Genetic Variants and Protective Immunity against SARS-CoV-2

Affiliations

13 December 2022

-

doi: 10.3390/genes13122355


Abstract

The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.

Keywords: COVID-19; Genetic resistance; coronaviruses; protective immunity.


References

  1.  
    1. Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.-H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585. - DOI - PMC - PubMed
  2.  
    1. Zhang Q., Bastard P., Bolze A., Jouanguy E., Zhang S.-Y., Cobat A., Notarangelo L.D., Su H.C., Abel L., Casanova J.-L. Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med. 2020;1:14–20. doi: 10.1016/j.medj.2020.12.001. - DOI - PMC - PubMed
  3.  
    1. Cerami C., Popkin-Hall Z.R., Rapp T., Tompkins K., Zhang H., Muller M.S., Basham C., Whittelsey M., Chhetri S.B., Smith J., et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in the United States: Living Density, Viral Load, and Disproportionate Impact on Communities of Color. Clin. Infect. Dis. 2022;74:1776–1785. doi: 10.1093/cid/ciab701. - DOI - PMC - PubMed
  4.  
    1. Madewell Z.J., Yang Y., Longini I.M., Halloran M.E., Dean N.E. Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2020;3:e2031756. doi: 10.1001/jamanetworkopen.2020.31756. - DOI - PMC - PubMed
  5.  
    1. Reukers D.F.M., van Boven M., Meijer A., Rots N., Reusken C., Roof I., van Gageldonk-Lafeber A.B., van der Hoek W., van den Hof S. High Infection Secondary Attack Rates of Severe Acute Respiratory Syndrome Coronavirus 2 in Dutch Households Revealed by Dense Sampling. Clin. Infect. Dis. 2022;74:52–58. doi: 10.1093/cid/ciab237. - DOI - PMC - PubMed
  6.  
    1. Zhang Y., Qin L., Zhao Y., Zhang P., Xu B., Li K., Liang L., Zhang C., Dai Y., Feng Y., et al. Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated with Disease Severity in Coronavirus Disease 2019. J. Infect. Dis. 2020;222:34–37. doi: 10.1093/infdis/jiaa224. - DOI - PMC - PubMed
  7.  
    1. Bastard P., Gervais A., Le Voyer T., Rosain J., Philippot Q., Manry J., Michailidis E., Hoffmann H.-H., Eto S., Garcia-Prat M., et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 2021;6:eabl4340. doi: 10.1126/sciimmunol.abl4340. - DOI - PMC - PubMed
  8.  
    1. Asano T., Boisson B., Onodi F., Matuozzo D., Moncada-Velez M., Maglorius Renkilaraj M.R.L., Zhang P., Meertens L., Bolze A., Materna M., et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 2021;6:eabl4348. doi: 10.1126/sciimmunol.abl4348. - DOI - PMC - PubMed
  9.  
    1. Galani I.-E., Rovina N., Lampropoulou V., Triantafyllia V., Manioudaki M., Pavlos E., Koukaki E., Fragkou P.C., Panou V., Rapti V., et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol. 2021;22:32–40. doi: 10.1038/s41590-020-00840-x. - DOI - PubMed
  10.  
    1. Bastard P., Michailidis E., Hoffmann H.-H., Chbihi M., Le Voyer T., Rosain J., Philippot Q., Seeleuthner Y., Gervais A., Materna M., et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 2021;218:e20202486. doi: 10.1084/jem.20202486. - DOI - PMC - PubMed
  11.  
    1. Shelton J.F., Shastri A.J., Ye C., Weldon C.H., Filshtein-Sonmez T., Coker D., Symons A., Esparza-Esparza-Gordillo J., The 23andMe COVID-19 Team. Aslibekyan S., et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat. Genet. 2021;53:801–808. doi: 10.1038/s41588-021-00854-7. - DOI - PubMed
  12.  
    1. COVID-19 Host Genetics Initiative Mapping the human genetic architecture of COVID-19. Nature. 2021;600:472–477. doi: 10.1038/s41586-021-03767-x. - DOI - PMC - PubMed
  13.  
    1. Zhang Y., Garner R., Salehi S., La Rocca M., Duncan D. Association between ABO blood types and coronavirus disease 2019 (COVID-19), genetic associations, and underlying molecular mechanisms: A literature review of 23 studies. Ann. Hematol. 2021;100:1123–1132. doi: 10.1007/s00277-021-04489-w. - DOI - PMC - PubMed
  14.  
    1. Freeman E.E., McMahon D.E., Lipoff J.B., Rosenbach M., Kovarik C., Takeshita J., French L.E., Thiers B.H., Hruza G.J., Fox L.P., et al. Pernio-like skin lesions associated with COVID-19: A case series of 318 patients from 8 countries. J. Am. Acad. Derm. 2020;83:486–492. doi: 10.1016/j.jaad.2020.05.109. - DOI - PMC - PubMed
  15.  
    1. Tan S.W., Tam Y.C., Oh C.C. Skin manifestations of COVID-19: A worldwide review. JAAD Int. 2021;2:119–133. doi: 10.1016/j.jdin.2020.12.003. - DOI - PMC - PubMed
  16.  
    1. Crow Y.J., Manel N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 2015;15:429–440. doi: 10.1038/nri3850. - DOI - PubMed
  17.  
