Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Park SH, Lee JE, Lee SM, Lee J, Seo CS, Hwang GS, Jung J.J Ethnopharmacol. 2020 Oct 5;260:112999. doi: 10.1016/j.jep.2020.112999. Epub 2020 May 23.PMID: 32454173
Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA.J Obes. 2020 Aug 26;2020:5762395. doi: 10.1155/2020/5762395. eCollection 2020.PMID: 32963827 Free PMC article. Review.
References
Rocchini A.P. Childhood obesity and a diabetes epidemic. N. Engl. J. Med. 2002;346:854–855. doi: 10.1056/NEJM200203143461112. - DOI - PubMed
Ard J. Obesity in the US: What is the best role for primary care? BMJ. 2015;350:g7846. doi: 10.1136/bmj.g7846. - DOI - PubMed
Arroyo-Johnson C., Mincey K.D. Obesity Epidemiology Worldwide. Gastroenterol. Clin. N. Am. 2016;45:571–579. doi: 10.1016/j.gtc.2016.07.012. - DOI - PMC - PubMed
Petta S., Gastaldelli A., Rebelos E., Bugianesi E., Messa P., Miele L., Svegliati-Baroni G., Valenti L., Bonino F. Pathophysiology of Non Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2016;17:2082. doi: 10.3390/ijms17122082. - DOI - PMC - PubMed
Williams V.F., Taubman S.B., Stahlman S. Non-alcoholic fatty liver disease (NAFLD), active component, U.S. Armed Forces, 2000–2017. MSMR. 2019;26:2–11. - PubMed
Rada P., González-Rodríguez Á., García-Monzón C., Valverde Á. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020;11:802. doi: 10.1038/s41419-020-03003-w. - DOI - PMC - PubMed
Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019;70:151–171. doi: 10.1016/j.jhep.2018.09.014. - DOI - PubMed
Stepanova M., De Avila L., Afendy M., Younossi I., Pham H., Cable R., Younossi Z.M. Direct and Indirect Economic Burden of Chronic Liver Disease in the United States. Clin. Gastroenterol. Hepatol. 2017;15:759–766.e755. doi: 10.1016/j.cgh.2016.07.020. - DOI - PubMed
Younossi Z.M., Blissett D., Blissett R., Henry L., Stepanova M., Younossi Y., Racila A., Hunt S., Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–1586. doi: 10.1002/hep.28785. - DOI - PubMed
Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. - DOI - PubMed
Gundermann K.J., Gundermann S., Drozdzik M., Mohan Prasad V.G. Essential phospholipids in fatty liver: A scientific update. Clin. Exp. Gastroenterol. 2016;9:105–117. doi: 10.2147/CEG.S96362. - DOI - PMC - PubMed
Perry R.J., Samuel V.T., Petersen K.F., Shulman G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510:84–91. doi: 10.1038/nature13478. - DOI - PMC - PubMed
Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139–150. doi: 10.1038/nrm2329. - DOI - PubMed
Bogdanov M., Heacock P.N., Dowhan W. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 2002;21:2107–2116. doi: 10.1093/emboj/21.9.2107. - DOI - PMC - PubMed
Marí M., Fernández-Checa J.C. Sphingolipid signalling and liver diseases. Liver Int. 2007;27:440–450. doi: 10.1111/j.1478-3231.2007.01475.x. - DOI - PubMed
Insausti-Urkia N., Solsona-Vilarrasa E., Garcia-Ruiz C., Fernandez-Checa J.C. Sphingomyelinases and Liver Diseases. Biomolecules. 2020;10:1497. doi: 10.3390/biom10111497. - DOI - PMC - PubMed
Lawler J.F., Yin M., Diehl A.M., Roberts E., Chatterjee S. Tumor necrosis factor-alpha stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J. Biol. Chem. 1998;273:5053–5059. doi: 10.1074/jbc.273.9.5053. - DOI - PubMed
