Coliform Bacteria for Bioremediation of Waste Hydrocarbons

Affiliations

01 January 2017

-

doi: 10.1155/2017/1838072


Abstract

Raw, domestic sewage of Kuwait City contained about 106 ml-1 colony forming units of Enterobacter hormaechei subsp. oharae (56.6%), Klebsiella spp. (36%), and Escherichia coli (7.4%), as characterized by their 16S rRNA-gene sequences. The isolated coliforms grew successfully on a mineral medium with crude oil vapor as a sole source of carbon and energy. Those strains also grew, albeit to different degrees, on individual n-alkanes with carbon chains between C9 and C36 and on the individual aromatic hydrocarbons, toluene, naphthalene, phenanthrene, and biphenyl as sole sources of carbon and energy. These results imply that coliforms, like other hydrocarbonoclastic microorganisms, oxidize hydrocarbons to the corresponding alcohols and then to aldehydes and fatty acids which are biodegraded by β-oxidation to acetyl CoA. The latter is a well-known key intermediate in cell material and energy production. E. coli cells grown in the presence of n-hexadecane (but not in its absence) exhibited typical intracellular hydrocarbon inclusions, as revealed by transmission electron microscopy. Raw sewage samples amended with crude oil, n-hexadecane, or phenanthrene lost these hydrocarbons gradually with time. Meanwhile, the numbers of total and individual coliforms, particularly Enterobacter, increased. It was concluded that coliform bacteria in domestic sewage, probably in other environmental materials too, are effective hydrocarbon-biodegrading microorganisms.


Figures


Similar articles

Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes.

Al-Mailem DM, Kansour MK, Radwan SS.Can J Microbiol. 2014 Jul;60(7):477-86. doi: 10.1139/cjm-2014-0214.PMID: 25011928

Hydrocarbon-utilizing microorganisms naturally associated with sawdust.

Ali N, Eliyas M, Al-Sarawi H, Radwan SS.Chemosphere. 2011 May;83(9):1268-72. doi: 10.1016/j.chemosphere.2011.03.052. Epub 2011 Apr 19.PMID: 21507457

Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts.

Al-Mailem DM, Eliyas M, Radwan SS.Extremophiles. 2013 May;17(3):463-70. doi: 10.1007/s00792-013-0530-z. Epub 2013 Mar 31.PMID: 23543287

Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities.

Toledo FL, Calvo C, Rodelas B, González-López J.Syst Appl Microbiol. 2006 Apr;29(3):244-52. doi: 10.1016/j.syapm.2005.09.003. Epub 2005 Nov 2.PMID: 16564960

Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms.

Varjani SJ, Gnansounou E, Pandey A.Chemosphere. 2017 Dec;188:280-291. doi: 10.1016/j.chemosphere.2017.09.005. Epub 2017 Sep 4.PMID: 28888116 Review.


Cited by

Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation.

Pompa-Monroy DA, Iglesias AL, Dastager SG, Thorat MN, Olivas-Sarabia A, Valdez-Castro R, Hurtado-Ayala LA, Cornejo-Bravo JM, Pérez-González GL, Villarreal-Gómez LJ.Membranes (Basel). 2022 Mar 15;12(3):327. doi: 10.3390/membranes12030327.PMID: 35323802 Free PMC article.

Genotypic characterization of soil bacteria in the Umm Al-Namil Island, Kuwait.

Alown F, Alsharidah A, Shamsah S.Saudi J Biol Sci. 2021 Jul;28(7):3847-3854. doi: 10.1016/j.sjbs.2021.03.060. Epub 2021 Mar 27.PMID: 34220239 Free PMC article.

Bioaugmentation failed to enhance oil bioremediation in three soil samples from three different continents.

Radwan SS, Al-Mailem DM, Kansour MK.Sci Rep. 2019 Dec 20;9(1):19508. doi: 10.1038/s41598-019-56099-2.PMID: 31862978 Free PMC article.