    1. Colmenero I., Santonja C., Alonso-Riaño M., Noguera-Morel L., Hernández-Martín A., Andina D., Wiesner T., Rodríguez-Peralto J.L., Requena L., Torrelo A. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: Histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Derm. 2020;183:729–737. doi: 10.1111/bjd.19327. - DOI - PMC - PubMed
  18.  
    1. Wei J., Alfajaro M.M., DeWeirdt P.C., Hanna R.E., Lu-Culligan W.J., Cai W.L., Strine M.S., Zhang S.-M., Graziano V.R., Schmitz C.O., et al. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell. 2021;184:76–91.e13. doi: 10.1016/j.cell.2020.10.028. - DOI - PMC - PubMed
  19.  
    1. Daniloski Z., Jordan T.X., Wessels H.-H., Hoagland D.A., Kasela S., Legut M., Maniatis S., Mimitou E.P., Lu L., Geller E., et al. Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell. 2021;184:92–105.e16. doi: 10.1016/j.cell.2020.10.030. - DOI - PMC - PubMed
  20.  
    1. Wang R., Simoneau C.R., Kulsuptrakul J., Bouhaddou M., Travisano K.A., Hayashi J.M., Carlson-Stevermer J., Zengel J.R., Richards C.M., Fozouni P., et al. Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell. 2021;184:106–119.e14. doi: 10.1016/j.cell.2020.12.004. - DOI - PMC - PubMed
  21.  
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052. - DOI - PMC - PubMed
  22.  
    1. Horowitz J.E., Kosmicki J.A., Damask A., Sharma D., Roberts G.H.L., Justice A.E., Banerjee N., Coignet M.V., Yadav A., Leader J.B., et al. Genome-Wide Analysis in 756,646 Individuals Provides First Genetic Evidence that ACE2 Expression Influences COVID-19 Risk and Yields Genetic Risk Scores Predictive of Severe Disease; Genetic and Genomic Medicine. 2020. [(accessed on 28 June 2022)]. Available online: http://medrxiv.org/lookup/doi/10.1101/2020.12.14.20248176. - DOI - PMC - PubMed
  23.  
    1. Suryamohan K., Diwanji D., Stawiski E.W., Gupta R., Miersch S., Liu J., Chen C., Jiang Y.-P., Fellouse F.A., Sathirapongsasuti J.F., et al. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun. Biol. 2021;4:475. doi: 10.1038/s42003-021-02030-3. - DOI - PMC - PubMed
  24.  
    1. Schneider W.M., Luna J.M., Hoffmann H.-H., Sánchez-Rivera F.J., Leal A.A., Ashbrook A.W., Le Pen J., Ricardo-Lax I., Michailidis E., Peace A., et al. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Cell. 2021;184:120–132.e14. doi: 10.1016/j.cell.2020.12.006. - DOI - PMC - PubMed
  25.  
    1. Hoffmann H.-H., Schneider W.M., Rozen-Gagnon K., Miles L.A., Schuster F., Razooky B., Jacobson E., Wu X., Yi S., Rudin C.M., et al. TMEM41B Is a Pan-flavivirus Host Factor. Cell. 2021;184:133–148.e20. doi: 10.1016/j.cell.2020.12.005. - DOI - PMC - PubMed
  26.  
    1. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–468. doi: 10.1038/s41586-020-2286-9. - DOI - PMC - PubMed
  27.  
    1. Hoffmann H.-H., Sánchez-Rivera F.J., Schneider W.M., Luna J.M., Soto-Feliciano Y.M., Ashbrook A.W., Le Pen J., Leal A.A., Ricardo-Lax I., Michailidis E., et al. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host Microbe. 2021;29:267–280.e5. doi: 10.1016/j.chom.2020.12.009. - DOI - PMC - PubMed
  28.  
    1. Zhang Q., Matuozzo D., Le Pen J., Lee D., Moens L., Asano T., Bohlen J., Liu Z., Moncada-Velez M., Kendir-Demirkol Y., et al. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J. Exp. Med. 2022;219:e20220131. doi: 10.1084/jem.20220131. - DOI - PMC - PubMed
  29.  
    1. Zhang Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I.K.D., Hodeib S., Korol C., et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. doi: 10.1126/science.abd4570. - DOI - PMC - PubMed
  30.  
    1. Gozman L., Perry K., Nikogosov D., Klabukov I., Shevlyakov A., Baranova A. A Role of Variance in Interferon Genes to Disease Severity in COVID-19 Patients. Front. Genet. 2021;12:709388. doi: 10.3389/fgene.2021.709388. - DOI - PMC - PubMed
  31.  
    1. Smieszek S.P., Polymeropoulos V.M., Xiao C., Polymeropoulos C.M., Polymeropoulos M.H. Loss-of-function mutations in IFNAR2 in COVID-19 severe infection susceptibility. J. Glob. Antimicrob. Resist. 2021;26:239–240. doi: 10.1016/j.jgar.2021.06.005. - DOI - PMC - PubMed
  32.  
    1. van der Made C.I., Simons A., Schuurs-Hoeijmakers J., van den Heuvel G., Mantere T., Kersten S., van Deuren R.C., Steehouwer M., van Reijmersdal S.V., Jaeger M., et al. Presence of Genetic Variants Among Young Men with Severe COVID-19. JAMA. 2020;324:663. doi: 10.1001/jama.2020.13719. - DOI - PMC - PubMed
  33.  
    1. Bullerdiek J., Reisinger E., Rommel B., Dotzauer A. ABO Blood Groups and the Risk of SARS-CoV-2 Infection. Protoplasma. 2022;259:1381–1395. doi: 10.1007/s00709-022-01754-1. - DOI - PMC - PubMed
  34.  