Aslan M., Özcan F., Tuzcu H., Kıraç E., Elpek G.O. Inhibition of neutral sphingomyelinase decreases arachidonic acid mediated inflammation in liver ischemia-reperfusion injury. Int. J. Clin. Exp. Pathol. 2014;7:7814. - PMC - PubMed
Schwabe R.F., Brenner D.A. Mechanisms of liver injury. I. TNF-α-induced liver injury: Role of IKK, JNK, and ROS pathways. Am. J. Physiol.-Gastrointest. Liver Physiol. 2006;290:G583–G589. doi: 10.1152/ajpgi.00422.2005. - DOI - PubMed
Claus R.A., Dorer M.J., Bunck A.C., Deigner H.P. Inhibition of sphingomyelin hydrolysis: Targeting the lipid mediator ceramide as a key regulator of cellular fate. Curr. Med. Chem. 2009;16:1978–2000. doi: 10.2174/092986709788682182. - DOI - PubMed
Holland W.L., Miller R.A., Wang Z.V., Sun K., Barth B.M., Bui H.H., Davis K.E., Bikman B.T., Halberg N., Rutkowski J.M. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011;17:55–63. doi: 10.1038/nm.2277. - DOI - PMC - PubMed
Hannun Y.A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000;10:73–80. doi: 10.1016/S0962-8924(99)01694-3. - DOI - PubMed
Malaguarnera M., Di Rosa M., Nicoletti F., Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 2009;87:679–695. doi: 10.1007/s00109-009-0464-1. - DOI - PubMed
Kannan R., Jin M., Gamulescu M.-A., Hinton D. Ceramide-induced apoptosis: Role of catalase and hepatocyte growth factor. Free Radic. Biol. Med. 2004;37:166–175. doi: 10.1016/j.freeradbiomed.2004.04.011. - DOI - PubMed
Ding W.X., Yin X.M. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J. Cell. Mol. Med. 2004;8:445–454. doi: 10.1111/j.1582-4934.2004.tb00469.x. - DOI - PMC - PubMed
Alkhouri N., Dixon L.J., Feldstein A.E. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009;3:445–451. doi: 10.1586/egh.09.32. - DOI - PMC - PubMed
Kim M.H., Ahn H.K., Lee E.J., Kim S.J., Kim Y.R., Park J.W., Park W.J. Hepatic inflammatory cytokine production can be regulated by modulating sphingomyelinase and ceramide synthase 6. Int. J. Mol. Med. 2017;39:453–462. doi: 10.3892/ijmm.2016.2835. - DOI - PubMed
Ichi I., Nakahara K., Fujii K., Iida C., Miyashita Y., Kojo S. Increase of ceramide in the liver and plasma after carbon tetrachloride intoxication in the rat. J. Nutr. Sci. Vitaminol. 2007;53:53–56. doi: 10.3177/jnsv.53.53. - DOI - PubMed
Jiang M., Li C., Liu Q., Wang A., Lei M. Inhibiting Ceramide Synthesis Attenuates Hepatic Steatosis and Fibrosis in Rats with Non-alcoholic Fatty Liver Disease. Front. Endocrinol. 2019;10:665. doi: 10.3389/fendo.2019.00665. - DOI - PMC - PubMed
Kotronen A., Seppänen-Laakso T., Westerbacka J., Kiviluoto T., Arola J., Ruskeepää A.L., Yki-Järvinen H., Oresic M. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity. 2010;18:937–944. doi: 10.1038/oby.2009.326. - DOI - PubMed
Promrat K., Longato L., Wands J.R., de la Monte S.M. Weight loss amelioration of non-alcoholic steatohepatitis linked to shifts in hepatic ceramide expression and serum ceramide levels. Hepatol. Res. 2011;41:754–762. doi: 10.1111/j.1872-034X.2011.00815.x. - DOI - PMC - PubMed
Aerts J.M., Ottenhoff R., Powlson A.S., Grefhorst A., van Eijk M., Dubbelhuis P.F., Aten J., Kuipers F., Serlie M.J., Wennekes T., et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes. 2007;56:1341–1349. doi: 10.2337/db06-1619. - DOI - PMC - PubMed
