. - DOI - PMC - PubMed
  56.  
    1. Apostolopoulou M., Gordillo R., Koliaki C., Gancheva S., Jelenik T., De Filippo E., Herder C., Markgraf D., Jankowiak F., Esposito I., et al. Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care. 2018;41:1235–1243. doi: 10.2337/dc17-1318. - DOI - PubMed
  57.  
    1. Holland W.L., Summers S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 2008;29:381–402. doi: 10.1210/er.2007-0025. - DOI - PMC - PubMed
  58.  
    1. Chocian G., Chabowski A., Zendzian-Piotrowska M., Harasim E., Łukaszuk B., Górski J. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei. Mol. Cell. Biochem. 2010;340:125–131. doi: 10.1007/s11010-010-0409-6. - DOI - PubMed
  59.  
    1. Monetti M., Levin M.C., Watt M.J., Sajan M.P., Marmor S., Hubbard B.K., Stevens R.D., Bain J.R., Newgard C.B., Farese R.V., et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007;6:69–78. doi: 10.1016/j.cmet.2007.05.005. - DOI - PubMed
  60.  
    1. Sanyal A.J., Pacana T. A Lipidomic Readout of Disease Progression in a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease. Trans. Am. Clin. Climatol. Assoc. 2015;126:271–288. - PMC - PubMed
  61.  
    1. Luukkonen P.K., Zhou Y., Sädevirta S., Leivonen M., Arola J., Orešič M., Hyötyläinen T., Yki-Järvinen H. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1167–1175. doi: 10.1016/j.jhep.2016.01.002. - DOI - PubMed
  62.  
    1. Turpin S.M., Nicholls H.T., Willmes D.M., Mourier A., Brodesser S., Wunderlich C.M., Mauer J., Xu E., Hammerschmidt P., Brönneke H.S., et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20:678–686. doi: 10.1016/j.cmet.2014.08.002. - DOI - PubMed
  63.  
    1. Longato L., Tong M., Wands J.R., de la Monte S.M. High fat diet induced hepatic steatosis and insulin resistance: Role of dysregulated ceramide metabolism. Hepatol. Res. 2012;42:412–427. doi: 10.1111/j.1872-034X.2011.00934.x. - DOI - PMC - PubMed
  64.  
    1. Zigmond E., Tayer-Shifman O., Lalazar G., Ben Ya’acov A., Weksler-Zangen S., Shasha D., Sklair-Levy M., Zolotarov L., Shalev Z., Kalman R., et al. β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model. J. Inflamm. Res. 2014;7:151–158. doi: 10.2147/JIR.S50508. - DOI - PMC - PubMed
  65.  
    1. Ren Z., Yang Z., Lu Y., Zhang R., Yang H. Anti-glycolipid disorder effect of epigallocatechin-3-gallate on high-fat diet and STZ-induced T2DM in mice. Mol. Med. Rep. 2020;21:2475–2483. doi: 10.3892/mmr.2020.11041. - DOI - PMC - PubMed
  66.  
    1. Guo Q., Shi Q., Li H., Liu J., Wu S., Sun H., Zhou B. Glycolipid Metabolism Disorder in the Liver of Obese Mice Is Improved by TUDCA via the Restoration of Defective Hepatic Autophagy. Int. J. Endocrinol. 2015;2015:687938. doi: 10.1155/2015/687938. - DOI - PMC - PubMed
  67.  
    1. van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. - DOI - PubMed
  68.  
    1. Calzada E., Onguka O., Claypool S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2016;321:29–88. doi: 10.1016/bs.ircmb.2015.10.001. - DOI - PMC - PubMed
  69.  
    1. Traiffort E., O’Regan S., Ruat M. The choline transporter-like family SLC44: Properties and roles in human diseases. Mol. Asp. Med. 2013;34:646–654. doi: 10.1016/j.mam.2012.10.011. - DOI - PubMed
  70.  
    1. Lykidis A., Baburina I., Jackowski S. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant. J. Biol. Chem. 1999;274:26992–27001. doi: 10.1074/jbc.274.38.26992. - DOI - PubMed
  71.  
    1. Karim M., Jackson P., Jackowski S. Gene structure, expression and identification of a new CTP: Phosphocholine cytidylyltransferase beta isoform. Biochim. Biophys. Acta. 2003;1633:1–12. doi: 10.1016/S1388-1981(03)00067-2. - DOI - PubMed
  72.  
    1. Jacobs R.L., Devlin C., Tabas I., Vance D.E. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J. Biol. Chem. 2004;279:47402–47410. doi: 10.1074/jbc.M404027200. - DOI - PubMed
  73.  
    1. Noga A.A., Vance D.E. Insights into the requirement of phosphatidylcholine synthesis for liver function in mice. J. Lipid Res. 2003;44:1998–2005. doi: 10.1194/jlr.M300226-JLR200. - DOI - PubMed
  74.  
    1. Noga A.A., Vance D.E. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 2003;278:21851–21859. doi: 10.1074/jbc.M301982200. - DOI - PubMed
  75.  
