Bioprospecting potentials of moderately halophilic bacteria and the isolation of squalene producers from Kuwait sabkha

Affiliations


Abstract

Sabkhas in Kuwait are unique hypersaline marine environments under-explored for bacterial community composition and bioprospecting. The 16S rRNA sequence analysis of 46 isolates with distinct morphology from two Kuwait sabkhas recovered 11 genera. Phylum Firmicutes dominated these isolates, and Bacillus (32.6%) was recovered as the dominant genera, followed by Halococcus (17.4%). These isolates were moderately halophilic, and some of them showed tolerance and growth at extreme levels of salt (20%), pH (5 and/or 11), and temperature (55 °C). A higher percentage of isolates harbored protease (63.0), followed by DNase (41.3), amylase (41.3), and lipase (32.6). Selected isolates showed antimicrobial activity against E. faecalis and isolated Halomonas shengliensis, and Idiomarina piscisalsi harbored gene coding for dNDP-glucose 4,6-dehydratase (Glu 1), indicating their potential to produce biomolecules with deoxysugar moieties. Palmitic acid or oleic acid was the dominant fatty acid, and seven isolates had some polyunsaturated fatty acids (linolenic or γ-linolenic acid). Interestingly, six isolates belonging to Planococcus and Oceanobacillus genus produced squalene, a bioactive isoprenoid molecule. Their content increased 30-50% in the presence of Terbinafine. The potential bioactivities and extreme growth conditions make this untapped bacterial diversity a promising candidate for future bioprospecting studies.

Keywords: Bacteria; Hydrolytic enzyme; Hypersaline; Squalene production.


Similar articles

Bioprospecting around Arctic islands: Marine bacteria as rich source of biocatalysts.

De Santi C, Altermark B, de Pascale D, Willassen NP.J Basic Microbiol. 2016 Mar;56(3):238-53. doi: 10.1002/jobm.201500505. Epub 2015 Dec 11.PMID: 26662844

[Diversity of halophilic and halotolerant bacteria isolated from non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province].

Chen Q, Liu Z, Peng Q, Huang K, He J, Zhang L, Li W, Chen Y.Wei Sheng Wu Xue Bao. 2010 Nov;50(11):1452-9.PMID: 21268889 Chinese.

Culturable halophilic bacteria inhabiting Algerian saline ecosystems: A source of promising features and potentialities.

Menasria T, Monteoliva-Sánchez M, Benammar L, Benhadj M, Ayachi A, Hacène H, Gonzalez-Paredes A, Aguilera M.World J Microbiol Biotechnol. 2019 Aug 20;35(9):132. doi: 10.1007/s11274-019-2705-y.PMID: 31432260

Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential.

Tuesta-Popolizio DA, Velázquez-Fernández JB, Rodriguez-Campos J, Contreras-Ramos SM.World J Microbiol Biotechnol. 2021 Aug 7;37(9):147. doi: 10.1007/s11274-021-03116-0.PMID: 34363544 Review.

Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens.

Santhaseelan H, Dinakaran VT, Dahms HU, Ahamed JM, Murugaiah SG, Krishnan M, Hwang JS, Rathinam AJ.Microorganisms. 2022 Feb 11;10(2):417. doi: 10.3390/microorganisms10020417.PMID: 35208871 Free PMC article. Review.