Tagami S., Inokuchi Ji J., Kabayama K., Yoshimura H., Kitamura F., Uemura S., Ogawa C., Ishii A., Saito M., Ohtsuka Y., et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002;277:3085–3092. doi: 10.1074/jbc.M103705200. - DOI - PubMed
Kabayama K., Sato T., Kitamura F., Uemura S., Kang B.W., Igarashi Y., Inokuchi J. TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: Involvement of ganglioside GM3. Glycobiology. 2005;15:21–29. doi: 10.1093/glycob/cwh135. - DOI - PubMed
Mitsutake S., Date T., Yokota H., Sugiura M., Kohama T., Igarashi Y. Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett. 2012;586:1300–1305. doi: 10.1016/j.febslet.2012.03.032. - DOI - PubMed
Hanamatsu H., Ohnishi S., Sakai S., Yuyama K., Mitsutake S., Takeda H., Hashino S., Igarashi Y. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes. 2014;4:e141. doi: 10.1038/nutd.2014.38. - DOI - PMC - PubMed
Kim C.W., Addy C., Kusunoki J., Anderson N.N., Deja S., Fu X., Burgess S.C., Li C., Ruddy M., Chakravarthy M., et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017;26:576. doi: 10.1016/j.cmet.2017.08.011. - DOI - PubMed
Chung H.Y., Witt C.J., Jbeily N., Hurtado-Oliveros J., Giszas B., Lupp A., Gräler M.H., Bruns T., Stallmach A., Gonnert F.A., et al. Acid Sphingomyelinase Inhibition Prevents Development of Sepsis Sequelae in the Murine Liver. Sci. Rep. 2017;7:12348. doi: 10.1038/s41598-017-11837-2. - DOI - PMC - PubMed
Kolesnick R.N., Krönke M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 1998;60:643–665. doi: 10.1146/annurev.physiol.60.1.643. - DOI - PubMed
Andrieu-Abadie N., Gouazé V., Salvayre R., Levade T. Ceramide in apoptosis signaling: Relationship with oxidative stress. Free Radic. Biol. Med. 2001;31:717–728. doi: 10.1016/S0891-5849(01)00655-4. - DOI - PubMed
Jin J., Hou Q., Mullen T.D., Zeidan Y.H., Bielawski J., Kraveka J.M., Bielawska A., Obeid L.M., Hannun Y.A., Hsu Y.-T. Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J. Biol. Chem. 2008;283:26509–26517. doi: 10.1074/jbc.M801597200. - DOI - PMC - PubMed
García-Ruiz C., Colell A., Marí M., Morales A., Calvo M., Enrich C., Fernández-Checa J.C. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J. Clin. Investig. 2003;111:197–208. doi: 10.1172/JCI16010. - DOI - PMC - PubMed
Hoffmann C., Djerir N.E.H., Danckaert A., Fernandes J., Roux P., Charrueau C., Lachagès A.-M., Charlotte F., Brocheriou I., Clément K. Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Sci. Rep. 2020;10:3850. doi: 10.1038/s41598-020-60615-0. - DOI - PMC - PubMed
Bataller R., Brenner D.A. Liver fibrosis. J. Clin. Investig. 2005;115:209–218. doi: 10.1172/JCI24282. - DOI - PMC - PubMed
Yetukuri L., Katajamaa M., Medina-Gomez G., Seppänen-Laakso T., Vidal-Puig A., Oresic M. Bioinformatics strategies for lipidomics analysis: Characterization of obesity related hepatic steatosis. BMC Syst. Biol. 2007;1:12. doi: 10.1186/1752-0509-1-12. - DOI - PMC - PubMed
Shmarakov I.O., Jiang H., Liu J., Fernandez E.J., Blaner W.S. Hepatic stellate cell activation: A source for bioactive lipids. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 2019;1864:629–642. doi: 10.1016/j.bbalip.2019.02.004. - DOI - PMC - PubMed
Moles A., Tarrats N., Morales A., Domínguez M., Bataller R., Caballería J., García-Ruiz C., Fernández-Checa J.C., Marí M. Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am. J. Pathol. 2010;177:1214–1224. doi: 10.2353/ajpath.2010.091257. - DOI - PMC - PubMed