    1. Ellinghaus D., Degenhardt F., Bujanda L., Buti M., Albillos A., Invernizzi P., Fernández J., Prati D., Baselli G., Asselta R., et al. The ABO blood group locus and a chromosome 3 gene cluster associate with SARS-CoV-2 respiratory failure in an Italian-Spanish genome-wide association analysis. medRxiv. 2020 doi: 10.1101/2020.05.31.20114991. - DOI
  35.  
    1. Ren W., Zhu Y., Lan J., Chen H., Wang Y., Shi H., Feng F., Chen D.-Y., Close B., Zhao X., et al. Susceptibilities of Human ACE2 Genetic Variants in Coronavirus Infection. J. Virol. 2022;96:e01492-e21. doi: 10.1128/JVI.01492-21. - DOI - PMC - PubMed
  36.  
    1. Yang Z., Macdonald-Dunlop E., Chen J., Zhai R., Li T., Richmond A., Klarić L., Pirastu N., Ning Z., Zheng C., et al. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation. 2022;145:1398–1411. doi: 10.1161/CIRCULATIONAHA.121.057888. - DOI - PMC - PubMed
  37.  
    1. Chen F., Zhang Y., Li X., Li W., Liu X., Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front. Cell. Infect. Microbiol. 2021;11:753721. doi: 10.3389/fcimb.2021.753721. - DOI - PMC - PubMed
  38.  
    1. MacGowan S.A., Barton M.I., Kutuzov M., Dushek O., van der Merwe P.A., Barton G.J. Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19: A case study in affinity predictions of interface variants. PLoS Comput. Biol. 2022;18:e1009922. doi: 10.1371/journal.pcbi.1009922. - DOI - PMC - PubMed
  39.  
    1. Wang B., Zhao J., Liu S., Feng J., Luo Y., He X., Wang Y., Ge F., Wang J., Ye B., et al. ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants. Emerg. Microbes Infect. 2022;11:1488–1499. doi: 10.1080/22221751.2022.2079426. - DOI - PMC - PubMed
  40.  
    1. David A., Parkinson N., Peacock T.P., Pairo-Castineira E., Khanna T., Cobat A., Tenesa A., Sancho-Shimizu V., Casanova J.-L., Abel L., et al. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr. Res. Transl. Med. 2022;70:103333. doi: 10.1016/j.retram.2022.103333. - DOI - PMC - PubMed
  41.  
    1. Rokni M., Heidari Nia M., Sarhadi M., Mirinejad S., Sargazi S., Moudi M., Saravani R., Rahdar S., Kargar M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: A Case-Control Study with Computational Analyses. Appl. Biochem. Biotechnol. 2022;194:3507–3526. doi: 10.1007/s12010-022-03885-w. - DOI - PMC - PubMed
  42.  
    1. Duman N., Tuncel G., Bisgin A., Bozdogan S.T., Sag S.O., Gul S., Kiraz A., Balta B., Erdogan M., Uyanik B., et al. Analysis of ACE2 and TMPRSS2 coding variants as a risk factor for SARS-CoV-2 from 946 whole-exome sequencing data in the Turkish population. J. Med. Virol. 2022;94:5225–5243. doi: 10.1002/jmv.27976. - DOI - PMC - PubMed
  43.  
    1. Sun L., Zhao C., Fu Z., Fu Y., Su Z., Li Y., Zhou Y., Tan Y., Li J., Xiang Y., et al. Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for coronavirus replication. PLoS Pathog. 2021;17:e1010113. doi: 10.1371/journal.ppat.1010113. - DOI - PMC - PubMed
  44.  
    1. Trimarco J.D., Heaton B.E., Chaparian R.R., Burke K.N., Binder R.A., Gray G.C., Smith C.M., Menachery V.D., Heaton N.S. TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathog. 2021;17:e1009599. doi: 10.1371/journal.ppat.1009599. - DOI - PMC - PubMed
  45.  
    1. Hama Y., Morishita H., Mizushima N. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO Rep. 2022;23:e53894. doi: 10.15252/embr.202153894. - DOI - PMC - PubMed
  46.  
    1. Wang F., Huang S., Gao R., Zhou Y., Lai C., Li Z., Xian W., Qian X., Li Z., Huang Y., et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov. 2020;6:83. doi: 10.1038/s41421-020-00231-4. - DOI - PMC - PubMed
  47.  
    1. Velavan T.P., Pallerla S.R., Rüter J., Augustin Y., Kremsner P.G., Krishna S., Meyer C.G. Host genetic factors determining COVID-19 susceptibility and severity. eBioMedicine. 2021;72:103629. doi: 10.1016/j.ebiom.2021.103629. - DOI - PMC - PubMed
  48.  
    1. Verma A., Tsao N.L., Thomann L.O., Ho Y.-L., Iyengar S.K., Luoh S.-W., Carr R., Crawford D.C., Efird J.T., Huffman J.E., et al. A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLoS Genet. 2022;18:e1010113. doi: 10.1371/journal.pgen.1010113. - DOI - PMC - PubMed
  49.  
    1. Pairo-Castineira E., Clohisey S., Klaric L., Bretherick A.D., Rawlik K., Pasko D., Walker S., Parkinson N., Fourman M.H., Russell C.D., et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591:92–98. doi: 10.1038/s41586-020-03065-y. - DOI - PubMed
  50.  