    1. Li Z., Agellon L.B., Vance D.E. Phosphatidylcholine homeostasis and liver failure. J. Biol. Chem. 2005;280:37798–37802. doi: 10.1074/jbc.M508575200. - DOI - PubMed
  76.  
    1. Li Z., Agellon L.B., Allen T.M., Umeda M., Jewell L., Mason A., Vance D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3:321–331. doi: 10.1016/j.cmet.2006.03.007. - DOI - PubMed
  77.  
    1. Voshol P.J., Minich D.M., Havinga R., Elferink R.P., Verkade H.J., Groen A.K., Kuipers F. Postprandial chylomicron formation and fat absorption in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology. 2000;118:173–182. doi: 10.1016/S0016-5085(00)70426-4. - DOI - PubMed
  78.  
    1. Noureddin M., Mato J.M., Lu S.C. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp. Biol. Med. 2015;240:809–820. doi: 10.1177/1535370215579161. - DOI - PMC - PubMed
  79.  
    1. Leonardi R., Frank M.W., Jackson P.D., Rock C.O., Jackowski S. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. J. Biol. Chem. 2009;284:27077–27089. doi: 10.1074/jbc.M109.031336. - DOI - PMC - PubMed
  80.  
    1. Hernández-Alvarez M.I., Sebastián D., Vives S., Ivanova S., Bartoccioni P., Kakimoto P., Plana N., Veiga S.R., Hernández V., Vasconcelos N., et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881–895.e817. doi: 10.1016/j.cell.2019.04.010. - DOI - PubMed
  81.  
    1. Martínez-Uña M., Varela-Rey M., Cano A., Fernández-Ares L., Beraza N., Aurrekoetxea I., Martínez-Arranz I., García-Rodríguez J.L., Buqué X., Mestre D., et al. Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology. 2013;58:1296–1305. doi: 10.1002/hep.26399. - DOI - PMC - PubMed
  82.  
    1. Martínez-Uña M., Varela-Rey M., Mestre D., Fernández-Ares L., Fresnedo O., Fernandez-Ramos D., Gutiérrez-de Juan V., Martin-Guerrero I., García-Orad A., Luka Z., et al. S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. J. Hepatol. 2015;62:673–681. doi: 10.1016/j.jhep.2014.10.019. - DOI - PMC - PubMed
  83.  
    1. Aldrovandi M., Hammond V.J., Podmore H., Hornshaw M., Clark S.R., Marnett L.J., Slatter D.A., Murphy R.C., Collins P.W., O’Donnell V.B. Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation. J. Lipid Res. 2013;54:3085–3097. doi: 10.1194/jlr.M041533. - DOI - PMC - PubMed
  84.  
    1. Clark S.R., Guy C.J., Scurr M.J., Taylor P.R., Kift-Morgan A.P., Hammond V.J., Thomas C.P., Coles B., Roberts G.W., Eberl M., et al. Esterified eicosanoids are acutely generated by 5-lipoxygenase in primary human neutrophils and in human and murine infection. Blood. 2011;117:2033–2043. doi: 10.1182/blood-2010-04-278887. - DOI - PMC - PubMed
  85.  
    1. Bochkov V.N., Oskolkova O.V., Birukov K.G., Levonen A.L., Binder C.J., Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 2010;12:1009–1059. doi: 10.1089/ars.2009.2597. - DOI - PMC - PubMed
  86.  
    1. Ikura Y., Ohsawa M., Suekane T., Fukushima H., Itabe H., Jomura H., Nishiguchi S., Inoue T., Naruko T., Ehara S., et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: Impact on disease progression. Hepatology. 2006;43:506–514. doi: 10.1002/hep.21070. - DOI - PubMed
  87.  
    1. Sun X., Seidman J.S., Zhao P., Troutman T.D., Spann N.J., Que X., Zhou F., Liao Z., Pasillas M., Yang X., et al. Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metab. 2020;31:189–206.e188. doi: 10.1016/j.cmet.2019.10.014. - DOI - PMC - PubMed
  88.  
    1. Mendel I., Yacov N., Shoham A., Ishai E., Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis without Affecting Steatosis. Dig. Dis. Sci. 2016;61:2545–2553. doi: 10.1007/s10620-016-4159-5. - DOI - PMC - PubMed
  89.  
    1. Yimin, Furumaki H., Matsuoka S., Sakurai T., Kohanawa M., Zhao S., Kuge Y., Tamaki N., Chiba H. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab. Investig. 2012;92:265–281. doi: 10.1038/labinvest.2011.159. - DOI - PubMed
  90.  
    1. Liangpunsakul S., Chalasani N. Lipid mediators of liver injury in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;316:G75–G81. doi: 10.1152/ajpgi.00170.2018. - DOI - PMC - PubMed
  91.  
    1. Oemer G., Lackner K., Muigg K., Krumschnabel G., Watschinger K., Sailer S., Lindner H., Gnaiger E., Wortmann S.B., Werner E.R., et al. Molecular structural diversity of mitochondrial cardiolipins. Proc. Natl. Acad. Sci. USA. 2018;115:4158–4163. doi: 10.1073/pnas.1719407115. - DOI - PMC - PubMed
  92.  