Hernández-Muñoz I., de la Torre P., Sánchez-Alcázar J.A., García I., Santiago E., Muñoz-Yagüe M.T., Solís-Herruzo J.A. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology. 1997;113:625–640. doi: 10.1053/gast.1997.v113.pm9247485. - DOI - PubMed
Li Z., Chiang Y.-p., He M., Worgall T.S., Zhou H., Jiang X.-C. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. Iscience. 2021;24:103449. doi: 10.1016/j.isci.2021.103449. - DOI - PMC - PubMed
Coskun Ü., Grzybek M., Drechsel D., Simons K. Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA. 2011;108:9044–9048. doi: 10.1073/pnas.1105666108. - DOI - PMC - PubMed
Hannun Y.A., Obeid L.M. The Ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J. Biol. Chem. 2002;277:25847–25850. doi: 10.1074/jbc.R200008200. - DOI - PubMed
Kirschbaum C., Greis K., Mucha E., Kain L., Deng S., Zappe A., Gewinner S., Schöllkopf W., von Helden G., Meijer G., et al. Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy. Nat. Commun. 2021;12:1201. doi: 10.1038/s41467-021-21480-1. - DOI - PMC - PubMed
Saddoughi S.A., Song P., Ogretmen B. Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem. 2008;49:413–440. doi: 10.1007/978-1-4020-8831-5_16. - DOI - PMC - PubMed
Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–1838. doi: 10.1002/hep.23229. - DOI - PMC - PubMed
Apostolopoulou M., Gordillo R., Koliaki C., Gancheva S., Jelenik T., De Filippo E., Herder C., Markgraf D., Jankowiak F., Esposito I., et al. Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care. 2018;41:1235–1243. doi: 10.2337/dc17-1318. - DOI - PubMed
Holland W.L., Summers S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 2008;29:381–402. doi: 10.1210/er.2007-0025. - DOI - PMC - PubMed
Chocian G., Chabowski A., Zendzian-Piotrowska M., Harasim E., Łukaszuk B., Górski J. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei. Mol. Cell. Biochem. 2010;340:125–131. doi: 10.1007/s11010-010-0409-6. - DOI - PubMed
Monetti M., Levin M.C., Watt M.J., Sajan M.P., Marmor S., Hubbard B.K., Stevens R.D., Bain J.R., Newgard C.B., Farese R.V., et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007;6:69–78. doi: 10.1016/j.cmet.2007.05.005. - DOI - PubMed
Sanyal A.J., Pacana T. A Lipidomic Readout of Disease Progression in a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease. Trans. Am. Clin. Climatol. Assoc. 2015;126:271–288. - PMC - PubMed
Luukkonen P.K., Zhou Y., Sädevirta S., Leivonen M., Arola J., Orešič M., Hyötyläinen T., Yki-Järvinen H. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1167–1175. doi: 10.1016/j.jhep.2016.01.002. - DOI - PubMed
Turpin S.M., Nicholls H.T., Willmes D.M., Mourier A., Brodesser S., Wunderlich C.M., Mauer J., Xu E., Hammerschmidt P., Brönneke H.S., et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20:678–686. doi: 10.1016/j.cmet.2014.08.002. - DOI - PubMed
Longato L., Tong M., Wands J.R., de la Monte S.M. High fat diet induced hepatic steatosis and insulin resistance: Role of dysregulated ceramide metabolism. Hepatol. Res. 2012;42:412–427. doi: 10.1111/j.1872-034X.2011.00934.x. - DOI - PMC - PubMed
Zigmond E., Tayer-Shifman O., Lalazar G., Ben Ya’acov A., Weksler-Zangen S., Shasha D., Sklair-Levy M., Zolotarov L., Shalev Z., Kalman R., et al. β-glycosphingolipids ameliorated non-alcoholic steatohepatitis in the Psammomys obesus model. J. Inflamm. Res. 2014;7:151–158. doi: 10.2147/JIR.S50508. - DOI - PMC - PubMed