    1. Smieszek S.P., Polymeropoulos V.M., Polymeropoulos C.M., Przychodzen B.P., Birznieks G., Polymeropoulos M.H. Elevated plasma levels of CXCL16 in severe COVID-19 patients. Cytokine. 2022;152:155810. doi: 10.1016/j.cyto.2022.155810. - DOI - PMC - PubMed
  51.  
    1. Jlizi A., Edouard J., Fadhlaoui-Zid K., Frigi S., Debré P., Slim A., Theodorou I., El Gaaied A.B.A., Carpentier W. Identification of the CCR5-Δ32 HIV resistance allele and new mutations of the CCR5 gene in different Tunisian populations. Hum. Immunol. 2007;68:993–1000. doi: 10.1016/j.humimm.2007.10.003. - DOI - PubMed
  52.  
    1. Khanaliha K., Bokharaei-Salim F., Donyavi T., Nahand J.S., Marjani A., Jamshidi S., Khatami A., Moghaddas M., Esghaei M., Fakhim A. Evaluation of CCR5-Δ32 mutation and HIV-1 surveillance drug-resistance mutations in peripheral blood mononuclear cells of long-term non progressors of HIV-1-infected individuals. Future Virol. 2022;17:429–439. doi: 10.2217/fvl-2021-0028. - DOI
  53.  
    1. Fath-Elrahman M.H., Alkarsany M., Nour B.Y.M., Abakar A.D., Mhammed A.E., Elzaki S.G., Osman E., Elshafia M., Ahmed E.A. Rating of CCR5-Delta 32 Homozygous Mutation in Sudanese HIV Patients and Sex Workers. WJA. 2022;12:55–64. doi: 10.4236/wja.2022.122005. - DOI
  54.  
    1. Veerabathiran R., Mansoor S.A., Kalarani I.B., Mohammed V. Gene-editing of CCR5 for the Treatment of HIV: A Novel Therapeutic Approach. TJI. 2022;10:1–11. doi: 10.4274/tji.galenos.2022.47965. - DOI
  55.  
    1. Abel L., Fellay J., Haas D.W., Schurr E., Srikrishna G., Urbanowski M., Chaturvedi N., Srinivasan S., Johnson D.H., Bishai W.R. Genetics of human susceptibility to active and latent tuberculosis: Present knowledge and future perspectives. Lancet Infect. Dis. 2018;18:e64–e75. doi: 10.1016/S1473-3099(17)30623-0. - DOI - PMC - PubMed
  56.  
    1. Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum. Genet. 2020;139:1001–1009. doi: 10.1007/s00439-020-02126-6. - DOI - PMC - PubMed
  57.  
    1. Altare F., Ensser A., Breiman A., Reichenbach J., Baghdadi J.E., Fischer A., Emile J., Gaillard J., Meinl E., Casanova J. Interleukin-12 Receptor β1 Deficiency in a Patient with Abdominal Tuberculosis. J. Infect. Dis. 2001;184:231–236. doi: 10.1086/321999. - DOI - PubMed
  58.  
    1. Boisson-Dupuis S., El Baghdadi J., Parvaneh N., Bousfiha A., Bustamante J., Feinberg J., Samarina A., Grant A.V., Janniere L., El Hafidi N., et al. IL-12Rβ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey. PLoS ONE. 2011;6:e18524. doi: 10.1371/journal.pone.0018524. - DOI - PMC - PubMed
  59.  
    1. Kreins A.Y., Ciancanelli M.J., Okada S., Kong X.-F., Ramírez-Alejo N., Kilic S.S., El Baghdadi J., Nonoyama S., Mahdaviani S.A., Ailal F., et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 2015;212:1641–1662. doi: 10.1084/jem.20140280. - DOI - PMC - PubMed
  60.  
    1. Boisson-Dupuis S., Ramirez-Alejo N., Li Z., Patin E., Rao G., Kerner G., Lim C.K., Krementsov D.N., Hernandez N., Ma C.S., et al. Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 2018;3:eaau8714. doi: 10.1126/sciimmunol.aau8714. - DOI - PMC - PubMed
  61.  
    1. Kerner G., Laval G., Patin E., Boisson-Dupuis S., Abel L., Casanova J.-L., Quintana-Murci L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 2021;108:517–524. doi: 10.1016/j.ajhg.2021.02.009. - DOI - PMC - PubMed
  62.  
    1. de Prost N., Bastard P., Arrestier R., Fourati S., Mahévas M., Burrel S., Dorgham K., Gorochov G., Tandjaoui-Lambiotte Y., Azzaoui I., et al. Plasma Exchange to Rescue Patients with Autoantibodies Against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J. Clin. Immunol. 2021;41:536–544. doi: 10.1007/s10875-021-00994-9. - DOI - PMC - PubMed
  63.  
    1. Koning R., Bastard P., Casanova J.L., Brouwer M.C., van de Beek D., with the Amsterdam U.M.C. COVID-19 Biobank Investigator. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021;47:704–706. doi: 10.1007/s00134-021-06392-4. - DOI - PMC - PubMed
  64.  
    1. Troya J., Bastard P., Planas-Serra L., Ryan P., Ruiz M., de Carranza M., Torres J., Martínez A., Abel L., Casanova J.-L., et al. Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 2021;41:914–922. doi: 10.1007/s10875-021-01036-0. - DOI - PMC - PubMed
  65.  