KMEL References


References

  1.  
    1. National Research Council (NRC) Using Oil Spill Dispersants on the Sea. Washington DC, Wash, USA: National Academy Press; 1989. - DOI
  2.  
    1. Al-Majed A. A., Adebayo A. R., Hossain M. E. A sustainable approach to controlling oil spills. Journal of Environmental Management. 2012;113:213–227. doi: 10.1016/j.jenvman.2012.07.034. - DOI - PubMed
  3.  
    1. Bayat A., Aghamiri S. F., Moheb A., Vakili-Nezhaad G. R. Oil spill cleanup from sea water by sorbent materials. Chemical Engineering and Technology. 2005;28(12):1525–1528. doi: 10.1002/ceat.200407083. - DOI
  4.  
    1. Sundaravadivelu D., Suidan M. T., Venosa A. D., Rosales P. I. Characterization of solidifiers used for oil spill remediation. Chemosphere. 2016;144:1490–1497. doi: 10.1016/j.chemosphere.2015.10.030. - DOI - PubMed
  5.  
    1. Dahl W., Lessard R. R., Cardello E., et al. Solidifiers for oil spill response. Proceedings of the SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference; 1996; New Orleans, LA, USA. pp. 803–810. - DOI
  6.  
    1. Graham L., Hale C., Maung-Douglass E., et al. Oil spill science: Chemical dispersants and their role in oil spill response. MASGP-15-015, 2016.
  7.  
    1. Zolfaghari-Baghbaderani A., Emtyazjoo M., Poursafa P., et al. Effects of three types of oil dispersants on biodegradation of dispersed crude oil in water surrounding two Persian Gulf provinces. Journal of Environmental and Public Health. 2012;2012:8. doi: 10.1155/2012/981365.981365 - DOI - PMC - PubMed
  8.  
    1. Ren C., Ng G. H. B., Wu H., et al. Instant room-temperature gelation of crude oil by chiral organogelators. Chemistry of Materials. 2016;28(11):4001–4008. doi: 10.1021/acs.chemmater.6b01367. - DOI
  9.  
    1. Bachl J., Oehm S., Mayr J., Cativiela C., Marrero-Tellado J. J., Díaz D. D. Supramolecular phase-selective gelation by peptides bearing side-chain azobenzenes: effect of ultrasound and potential for dye removal and oil spill remediation. International Journal of Molecular Sciences. 2015;16(5):11766–11784. doi: 10.3390/ijms160511766. - DOI - PMC - PubMed
  10.  
    1. Cordes E. E., Jones D. O., Schlacher T. A., et al. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Frontiers in Environmental Science. 2016;4 doi: 10.3389/fenvs.2016.00058. - DOI
  11.  
    1. Atlas R. M., Bartha R. Microbial Ecology: Fundamentals and Applications. 4th. Vol. 70. Benjamin/Cummings Publishing Company Inc; 1998. - DOI
  12.  
    1. Szulc A., Ambrozewicz D., Sydow M., et al. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. Journal of Environmental Management. 2014;132:121–128. doi: 10.1016/j.jenvman.2013.11.006. - DOI - PubMed
  13.  
    1. Kuiper I., Lagendijk E. L., Bloemberg G. V., Lugtenberg B. J. J. Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions. 2004;17(1):6–15. doi: 10.1094/MPMI.2004.17.1.6. - DOI - PubMed
  14.  
    1. Van Limbergen H., Top E. M., Verstraete W. Bioaugmentation in activated sludge: current features add future perspectives. Applied Microbiology and Biotechnology. 1998;50(1):16–23. doi: 10.1007/s002530051250. - DOI
  15.  
    1. Ławniczak Ł., Marecik R., Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology. 2013;97(6):2327–2339. doi: 10.1007/s00253-013-4740-1. - DOI - PMC - PubMed
  16.  
    1. Radwan S. S., Sorkhoh N. A., El-Nemr I. M., El-Desouky A. F. A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. Journal of Applied Microbiology. 1997;83(3):353–358. doi: 10.1046/j.1365-2672.1997.00237.x. - DOI
  17.  
    1. Radwan S. S. Gulf oil spill. Nature. 1991;350(6318):456–460. doi: 10.1038/350456d0. - DOI - PubMed
  18.  
    1. Di Gregorio S., Castglione M. R., Gentini A., Lorenzi R. Biostimulation of the autochthonous bacterial community and bioaugmentation of selected bacterial strains for the depletion of polycyclic aromatic hydrocarbons in a historically contaminated soil. Geophysical Research Abstracts. 2015;17 EGU2015-14690.
  19.  
    1. Nikolopoulou M., Pasadakis N., Kalogerakis N. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Marine Pollution Bulletin. 2013;72(1):165–173. doi: 10.1016/j.marpolbul.2013.04.007. - DOI - PubMed
  20.  
    1. Ueno A., Ito Y., Yumoto I., Okuyama H. Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World Journal of Microbiology and Biotechnology. 2007;23(12):1739–1745. doi: 10.1007/s11274-007-9423-6. - DOI - PubMed
  21.  
    1. Shekhar S. K., Godheja J., Modi D. R. Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. International Journal of Current Microbiology and Applied Sciences. 2015;4(3):892–905.
  22.  
    1. Nduka J. K., Umeh L. N., Okerulu I. O., et al. Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. Journal of Petroleum & Environmental Biotechnology. 2012;3(2):p. 116. doi: 10.4172/2157-7463.1000116. - DOI