Ren Z., Yang Z., Lu Y., Zhang R., Yang H. Anti-glycolipid disorder effect of epigallocatechin-3-gallate on high-fat diet and STZ-induced T2DM in mice. Mol. Med. Rep. 2020;21:2475–2483. doi: 10.3892/mmr.2020.11041. - DOI - PMC - PubMed
Guo Q., Shi Q., Li H., Liu J., Wu S., Sun H., Zhou B. Glycolipid Metabolism Disorder in the Liver of Obese Mice Is Improved by TUDCA via the Restoration of Defective Hepatic Autophagy. Int. J. Endocrinol. 2015;2015:687938. doi: 10.1155/2015/687938. - DOI - PMC - PubMed
van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. - DOI - PubMed
Calzada E., Onguka O., Claypool S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2016;321:29–88. doi: 10.1016/bs.ircmb.2015.10.001. - DOI - PMC - PubMed
Traiffort E., O’Regan S., Ruat M. The choline transporter-like family SLC44: Properties and roles in human diseases. Mol. Asp. Med. 2013;34:646–654. doi: 10.1016/j.mam.2012.10.011. - DOI - PubMed
Lykidis A., Baburina I., Jackowski S. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant. J. Biol. Chem. 1999;274:26992–27001. doi: 10.1074/jbc.274.38.26992. - DOI - PubMed
Karim M., Jackson P., Jackowski S. Gene structure, expression and identification of a new CTP: Phosphocholine cytidylyltransferase beta isoform. Biochim. Biophys. Acta. 2003;1633:1–12. doi: 10.1016/S1388-1981(03)00067-2. - DOI - PubMed
Jacobs R.L., Devlin C., Tabas I., Vance D.E. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J. Biol. Chem. 2004;279:47402–47410. doi: 10.1074/jbc.M404027200. - DOI - PubMed
Noga A.A., Vance D.E. Insights into the requirement of phosphatidylcholine synthesis for liver function in mice. J. Lipid Res. 2003;44:1998–2005. doi: 10.1194/jlr.M300226-JLR200. - DOI - PubMed
Noga A.A., Vance D.E. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 2003;278:21851–21859. doi: 10.1074/jbc.M301982200. - DOI - PubMed
Li Z., Agellon L.B., Vance D.E. Phosphatidylcholine homeostasis and liver failure. J. Biol. Chem. 2005;280:37798–37802. doi: 10.1074/jbc.M508575200. - DOI - PubMed
Li Z., Agellon L.B., Allen T.M., Umeda M., Jewell L., Mason A., Vance D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3:321–331. doi: 10.1016/j.cmet.2006.03.007. - DOI - PubMed
Voshol P.J., Minich D.M., Havinga R., Elferink R.P., Verkade H.J., Groen A.K., Kuipers F. Postprandial chylomicron formation and fat absorption in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology. 2000;118:173–182. doi: 10.1016/S0016-5085(00)70426-4. - DOI - PubMed
Noureddin M., Mato J.M., Lu S.C. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp. Biol. Med. 2015;240:809–820. doi: 10.1177/1535370215579161. - DOI - PMC - PubMed
Leonardi R., Frank M.W., Jackson P.D., Rock C.O., Jackowski S. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. J. Biol. Chem. 2009;284:27077–27089. doi: 10.1074/jbc.M109.031336. - DOI - PMC - PubMed
Hernández-Alvarez M.I., Sebastián D., Vives S., Ivanova S., Bartoccioni P., Kakimoto P., Plana N., Veiga S.R., Hernández V., Vasconcelos N., et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881–895.e817. doi: 10.1016/j.cell.2019.04.010. - DOI - PubMed