    1. Ghafouri-Fard S., Noroozi R., Vafaee R., Branicki W., Poṡpiech E., Pyrc K., Łabaj P.P., Omrani M.D., Taheri M., Sanak M. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed. Pharmacother. 2020;128:110296. doi: 10.1016/j.biopha.2020.110296. - DOI - PMC - PubMed
  66.  
    1. Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? IJMS. 2020;21:3474. doi: 10.3390/ijms21103474. - DOI - PMC - PubMed
  67.  
    1. Sriram K., Insel P.A. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br. J. Pharm. 2020;177:4825–4844. doi: 10.1111/bph.15082. - DOI - PMC - PubMed
  68.  
    1. Tseng Y., Yang R., Lu T. Two hits to the renin-angiotensin system may play a key role in severe COVID-19. Kaohsiung J. Med. Sci. 2020;36:389–392. doi: 10.1002/kjm2.12237. - DOI - PMC - PubMed
  69.  
    1. Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells. 2020;9:1704. doi: 10.3390/cells9071704. - DOI - PMC - PubMed
  70.  
    1. Zheng H., Cao J.J. Angiotensin-Converting Enzyme Gene Polymorphism and Severe Lung Injury in Patients with Coronavirus Disease 2019. Am. J. Pathol. 2020;190:2013–2017. doi: 10.1016/j.ajpath.2020.07.009. - DOI - PMC - PubMed
  71.  
    1. Delanghe J.R., Speeckaert M.M., De Buyzere M.L. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta. 2020;505:192–193. doi: 10.1016/j.cca.2020.03.031. - DOI - PMC - PubMed
  72.  
    1. Delanghe J.R., Speeckaert M.M., De Buyzere M.L. COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin. Chem. Lab. Med. (CCLM) 2020;58:1125–1126. doi: 10.1515/cclm-2020-0425. - DOI - PubMed
  73.  
    1. Yamamoto N., Ariumi Y., Nishida N., Yamamoto R., Bauer G., Gojobori T., Shimotohno K., Mizokami M. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene. 2020;758:144944. doi: 10.1016/j.gene.2020.144944. - DOI - PMC - PubMed
  74.  
    1. Aung A.K., Aitken T., Teh B.M., Yu C., Ofori-Asenso R., Chin K.L., Liew D. Angiotensin converting enzyme genotypes and mortality from COVID-19: An ecological study. J. Infect. 2020;81:961–965. doi: 10.1016/j.jinf.2020.11.012. - DOI - PMC - PubMed
  75.  
    1. Pati A., Mahto H., Padhi S., Panda A.K. ACE deletion allele is associated with susceptibility to SARS-CoV-2 infection and mortality rate: An epidemiological study in the Asian population. Clin. Chim. Acta. 2020;510:455–458. doi: 10.1016/j.cca.2020.08.008. - DOI - PMC - PubMed
  76.  
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circ. Res. 2000;87:E1–E9. doi: 10.1161/01.RES.87.5.e1. - DOI - PubMed
  77.  
    1. Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. - DOI - PMC - PubMed
  78.  
    1. Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020;76:14–20. doi: 10.1016/j.ejim.2020.04.037. - DOI - PMC - PubMed
  79.  
    1. Fam B.S.O., Vargas-Pinilla P., Amorim C.E.G., Sortica V.A., Bortolini M.C. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet. Mol. Biol. 2020;43:e20200104. doi: 10.1590/1678-4685-gmb-2020-0104. - DOI - PMC - PubMed
  80.  
    1. Li M.-Y., Li L., Zhang Y., Wang X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020;9:45. doi: 10.1186/s40249-020-00662-x. - DOI - PMC - PubMed
  81.  
    1. Pinto B.G.G., Oliveira A.E.R., Singh Y., Jimenez L., Gonçalves A.N.A., Ogava R.L.T., Creighton R., Schatzmann Peron J.P., Nakaya H.I. ACE2 Expression Is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J. Infect. Dis. 2020;222:556–563. doi: 10.1093/infdis/jiaa332. - DOI - PMC - PubMed
  82.  
    1. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 2020;14:185–192. doi: 10.1007/s11684-020-0754-0. - DOI - PMC - PubMed
  83.  
    1. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., et al. SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;39:e105114. doi: 10.15252/embj.2020105114. - DOI - PMC - PubMed
  84.  
    1. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020;116:1097–1100. doi: 10.1093/cvr/cvaa078. - DOI - PMC - PubMed
  85.  
    1. Bunyavanich S., Do A., Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020;323:2427. doi: 10.1001/jama.2020.8707. - DOI - PMC - PubMed
  86.  
    1. McCoy J., Wambier C.G., Vano-Galvan S., Shapiro J., Sinclair R., Ramos P.M., Washenik K., Andrade M., Herrera S., Goren A. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J. Cosmet. Derm. 2020;19:1542–1543. doi: 10.1111/jocd.13455. - DOI - PMC - PubMed
  87.  
    1. Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., Yao Y., Ge S., Xu G. Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv. 2020 doi: 10.1101/2020.02.18.20023242. - DOI - PMC - PubMed
  88.  
    1. El Baba R., Herbein G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin. Epigenet. 2020;12:118. doi: 10.1186/s13148-020-00912-7. - DOI - PMC - PubMed
  89.  
    1. Chen Y.Y., Zhang P., Zhou X.M., Liu D., Zhong J.C., Zhang C.J., Jin L.J., Yu H.M. Relationship between genetic variants of ACE 2 gene and circulating levels of ACE 2 and its metabolites. J. Clin. Pharm. Ther. 2018;43:189–195. doi: 10.1111/jcpt.12625. - DOI - PubMed
  90.  
