Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization

Affiliations


Abstract

There is no research published sofar on managements that could bioremediate hypersaline soils and water polluted with hydrocarbons. The objective of this study was to assess the effect of vitamin amendment on hydrocarbon removal by microorganisms indigenous to such hypersaline environments. We used in this study ten hydrocarbonoclastic bacterial species and five archaeal species that had been isolated by the conventional plating method on media containing oil as a sole carbon source, from a hypersaline (3-4 M NaCl) coastal area in Kuwait, and characterized by sequencing of their 16S rRNA coding genes. The oil and pure hydrocarbon consumption was measured by gas-liquid chromatography. The oil and pure hydrocarbon consumption potential of all microorganisms in media with hypersalinity was enhanced by vitamin fertilization. This was true for individual microorganisms in pure cultures as well as for microbial consortia in hypersaline soil and water samples used as inocula. Most effective vitamins were thiamin, pyridoxine and vitamin B12. Vitamin fertilization using vitamin rich wastes or byproducts could be an effective practice for enhancing bioremediation of oil contaminated hypersaline environments.


Similar articles

Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment.

Al-Mailem DM, Eliyas M, Radwan SS.Can J Microbiol. 2013 Dec;59(12):837-44. doi: 10.1139/cjm-2013-0698. Epub 2013 Nov 7.PMID: 24313456

Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill.

Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan S.Arch Microbiol. 2012 Aug;194(8):689-705. doi: 10.1007/s00203-012-0800-7. Epub 2012 Mar 8.PMID: 22398928

Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance.

Ali N, Dashti N, Al-Mailem D, Eliyas M, Radwan S.Environ Sci Pollut Res Int. 2012 Mar;19(3):812-20. doi: 10.1007/s11356-011-0624-z. Epub 2011 Sep 25.PMID: 21948132

Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review.

Jimoh AA, Ikhimiukor OO, Adeleke R.Environ Sci Pollut Res Int. 2022 May;29(24):35615-35642. doi: 10.1007/s11356-022-19299-4. Epub 2022 Mar 5.PMID: 35247173 Review.

Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments.

Edbeib MF, Wahab RA, Huyop F.World J Microbiol Biotechnol. 2016 Aug;32(8):135. doi: 10.1007/s11274-016-2081-9. Epub 2016 Jun 25.PMID: 27344438 Review.


Cited by

Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study.

Hassanshahian M, Amirinejad N, Askarinejad Behzadi M.J Environ Health Sci Eng. 2020 Oct 9;18(2):1415-1435. doi: 10.1007/s40201-020-00557-x. eCollection 2020 Dec.PMID: 33312652 Free PMC article.

Diversity and Niche of Archaea in Bioremediation.

Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL.Archaea. 2018 Sep 3;2018:3194108. doi: 10.1155/2018/3194108. eCollection 2018.PMID: 30254509 Free PMC article. Review.

Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses.

Al-Mailem DM, Eliyas M, Radwan SS.Front Microbiol. 2018 Mar 7;9:394. doi: 10.3389/fmicb.2018.00394. eCollection 2018.PMID: 29563904 Free PMC article.

Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples.

Al-Mailem DM, Kansour MK, Radwan SS.Microbiologyopen. 2017 Oct;6(5):e00495. doi: 10.1002/mbo3.495. Epub 2017 May 18.PMID: 28516483 Free PMC article.

Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines.

Corsellis YY, Krasovec MM, Sylvi LL, Cuny PP, Militon CC.Extremophiles. 2016 May;20(3):235-50. doi: 10.1007/s00792-016-0818-x. Epub 2016 Mar 8.PMID: 26955981


KMEL References


References

  1.  
    1. Water Res. 2006 Dec;40(20):3671-82 - PubMed
  2.  
    1. Extremophiles. 2010 Mar;14(2):225-31 - PubMed
  3.  
    1. J Biol Chem. 2009 Sep 25;284(39):26217-28 - PubMed
  4.  
    1. Appl Microbiol Biotechnol. 2012 Aug;95(3):789-98 - PubMed
  5.  
    1. Curr Opin Biotechnol. 2007 Jun;18(3):257-66 - PubMed
  6.  
    1. Appl Environ Microbiol. 2001 Jun;67(6):2683-91 - PubMed
  7.  
    1. Extremophiles. 2013 May;17(3):463-70 - PubMed
  8.  
    1. Extremophiles. 2010 May;14(3):321-8 - PubMed
  9.  
    1. Microbiol Res. 2001 Mar;155(4):301-7 - PubMed
  10.  
    1. Appl Microbiol Biotechnol. 2001 Sep;56(5-6):650-63 - PubMed
  11.  
    1. Bioresour Technol. 2011 Oct;102(20):9668-74 - PubMed
  12.  
    1. Bioresour Technol. 2010 Aug;101(15):5786-92 - PubMed
  13.  
    1. FEMS Microbiol Lett. 2005 Apr 15;245(2):257-62 - PubMed
  14.  
    1. Curr Opin Biotechnol. 2000 Jun;11(3):262-70 - PubMed
  15.  
    1. Appl Environ Microbiol. 2012 Jun;78(12):4074-82 - PubMed
  16.  
    1. Extremophiles. 2009 Jan;13(1):31-7 - PubMed
  17.  
    1. J Bacteriol. 1985 Apr;162(1):461-2 - PubMed
  18.  
    1. Extremophiles. 2012 Sep;16(5):751-8 - PubMed
  19.  
    1. Appl Microbiol Biotechnol. 2007 Nov;77(1):183-6 - PubMed
  20.  
    1. Chemosphere. 2011 Sep;84(11):1671-6 - PubMed
  21.  
    1. Environ Pollut. 1990;65(1):1-17 - PubMed
  22.  
    1. Arch Microbiol. 2012 Aug;194(8):689-705 - PubMed
  23.  
    1. Curr Microbiol. 2009 Mar;58(3):205-10 - PubMed
  24.  
    1. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  25.  
    1. Bioresour Technol. 2009 Jan;100(2):812-8 - PubMed
  26.  
    1. Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1723-1728 - PubMed
  27.  
    1. J Ind Microbiol Biotechnol. 2002 Jan;28(1):56-63 - PubMed
  28.  
    1. Appl Environ Microbiol. 1998 Oct;64(10):3731-9 - PubMed
  29.  
    1. Environ Sci Pollut Res Int. 2011 Jan;18(1):12-30 - PubMed