Martínez-Uña M., Varela-Rey M., Cano A., Fernández-Ares L., Beraza N., Aurrekoetxea I., Martínez-Arranz I., García-Rodríguez J.L., Buqué X., Mestre D., et al. Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology. 2013;58:1296–1305. doi: 10.1002/hep.26399. - DOI - PMC - PubMed
Martínez-Uña M., Varela-Rey M., Mestre D., Fernández-Ares L., Fresnedo O., Fernandez-Ramos D., Gutiérrez-de Juan V., Martin-Guerrero I., García-Orad A., Luka Z., et al. S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. J. Hepatol. 2015;62:673–681. doi: 10.1016/j.jhep.2014.10.019. - DOI - PMC - PubMed
Aldrovandi M., Hammond V.J., Podmore H., Hornshaw M., Clark S.R., Marnett L.J., Slatter D.A., Murphy R.C., Collins P.W., O’Donnell V.B. Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation. J. Lipid Res. 2013;54:3085–3097. doi: 10.1194/jlr.M041533. - DOI - PMC - PubMed
Clark S.R., Guy C.J., Scurr M.J., Taylor P.R., Kift-Morgan A.P., Hammond V.J., Thomas C.P., Coles B., Roberts G.W., Eberl M., et al. Esterified eicosanoids are acutely generated by 5-lipoxygenase in primary human neutrophils and in human and murine infection. Blood. 2011;117:2033–2043. doi: 10.1182/blood-2010-04-278887. - DOI - PMC - PubMed
Bochkov V.N., Oskolkova O.V., Birukov K.G., Levonen A.L., Binder C.J., Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 2010;12:1009–1059. doi: 10.1089/ars.2009.2597. - DOI - PMC - PubMed
Ikura Y., Ohsawa M., Suekane T., Fukushima H., Itabe H., Jomura H., Nishiguchi S., Inoue T., Naruko T., Ehara S., et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: Impact on disease progression. Hepatology. 2006;43:506–514. doi: 10.1002/hep.21070. - DOI - PubMed
Sun X., Seidman J.S., Zhao P., Troutman T.D., Spann N.J., Que X., Zhou F., Liao Z., Pasillas M., Yang X., et al. Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metab. 2020;31:189–206.e188. doi: 10.1016/j.cmet.2019.10.014. - DOI - PMC - PubMed
Mendel I., Yacov N., Shoham A., Ishai E., Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis without Affecting Steatosis. Dig. Dis. Sci. 2016;61:2545–2553. doi: 10.1007/s10620-016-4159-5. - DOI - PMC - PubMed
Yimin, Furumaki H., Matsuoka S., Sakurai T., Kohanawa M., Zhao S., Kuge Y., Tamaki N., Chiba H. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab. Investig. 2012;92:265–281. doi: 10.1038/labinvest.2011.159. - DOI - PubMed
Liangpunsakul S., Chalasani N. Lipid mediators of liver injury in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;316:G75–G81. doi: 10.1152/ajpgi.00170.2018. - DOI - PMC - PubMed
Oemer G., Lackner K., Muigg K., Krumschnabel G., Watschinger K., Sailer S., Lindner H., Gnaiger E., Wortmann S.B., Werner E.R., et al. Molecular structural diversity of mitochondrial cardiolipins. Proc. Natl. Acad. Sci. USA. 2018;115:4158–4163. doi: 10.1073/pnas.1719407115. - DOI - PMC - PubMed
Maxfield F.R., Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438:612–621. doi: 10.1038/nature04399. - DOI - PubMed
Ikonen E. Mechanisms for cellular cholesterol transport: Defects and human disease. Physiol. Rev. 2006;86:1237–1261. doi: 10.1152/physrev.00022.2005. - DOI - PubMed
Bloch K. Sterol molecule: Structure, biosynthesis, and function. Steroids. 1992;57:378–383. doi: 10.1016/0039-128X(92)90081-J. - DOI - PubMed
Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0. - DOI - PubMed
Horton J.D., Shimomura I., Brown M.S., Hammer R.E., Goldstein J.L., Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Investig. 1998;101:2331–2339. doi: 10.1172/JCI2961. - DOI - PMC - PubMed