    1. Cao Y., Li L., Feng Z., Wan S., Huang P., Sun X., Wen F., Huang X., Ning G., Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. doi: 10.1038/s41421-020-0147-1. - DOI - PMC - PubMed
  91.  
    1. Darbani B. The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues. IJERPH. 2020;17:3433. doi: 10.3390/ijerph17103433. - DOI - PMC - PubMed
  92.  
    1. Hou Y., Zhao J., Martin W., Kallianpur A., Chung M.K., Jehi L., Sharifi N., Erzurum S., Eng C., Cheng F. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18:216. doi: 10.1186/s12916-020-01673-z. - DOI - PMC - PubMed
  93.  
    1. Gibson W.T., Evans D.M., An J., Jones S.J. ACE 2 Coding Variants: A Potential X-linked Risk Factor for COVID-19 Disease. BioRxiv. 2020 doi: 10.1101/2020.04.05.026633. - DOI
  94.  
    1. Mohammad A., Marafie S.K., Alshawaf E., Abu-Farha M., Abubaker J., Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci. 2020;259:118219. doi: 10.1016/j.lfs.2020.118219. - DOI - PMC - PubMed
  95.  
    1. Hussain M., Jabeen N., Raza F., Shabbir S., Baig A.A., Amanullah A., Aziz B. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J. Med. Virol. 2020;92:1580–1586. doi: 10.1002/jmv.25832. - DOI - PMC - PubMed
  96.  
    1. Benetti E., Tita R., Spiga O., Ciolfi A., Birolo G., Bruselles A., Doddato G., Giliberti A., Marconi C., Musacchia F., et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet. 2020;28:1602–1614. doi: 10.1038/s41431-020-0691-z. - DOI - PMC - PubMed
  97.  
    1. Stawiski E.W., Diwanji D., Suryamohan K., Gupta R., Fellouse F.A., Sathirapongsasuti J.F., Liu J., Jiang Y.-P., Ratan A., Mis M., et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. BioRxiv. 2020 doi: 10.1101/2020.04.07.024752. - DOI - PMC - PubMed
  98.  
    1. Torre-Fuentes L., Matías-Guiu J., Hernández-Lorenzo L., Montero-Escribano P., Pytel V., Porta-Etessam J., Gómez-Pinedo U., Matías-Guiu J.A. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain. J. Med. Virol. 2021;93:863–869. doi: 10.1002/jmv.26319. - DOI - PMC - PubMed
  99.  
    1. Novelli A., Biancolella M., Borgiani P., Cocciadiferro D., Colona V.L., D’Apice M.R., Rogliani P., Zaffina S., Leonardis F., Campana A., et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum. Genom. 2020;14:29. doi: 10.1186/s40246-020-00279-z. - DOI - PMC - PubMed
  100.  
    1. Fawzy M.S., Ashour H., Shafie A.A.A., Dahman N.B.H., Fares A.M., Antar S., Elnoby A.S., Fouad F.M. The role of angiotensin-converting enzyme 2 (ACE2) genetic variations in COVID-19 infection: A literature review. Egypt J. Med. Hum. Genet. 2022;23:97. doi: 10.1186/s43042-022-00309-6. - DOI
  101.  
    1. Deacon C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019;10:80. doi: 10.3389/fendo.2019.00080. - DOI - PMC - PubMed
  102.  
    1. Posadas-Sánchez R., Sánchez-Muñoz F., Guzmán-Martín C.A., Hernández-Díaz Couder A., Rojas-Velasco G., Fragoso J.M., Vargas-Alarcón G. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci. 2021;276:119410. doi: 10.1016/j.lfs.2021.119410. - DOI - PMC - PubMed
  103.  
    1. Kirino Y., Sei M., Kawazoe K., Minakuchi K., Sato Y. Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr. J. 2012;59:949–953. doi: 10.1507/endocrj.EJ12-0158. - DOI - PubMed
  104.  
    1. Stengel A., Goebel-Stengel M., Teuffel P., Hofmann T., Buße P., Kobelt P., Rose M., Klapp B.F. Obese patients have higher circulating protein levels of dipeptidyl peptidase IV. Peptides. 2014;61:75–82. doi: 10.1016/j.peptides.2014.09.006. - DOI - PubMed
  105.  
    1. Ghorpade D.S., Ozcan L., Zheng Z., Nicoloro S.M., Shen Y., Chen E., Blüher M., Czech M.P., Tabas I. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673–677. doi: 10.1038/nature26138. - DOI - PMC - PubMed
  106.  
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M., et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28:1195–1199. doi: 10.1002/oby.22831. - DOI - PMC - PubMed
  107.  
    1. Latini A., Agolini E., Novelli A., Borgiani P., Giannini R., Gravina P., Smarrazzo A., Dauri M., Andreoni M., Rogliani P., et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes. 2020;11:1010. doi: 10.3390/genes11091010. - DOI - PMC - PubMed
  108.  
    1. Peacock T.P., Goldhill D.H., Zhou J., Baillon L., Frise R., Swann O.C., Kugathasan R., Penn R., Brown J.C., Sanchez-David R.Y., et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 2021;6:899–909. doi: 10.1038/s41564-021-00908-w. - DOI - PubMed
  109.  
    1. Delshad M., Sanaei M.-J., Pourbagheri-Sigaroodi A., Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int. Immunopharmacol. 2022;111:109128. doi: 10.1016/j.intimp.2022.109128. - DOI - PMC - PubMed
  110.  