    1. Maxfield F.R., Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438:612–621. doi: 10.1038/nature04399. - DOI - PubMed
  93.  
    1. Ikonen E. Mechanisms for cellular cholesterol transport: Defects and human disease. Physiol. Rev. 2006;86:1237–1261. doi: 10.1152/physrev.00022.2005. - DOI - PubMed
  94.  
    1. Bloch K. Sterol molecule: Structure, biosynthesis, and function. Steroids. 1992;57:378–383. doi: 10.1016/0039-128X(92)90081-J. - DOI - PubMed
  95.  
    1. Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0. - DOI - PubMed
  96.  
    1. Horton J.D., Shimomura I., Brown M.S., Hammer R.E., Goldstein J.L., Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Investig. 1998;101:2331–2339. doi: 10.1172/JCI2961. - DOI - PMC - PubMed
  97.  
    1. Dietschy J.M., Turley S.D., Spady D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 1993;34:1637–1659. doi: 10.1016/S0022-2275(20)35728-X. - DOI - PubMed
  98.  
    1. Malhotra P., Gill R.K., Saksena S., Alrefai W.A. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front. Med. 2020;7:467. doi: 10.3389/fmed.2020.00467. - DOI - PMC - PubMed
  99.  
    1. Arguello G., Balboa E., Arrese M., Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta. 2015;1852:1765–1778. doi: 10.1016/j.bbadis.2015.05.015. - DOI - PubMed
  100.  
    1. Subramanian S., Goodspeed L., Wang S., Kim J., Zeng L., Ioannou G.N., Haigh W.G., Yeh M.M., Kowdley K.V., O’Brien K.D., et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res. 2011;52:1626–1635. doi: 10.1194/jlr.M016246. - DOI - PMC - PubMed
  101.  
    1. Malhi H., Gores G.J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 2008;28:360–369. doi: 10.1055/s-0028-1091980. - DOI - PMC - PubMed
  102.  
    1. Min H.K., Kapoor A., Fuchs M., Mirshahi F., Zhou H., Maher J., Kellum J., Warnick R., Contos M.J., Sanyal A.J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15:665–674. doi: 10.1016/j.cmet.2012.04.004. - DOI - PMC - PubMed
  103.  
    1. Wouters K., van Bilsen M., van Gorp P.J., Bieghs V., Lütjohann D., Kerksiek A., Staels B., Hofker M.H., Shiri-Sverdlov R. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett. 2010;584:1001–1005. doi: 10.1016/j.febslet.2010.01.046. - DOI - PubMed
  104.  
    1. Malhi H., Gores G.J. Cellular and molecular mechanisms of liver injury. Gastroenterology. 2008;134:1641–1654. doi: 10.1053/j.gastro.2008.03.002. - DOI - PMC - PubMed
  105.  
    1. Bieghs V., Hendrikx T., van Gorp P.J., Verheyen F., Guichot Y.D., Walenbergh S.M., Jeurissen M.L., Gijbels M., Rensen S.S., Bast A., et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology. 2013;144:167–178.e161. doi: 10.1053/j.gastro.2012.09.062. - DOI - PubMed
  106.  
    1. Van Rooyen D.M., Larter C.Z., Haigh W.G., Yeh M.M., Ioannou G., Kuver R., Lee S.P., Teoh N.C., Farrell G.C. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141:1393–1403.e5. doi: 10.1053/j.gastro.2011.06.040. - DOI - PMC - PubMed
  107.  
    1. DeBose-Boyd R.A. Significance and regulation of lipid metabolism. Semin. Cell Dev. Biol. 2018;81:97. doi: 10.1016/j.semcdb.2017.12.003. - DOI - PubMed
  108.  
    1. DeBose-Boyd R.A., Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018;43:358–368. doi: 10.1016/j.tibs.2018.01.005. - DOI - PMC - PubMed
  109.  
    1. Li H., Yu X.H., Ou X., Ouyang X.P., Tang C.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 2021;83:101109. doi: 10.1016/j.plipres.2021.101109. - DOI - PubMed
  110.  
    1. Rinella M.E., Siddiqui M.S., Gardikiotes K., Gottstein J., Elias M., Green R.M. Dysregulation of the unfolded protein response in db/db mice with diet-induced steatohepatitis. Hepatology. 2011;54:1600–1609. doi: 10.1002/hep.24553. - DOI - PMC - PubMed
  111.  
    1. Lu K., Lee M.H., Hazard S., Brooks-Wilson A., Hidaka H., Kojima H., Ose L., Stalenhoef A.F., Mietinnen T., Bjorkhem I., et al. Two genes that map to the STSL locus cause sitosterolemia: Genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet. 2001;69:278–290. doi: 10.1086/321294. - DOI - PMC - PubMed
  112.  
    1. Cortes V.A., Busso D., Maiz A., Arteaga A., Nervi F., Rigotti A. Physiological and pathological implications of cholesterol. Front. Biosci. 2014;19:416–428. doi: 10.2741/4216. - DOI - PubMed