  23.  
    1. Díaz E., Ferrández A., Prieto M. A., García J. L. Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews. 2001;65(4):523–569. doi: 10.1128/mmbr.65.4.523-569.2001. - DOI - PMC - PubMed
  24.  
    1. Zafra G., Absalón Á. E., Cuevas M. D. C., Cortés-Espinosa D. V. Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, and Soil Pollution. 2014;225(2, article 1826) doi: 10.1007/s11270-013-1826-4. - DOI
  25.  
    1. Hassan S. E., Desouky S. E., Fouda A., El-Gamal M., Alemam A. Biodegradation of phenanthrene by klebsiella sp isolated from organic contaminated sediment. Journal of Advances in Biology & Biotechnology. 2015;4(4):1–12. doi: 10.9734/JABB/2015/23613. - DOI
  26.  
    1. Godheja J., Shekhar S. K., Modi D. R. Biodegradation of one ring hydrocarbons (benzene and toluene) and two ring hydrocarbons (acenapthene and napthalene) by bacterial isolates of hydrocarbon contaminated sites located in chhattisgarh: a preliminary study. Journal of Petroleum & Environmental Biotechnology. 2015;6(1) doi: 10.4172/2157-7463.1000202. - DOI
  27.  
    1. Ramasamy S., Arumugam A., Chandran P. Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM) Journal of Microbiology. 2017;55(2):104–111. doi: 10.1007/s12275-017-6265-2. - DOI - PubMed
  28.  
    1. Akpe R., Ekundayo A. O., P Aigere S., et al. Bacterial degradation of petroleum hydrocarbons in crude oil polluted soil amended with cassava peels. American Journal of Research Communication. 2015;3:99–118.
  29.  
    1. Obi L. U., Atagana H. I., Adeleke R. A. Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus. 2016;5(1, article 1946) doi: 10.1186/s40064-016-3617-z. - DOI - PMC - PubMed
  30.  
    1. Ikuesan F. A., Boboye B. E., Adetuyi F. C. Comparative bioremediation of crude oil - contaminated soil samples using activated soil and activated cow dung. Sky Journal of Microbiology Research. 2016;4:021–030.
  31.  
    1. Ghoreishi G., Alemzadeh A., Mojarrad M., Djavaheri M. Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustainable Environment Research. 2017;27(4):195–202. doi: 10.1016/j.serj.2017.05.002. - DOI
  32.  
    1. Leininger D. J., Roberson J. R., Elvinger F. Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. Journal of Veterinary Diagnostic Investigation. 2001;13(3):273–275. doi: 10.1177/104063870101300319. - DOI - PubMed
  33.  
    1. Levine M. Differentiation of E. Coli and A. Aerogens on a simplified eosin-methylene blue agar. Journal of Infectious Diseases. 1918;23(1):43–47. doi: 10.1086/infdis/23.1.43. - DOI
  34.  
    1. Santegoeds C. M., Ferdelman T. G., Muyzer G., De Beer D. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology. 1998;64(10):3731–3739. - PMC - PubMed
  35.  
    1. Altschul S. F., Madden T. L., Schäffer A. A., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. - DOI - PMC - PubMed
  36.  
    1. Swafford D. L. PAUP∗: Phylogenetic Analysis Using Parasimany and Other Method, Version 4. Sunderland, MA, USA: USA; Sinauer Association; 1998.
  37.  
    1. Sorkhoh N. A., Ghannoum M. A., Ibrahim A. S., Stretton R. J., Radwan S. S. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environmental Pollution. 1990;65(1):1–17. doi: 10.1016/0269-7491(90)90162-6. - DOI - PubMed
  38.  
    1. Dashti N., Ali N., Khanafer M., Radwan S. S. Oil uptake by plant-based sorbents and its biodegradation by their naturally associated microorganisms. Environmental Pollution. 2017;227:468–475. doi: 10.1016/j.envpol.2017.04.089. - DOI - PubMed
  39.  
    1. Esteve I., Montesinos E., Mitchell J. G., Guerrero R. A quantitative ultrastructural study of Chromatium minus in the bacterial layer of Lake Cisó (Spain) Archives of Microbiology. 1990;153(4):316–323. doi: 10.1007/BF00248999. - DOI
  40.  
    1. Diestra E., Solé A., Martí M., Garcia De Oteyza T., Grimalt J. O., Esteve I. Characterization of an oil-degrading Microcoleus consortium by means of confocal scanning microscopy, scanning electron microscopy and transmission electron microscopy. Scanning. 2005;27(4):176–180. doi: 10.1002/sca.4950270404. - DOI - PubMed
  41.  
    1. Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology. 1963;17:208–212. doi: 10.1083/jcb.17.1.208. - DOI - PMC - PubMed
  42.  
    1. Rehm H. J., Reiff I. Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Advances in Biochemical Engineering. 1981;19:175–215. doi: 10.1007/3-540-10464-X_18. - DOI
  43.  
    1. Ratledge. Degradation of aliphatic hydrocarbons. In: Watkinson I., editor. Developments in Biodeterioration of Hydrocarbons. Vol. 1. Applied Science, Essex: 1978. pp. 1–44. - DOI
  44.  
    1. Radwan S. S., Sorkhoh N. A. Lipids of n-alkane-utilizing microorganisms and their application potential. Advances in Applied Microbiology. 1993;39:29–90. doi: 10.1016/S0065-2164(08)70593-8. - DOI