KMEL References


References

  1.  
    1. Alagarsamy S, Farvin KH, Fakhraldeen S, Kooramattom MR, Al-Yamani F (2019) Isolation of Gram-positive Firmibacteria as major eicosapentaenoic acid producers from subtropical marine sediments. Lett Appl Microbiol 69:121–127 - PubMed - DOI - PMC
  2.  
    1. Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186 - PubMed - DOI - PMC
  3.  
    1. Al-Hurban A, Gharib I (2004) Geomorphological and sedimentological characteristics of coastal and inland sabkhas, Southern Kuwait. J Arid Environ 58:59–85 - DOI
  4.  
    1. Al-Khalaf RA, Al-Awadhi HA, Al-Beloshei N, Afzal M (2013) Lipid and fatty acid profile of Geobacillus kaustophilus in response to abiotic stress. Can J Microbiol 59:117–125 - PubMed - DOI - PMC
  5.  
    1. Al-Mailem D, Eliyas M, Khanafer M, Radwan S (2014) Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 67:857–865 - PubMed - DOI - PMC
  6.  
    1. Al-Mailem D, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470 - PubMed - DOI - PMC
  7.  
    1. Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758 - PubMed - DOI - PMC
  8.  
    1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic Archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328 - PubMed - DOI - PMC
  9.  
    1. Ardakani MR, Poshtkouhian A, Amoozegar MA, Zolgharnein H (2012) Isolation of moderately halophilic Pseudoalteromonas producing extracellular hydrolytic enzymes from Persian Gulf. Indian J Microbiol 52:94–98 - PubMed - DOI - PMC
  10.  
    1. Babavalian H, Amoozegar MA, Zahraei S, Rohban R, Shakeri F, Moghaddam MM (2014) Comparison of bacterial biodiversity and enzyme production in three hypersaline lakes; Urmia, Howz-Soltan, and Aran-Bidgol. Indian J Microbiol 54:444–449 - PubMed - PMC - DOI
  11.  
    1. Borsodi AK, Felföldi T, Máthé I, Bognár V, Knáb M, Krett G, Jurecska L, Tóth EM, Márialigeti K (2013) Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17:87–98 - PubMed - DOI - PMC
  12.  
    1. Borsodi AK, Kiss IR, Cech G, Vajna B, To´th EM, Ma´rialigeti K (2010) Diversity and activity of cultivable aerobic planktonic bacteria of a saline lake located in Sovata, Romania. Folia Microbiol 55:461–466
  13.  
    1. Chang FY, Brady SF (2011) Cloning and characterization of an environmental DNA-derived gene cluster that encodes the biosynthesis of the antitumor substance BE-54017. J Am Chem Soc 133:9996–9999 - PubMed - PMC - DOI
  14.  
    1. Chen F, Lin L, Wang L, Tan Y, Zhou H, Wang Y, Wang Y, He W (2011) Distribution of dTDP-glucose-4, 6-dehydratase gene and diversity of potential glycosylated natural products in marine sediment-derived bacteria. Appl Microbiol Biotechnol 90:1347–1359 - PubMed - DOI - PMC
  15.  
    1. Didari M, Bagheri M, Amoozegar MA, Bouzari S, Babavalian H, Tebyanian H, Hassanshahian M, Ventosa A (2020) Diversity of halophilic and halotolerant bacteria in the largest seasonal hypersaline lake (Aran-Bidgol-Iran). J Environ Health Sci Eng 18:961–997 - PubMed - DOI - PMC
  16.  
    1. de Carvalho CC, Marques MP, Hachicho N, Heipieper HJ (2014) Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 98:5599–5606 - PubMed - PMC
  17.  
    1. de Lourdes MM, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51 - DOI
  18.  
    1. Decker H, Gaisser S, Pelzer S, Schneider P, Westrich L, Wohlleben W, Bechthold A (1996) A general approach for cloning and characterizing dNDP-glucose dehydratase genes from actinomycetes. FEMS Microbial Lett 141:195–201 - DOI
  19.  
    1. Delgado-García M, Flores-Gallegos AC, Kirchmayr M, Rodríguez JA, Mateos-Díaz JC, Aguilar CN, Muller M, Camacho-Ruíz RM (2019) Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron J Biotechnol 39:52–60 - DOI
  20.  
    1. El Halmouch Y (2019) Adaptive changes in saturated fatty acids as a resistant mechanism in salt stress in Halomonas alkaliphila YHSA35. Egypt J Bot 59:537–549
  21.  
    1. Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with Terbinafine. World J Microbiol Biotechnol 26:1303–1309 - PubMed - DOI - PMC
  22.  
    1. Ghasemi Y, Rasoul-Amini S, Ebrahiminezhad A, Kazemi A, Shahbazia M, Talebniaa N (2011a) Screening and isolation of extracellular protease producing bacteria from the Maharloo Salt Lake. Iran J Pharm Sci 7:175–180
  23.  
    1. Ghasemi Y, Rasoul-Amini S, Kazemi A, Zarrini G, Morowvat MT, Kargar M (2011b) Isolation and characterization of some moderately halophilic bacteria with lipase activity. Microbiol 80:483–487 - DOI
  24.  
    1. Ghimire GP, Lee HC, Sohng JK (2009) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75:7291–7293 - PubMed - PMC - DOI
  25.  
    1. Ghimire GP, Thuan NH, Koirala N, Sohng JK (2016) Advances in biochemistry and microbial production of squalene and its derivatives. J Microbiol Biotechnol 26:441–451 - PubMed - DOI - PMC
  26.  
    1. Irshad A, Ahmad I, Kim SB (2013) Isolation, characterization and antimicrobial activity of halophilic bacteria in foreshore soils. Afr J Microbiol Res 7:164–173
  27.  
    1. Kaysser L, Wemakor E, Siebenberg S, Salas JA, Sohng JK, Kammerer B, Gust B (2010) Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis. Appl Environ Microbiol 76:4008–4018 - PubMed - PMC - DOI