Dietschy J.M., Turley S.D., Spady D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 1993;34:1637–1659. doi: 10.1016/S0022-2275(20)35728-X. - DOI - PubMed
Malhotra P., Gill R.K., Saksena S., Alrefai W.A. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front. Med. 2020;7:467. doi: 10.3389/fmed.2020.00467. - DOI - PMC - PubMed
Arguello G., Balboa E., Arrese M., Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta. 2015;1852:1765–1778. doi: 10.1016/j.bbadis.2015.05.015. - DOI - PubMed
Subramanian S., Goodspeed L., Wang S., Kim J., Zeng L., Ioannou G.N., Haigh W.G., Yeh M.M., Kowdley K.V., O’Brien K.D., et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res. 2011;52:1626–1635. doi: 10.1194/jlr.M016246. - DOI - PMC - PubMed
Malhi H., Gores G.J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 2008;28:360–369. doi: 10.1055/s-0028-1091980. - DOI - PMC - PubMed
Min H.K., Kapoor A., Fuchs M., Mirshahi F., Zhou H., Maher J., Kellum J., Warnick R., Contos M.J., Sanyal A.J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15:665–674. doi: 10.1016/j.cmet.2012.04.004. - DOI - PMC - PubMed
Wouters K., van Bilsen M., van Gorp P.J., Bieghs V., Lütjohann D., Kerksiek A., Staels B., Hofker M.H., Shiri-Sverdlov R. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett. 2010;584:1001–1005. doi: 10.1016/j.febslet.2010.01.046. - DOI - PubMed
Malhi H., Gores G.J. Cellular and molecular mechanisms of liver injury. Gastroenterology. 2008;134:1641–1654. doi: 10.1053/j.gastro.2008.03.002. - DOI - PMC - PubMed
Bieghs V., Hendrikx T., van Gorp P.J., Verheyen F., Guichot Y.D., Walenbergh S.M., Jeurissen M.L., Gijbels M., Rensen S.S., Bast A., et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology. 2013;144:167–178.e161. doi: 10.1053/j.gastro.2012.09.062. - DOI - PubMed
Van Rooyen D.M., Larter C.Z., Haigh W.G., Yeh M.M., Ioannou G., Kuver R., Lee S.P., Teoh N.C., Farrell G.C. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141:1393–1403.e5. doi: 10.1053/j.gastro.2011.06.040. - DOI - PMC - PubMed
DeBose-Boyd R.A. Significance and regulation of lipid metabolism. Semin. Cell Dev. Biol. 2018;81:97. doi: 10.1016/j.semcdb.2017.12.003. - DOI - PubMed
DeBose-Boyd R.A., Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018;43:358–368. doi: 10.1016/j.tibs.2018.01.005. - DOI - PMC - PubMed
Li H., Yu X.H., Ou X., Ouyang X.P., Tang C.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 2021;83:101109. doi: 10.1016/j.plipres.2021.101109. - DOI - PubMed
Rinella M.E., Siddiqui M.S., Gardikiotes K., Gottstein J., Elias M., Green R.M. Dysregulation of the unfolded protein response in db/db mice with diet-induced steatohepatitis. Hepatology. 2011;54:1600–1609. doi: 10.1002/hep.24553. - DOI - PMC - PubMed
Lu K., Lee M.H., Hazard S., Brooks-Wilson A., Hidaka H., Kojima H., Ose L., Stalenhoef A.F., Mietinnen T., Bjorkhem I., et al. Two genes that map to the STSL locus cause sitosterolemia: Genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet. 2001;69:278–290. doi: 10.1086/321294. - DOI - PMC - PubMed
Cortes V.A., Busso D., Maiz A., Arteaga A., Nervi F., Rigotti A. Physiological and pathological implications of cholesterol. Front. Biosci. 2014;19:416–428. doi: 10.2741/4216. - DOI - PubMed