    1. Caldwell R.M., Schafer J.F., Compton L.E., Patterson F.L. Tolerance to Cereal Leaf Rusts. Science. 1958;128:714–715. doi: 10.1126/science.128.3326.714. - DOI - PubMed
  111.  
    1. Roy B.A., Kirchner J.W. Evolutionary dynamics of pathogen resistance and tolerance. Evolution. 2000;54:51–63. - PubMed
  112.  
    1. Vilcinskas A., Stoecker K., Schmidtberg H., Röhrich C.R., Vogel H. Invasive Harlequin Ladybird Carries Biological Weapons Against Native Competitors. Science. 2013;340:862–863. doi: 10.1126/science.1234032. - DOI - PubMed
  113.  
    1. Karupiah G., Buller R.M., Van Rooijen N., Duarte C.J., Chen J. Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J. Virol. 1996;70:8301–8309. doi: 10.1128/jvi.70.12.8301-8309.1996. - DOI - PMC - PubMed
  114.  
    1. Panchanathan V., Chaudhri G., Karupiah G. Protective Immunity against Secondary Poxvirus Infection Is Dependent on Antibody but Not on CD4 or CD8 T-Cell Function. J. Virol. 2006;80:6333–6338. doi: 10.1128/JVI.00115-06. - DOI - PMC - PubMed
  115.  
    1. Detre C., Keszei M., Romero X., Tsokos G.C., Terhorst C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin. Immunopathol. 2010;32:157–171. doi: 10.1007/s00281-009-0193-0. - DOI - PMC - PubMed
  116.  
    1. Chaganti S., Ma C.S., Bell A.I., Croom-Carter D., Hislop A.D., Tangye S.G., Rickinson A.B. Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood. 2008;112:672–679. doi: 10.1182/blood-2007-10-116269. - DOI - PubMed
  117.  
    1. Dupré L., Andolfi G., Tangye S.G., Clementi R., Locatelli F., Aricò M., Aiuti A., Roncarolo M.-G. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood. 2005;105:4383–4389. doi: 10.1182/blood-2004-08-3269. - DOI - PubMed
  118.  
    1. Palendira U., Low C., Bell A.I., Ma C.S., Abbott R.J.M., Phan T.G., Riminton D.S., Choo S., Smart J.M., Lougaris V., et al. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J. Exp. Med. 2012;209:913–924. doi: 10.1084/jem.20112391. - DOI - PMC - PubMed
  119.  
    1. Hird T.R., Grassly N.C. Systematic Review of Mucosal Immunity Induced by Oral and Inactivated Poliovirus Vaccines against Virus Shedding following Oral Poliovirus Challenge. PLoS Pathog. 2012;8:e1002599. doi: 10.1371/journal.ppat.1002599. - DOI - PMC - PubMed
  120.  
    1. Moran-Gilad J., Kaliner E., Gdalevich M., Grotto I. Public health response to the silent reintroduction of wild poliovirus to Israel, 2013–2014. Clin. Microbiol. Infect. 2016;22:S140–S145. doi: 10.1016/j.cmi.2016.06.018. - DOI - PubMed
  121.  
    1. van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–582. doi: 10.1038/s41586-020-2608-y. - DOI - PMC - PubMed
  122.  
    1. Alharbi N.K., Qasim I., Almasoud A., Aljami H.A., Alenazi M.W., Alhafufi A., Aldibasi O.S., Hashem A.M., Kasem S., Albrahim R., et al. Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Sci. Rep. 2019;9:16292. doi: 10.1038/s41598-019-52730-4. - DOI - PMC - PubMed
  123.  
    1. Acosta P.L., Byrne A.B., Hijano D.R., Talarico L.B. Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J. Immunol. Res. 2020;2020:1372494. doi: 10.1155/2020/1372494. - DOI - PMC - PubMed
  124.  
    1. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007. - DOI - PMC - PubMed
  125.  
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x. - DOI - PMC - PubMed
  126.  
    1. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. doi: 10.1016/j.cell.2020.04.035. - DOI - PMC - PubMed
  127.  
    1. Su Q., Wang S., Baltzis D., Qu L., Raven J.F., Li S., Wong A.H., Koromilas A.E. Interferons induce tyrosine phosphorylation of the eIF2α kinase PKR through activation of Jak1 and Tyk2. EMBO Rep. 2007;8:265–270. doi: 10.1038/sj.embor.7400891. - DOI - PMC - PubMed
  128.  
    1. Duncan C.J.A., Mohamad S.M.B., Young D.F., Skelton A.J., Leahy T.R., Munday D.C., Butler K.M., Morfopoulou S., Brown J.R., Hubank M., et al. Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci. Transl. Med. 2015;7:307ra154. doi: 10.1126/scitranslmed.aac4227. - DOI - PMC - PubMed
  129.  
    1. Bogdanović Z., Marinović-Terzić I., Kuret S., Jerončić A., Bradarić N., Forempoher G., Polašek O., Anđelinović Š., Terzić J. The impact of IL-6 and IL-28B gene polymorphisms on treatment outcome of chronic hepatitis C infection among intravenous drug users in Croatia. PeerJ. 2016;4:e2576. doi: 10.7717/peerj.2576. - DOI - PMC - PubMed
  130.  
    1. Barrett S. The natural course of hepatitis C virus infection after 22 years in a unique homogenous cohort: Spontaneous viral clearance and chronic HCV infection. Gut. 2001;49:423–430. doi: 10.1136/gut.49.3.423. - DOI - PMC - PubMed
  131.  