  28.  
    1. Kleo AA, Al-Otaibi O (2011) The sustainable development of Kuwaiti Sabkhas. Dig Middle East Stud 202:7–49
  29.  
    1. Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603 - PubMed - PMC - DOI
  30.  
    1. Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodríguez-Valera F (ed) Halophilic bacteria, vol I. CRC Press, Boca Raton, pp 109–138
  31.  
    1. Latorre JD, Hernandez-Velasco X, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM, Tellez G (2016) Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci 3:95 - PubMed - PMC - DOI
  32.  
    1. Lee YK, Kwon KK, Cho KH, Park JH, Lee HK (2005) Isolation and identification of bacteria from marine biofilms. Key Eng Mater 277-279:612–617 - DOI
  33.  
    1. Li X, Qian P, Wu SG, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18:171–178 - PubMed - DOI - PMC
  34.  
    1. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pasic L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol Salt Lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93 - PubMed - DOI - PMC
  35.  
    1. Martín S, Márquez MC, Sánchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387 - PubMed - DOI - PMC
  36.  
    1. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: Diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082 - PubMed - PMC - DOI
  37.  
    1. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH (1995) Manual of clinical microbiology, 6th edn. Mosby Year Book, London
  38.  
    1. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterization of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348 - PubMed - DOI - PMC
  39.  
    1. Newmark HL (1999) Squalene, olive oil, and cancer risk: review and hypothesis. Ann N Y Acad Sci 889:193–203 - PubMed - DOI - PMC
  40.  
    1. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol 28:56–63 - PubMed - DOI - PMC
  41.  
    1. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834 - PubMed - DOI - PMC
  42.  
    1. Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:pe23325 - DOI
  43.  
    1. Rohban R, Amoozegar MA, Ventosa A (2008) Screening and isolation of halophilic bacteria producing extracellular hydrolases from Howz-Soltan Lake. Iran J Ind Microbiol Biotechnol 36:333–340 - PubMed - DOI - PMC
  44.  
    1. Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake. Iran J Ind Microbiol Biotechnol 36:333–340 - PubMed - DOI - PMC
  45.  
    1. Ryan J, Farr H, Visnovsky S, Vyssotski M, Visnovsky G (2010) A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. J Microbiol Methods 82:49–53 - PubMed - DOI - PMC
  46.  
    1. Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2002) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 - DOI
  47.  
    1. Selama O, Amos GC, Djenane Z, Borsetto C, Laidi RF, Porter D, Nateche F, Wellington EM (2014) Hacène H (2014) Screening for genes coding for putative antitumor compounds, antimicrobial and enzymatic activities from haloalkalitolerant and haloalkaliphilic bacteria strains of Algerian Sahara soils. Biomed Res Int 2014:1–11 - DOI
  48.  
    1. Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499 - PubMed - PMC - DOI
  49.  
    1. Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G, Piceno Y, Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159:609–627 - PubMed - DOI - PMC
  50.  
    1. Thorson JS, Lo SF, Liu HW (1993) Biosynthesis of 3,6-dideoxyhexoses: New mechanistic reflection upon 2,6-dideoxy.4,6-dideoxy and amino sugar construction. J Am Chem Soc 115:6993–6994 - DOI
  51.  
    1. Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk HP, Hejazi MA, Hejazi MS (2011) Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiol 80:834–841 - DOI
  52.  
    1. Ventosa A (2006) Unusual microorganisms from unusual habitats: Hypersaline environments. In: Logan NA, Lppin-Scott HM, Oyston PCF (eds) Prokaryotic diversity-mechanism and significance. Cambridge University Press, Cambridge, UK, pp 223–253 - DOI
  53.  
    1. Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, Soil biology, vol 13. Springer, Berlin Heidelberg, pp 87–115 - DOI
  54.  
    1. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–882 - PubMed - DOI - PMC
  55.  
    1. Xiang WL, Guo JH, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang ZR, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong brine well in southwestern China. World J Microbiol Biotechnol 24:2297–2305 - DOI
  56.  
    1. Yoon JH, Choi SH, Lee KC, Kho YH, Kang KH, Park YH (2001) Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 - PubMed - DOI - PMC
  57.  
    1. Yoon JH, Shin DY, Kim IG, Kang KH, Park YH (2003) Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53:563–568 - PubMed - DOI - PMC
  58.  
    1. Yoon TM, Kim JW, Kim JG, Kim WG, Suh JW (2006) Talosins A and B: New isoflavonol glycosides with potent antifungal activity from Kitasatospora kifunensis MJM341 I. Taxonomy, fermentation, isolation, and biological activities. J Antibiotics 59:633–639 - DOI
  59.  
    1. Zhang G, Zhang H, Li S, Xiao J, Zhang G, Zhu Y, Niu S, Ju J, Zhang C (2012) Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Appl Environ Microbiol 78:2393–2401 - PubMed - PMC - DOI