    1. Nattermann J., Vogel M., Berg T., Danta M., Axel B., Mayr C., Bruno R., Tural C., Klausen G., Clotet B., et al. Effect of the interleukin-6 C174G gene polymorphism on treatment of acute and chronic hepatitis C in human immunodeficiency virus coinfected patients. Hepatology. 2007;46:1016–1025. doi: 10.1002/hep.21778. - DOI - PubMed
  132.  
    1. Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., Hirayama A.V., Mastroiani F., Turtle C.J., Harhay M.O., et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020;8:1233–1244. doi: 10.1016/S2213-2600(20)30404-5. - DOI - PMC - PubMed
  133.  
    1. Takeda K., Kaisho T., Akira S. Toll-Like Receptors. Annu. Rev. Immunol. 2003;21:335–376. doi: 10.1146/annurev.immunol.21.120601.141126. - DOI - PubMed
  134.  
    1. Lim K.-H., Staudt L.M. Toll-Like Receptor Signaling. Cold Spring Harb. Perspect. Biol. 2013;5:a011247. doi: 10.1101/cshperspect.a011247. - DOI - PMC - PubMed
  135.  
    1. Amodio G., Gregori S. HLA-G genotype/expression/disease association studies: Success, hurdles, and perspectives. Front. Immunol. 2020;11:1178. doi: 10.3389/fimmu.2020.01178. - DOI - PMC - PubMed
  136.  
    1. Dendrou C.A., Petersen J., Rossjohn J., Fugger L. HLA variation and disease. Nat. Rev. Immunol. 2018;18:325–339. doi: 10.1038/nri.2017.143. - DOI - PubMed
  137.  
    1. Lin M., Tseng H.-K., Trejaut J.A., Lee H.-L., Loo J.-H., Chu C.-C., Chen P.-J., Su Y.-W., Lim K.H., Tsai Z.-U., et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003;4:9. doi: 10.1186/1471-2350-4-9. - DOI - PMC - PubMed
  138.  
    1. Nguyen A., David J.K., Maden S.K., Wood M.A., Weeder B.R., Nellore A., Thompson R.F. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020;94:e00510-20. doi: 10.1128/JVI.00510-20. - DOI - PMC - PubMed
  139.  
    1. Vuille-dit-Bille R.N., Camargo S.M., Emmenegger L., Sasse T., Kummer E., Jando J., Hamie Q.M., Meier C.F., Hunziker S., Forras-Kaufmann Z., et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47:693–705. doi: 10.1007/s00726-014-1889-6. - DOI - PubMed
  140.  
    1. Wein A.N., McMaster S.R., Takamura S., Dunbar P.R., Cartwright E.K., Hayward S.L., McManus D.T., Shimaoka T., Ueha S., Tsukui T., et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 2019;216:2748–2762. doi: 10.1084/jem.20181308. - DOI - PMC - PubMed
  141.  
    1. Tu G., Ju M., Zheng Y., Hao G., Ma G., Hou J., Zhang X., Luo Z., Lu L. CXCL16/CXCR6 is involved in LPS-induced acute lung injury via P38 signalling. J. Cell Mol. Med. 2019;23:5380–5389. doi: 10.1111/jcmm.14419. - DOI - PMC - PubMed
  142.  
    1. Szyda J., Dobosz P., Stojak J., Sypniewski M., Suchocki T., Kotlarz K., Mroczek M., Stępień M., Słomian D., Butkiewicz S., et al. Beyond GWAS—Could Genetic Differentiation within the Allograft Rejection Pathway Shape Natural Immunity to COVID-19? IJMS. 2022;23:6272. doi: 10.3390/ijms23116272. - DOI - PMC - PubMed
  143.  
    1. Stravalaci M., Pagani I., Paraboschi E.M., Pedotti M., Doni A., Scavello F., Mapelli S.N., Sironi M., Perucchini C., Varani L., et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol. 2022;23:275–286. doi: 10.1038/s41590-021-01114-w. - DOI - PubMed
  144.  
    1. Guthmiller J.J., Stovicek O., Wang J., Changrob S., Li L., Halfmann P., Zheng N.-Y., Utset H., Stamper C.T., Dugan H.L., et al. SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. mBio. 2021;12:e02940-20. doi: 10.1128/mBio.02940-20. - DOI - PMC - PubMed
  145.  
    1. Asteris P.G., Gavriilaki E., Touloumenidou T., Koravou E., Koutra M., Papayanni P.G., Pouleres A., Karali V., Lemonis M.E., Mamou A., et al. Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks. J. Cell. Mol. Med. 2022;26:1445–1455. doi: 10.1111/jcmm.17098. - DOI - PMC - PubMed
  146.  
    1. Dogan S., Mart Komurcu S.Z., Korkmaz M.D., Kaya E., Yavas S., Dogan S., Senturk Ciftci H., Dasdemir S. Effect of Chemokine Gene Variants on Covid-19 Disease Severity. Immunol. Investig. 2022;51:1965–1974. doi: 10.1080/08820139.2022.2088383. - DOI - PubMed
  147.  
    1. Pellegrina D., Bahcheli A.T., Krassowski M., Reimand J. Human phospho-signaling networks of SARS-CoV-2 infection are rewired by population genetic variants. Mol. Syst. Biol. 2022;18:e10823. doi: 10.15252/msb.202110823. - DOI - PMC - PubMed