Novel Peptidomic Approach for Identification of Low and High Molecular Weight Tauopathy Peptides Following Calpain Digestion, and Primary Culture Neurotoxic Challenges

Affiliations

21 October 2019

-

doi: 10.3390/ijms20205213


Abstract

Tauopathy is a class of a neurodegenerative disorder linked with tau hyperphosphorylation, proteolysis, and aggregation. Tau can be subjected to proteolysis upon calpain activation in Alzheimer disease (AD), and traumatic brain injury (TBI). We and others have extensively researched calpain-mediated tau breakdown products (Tau-BDP; 45K, 35K, and 17K). Tau proteolysis might also generate low molecular weight (LMW ≤10K) proteolytic peptides after neurodegenerative damage. In this study, we have subjected purified tau protein (phospho and non-phospho) and mouse brain lysate to calpain-1 digestion to characterize the LMW generated by nano-liquid chromatography coupled to electrospray ionization to tandem mass spectrometry (nano-LC-ESI-MS/MS). We have also challenged differentiated primary cerebrocortical neuronal cultures (CTX) with neurotoxic agents (calcium ionophore calcimycin (A23187), staurosporine (STS), N-methyl-D-aspartate (NMDA), and Maitotoxin (MTX)) that mimic neurodegeneration to investigate the peptidome released into the conditioned cell media. We used a simple workflow in which we fractionate LMW calpain-mediated tau peptides by ultrafiltration (molecular weight cut-off value (MWCO) of 10K) and subject filtrate fractions to nano-LC-MS/MS analysis. The high molecular weight (HMW) peptides and intact proteins retained on the filter were analyzed separately by western blotting using total and phospho-specific tau antibodies. We have identified several novel proteolytic tau peptides (phosphorylated and non-phosphorylated) that are only present in samples treated with calpain or cell-based calpain activation model (particularly N- and C-terminal peptides). Our findings can help in developing future research strategies emphasizing on the suppression of tau proteolysis as a target.

Keywords: calpain; neurodegeneration; peptidomics; tau proteolysis; tauopathy.

Conflict of interest statement

The authors declare no competing interest.


Figures


Similar articles

Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions.

Liu MC, Kobeissy F, Zheng W, Zhang Z, Hayes RL, Wang KK.ASN Neuro. 2011 Feb 16;3(1):e00051. doi: 10.1042/AN20100012.PMID: 21359008 Free PMC article.

Neurobiochemical, Peptidomic, and Bioinformatic Approaches to Characterize Tauopathy Peptidome Biomarker Candidates in Experimental Mouse Model of Traumatic Brain Injury.

Yadikar H, Johnson C, Pafundi N, Nguyen L, Kurup M, Torres I, Al-Enezy A, Yang Z, Yost R, Kobeissy FH, Wang KKW.Mol Neurobiol. 2023 Apr;60(4):2295-2319. doi: 10.1007/s12035-022-03165-y. Epub 2023 Jan 13.PMID: 36635478

Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury.

Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, Wang KK.J Neurotrauma. 2007 Mar;24(3):460-72. doi: 10.1089/neu.2006.0078.PMID: 17402852

Neuronal nitric oxide synthase and calmodulin-dependent protein kinase IIalpha undergo neurotoxin-induced proteolysis.

Hajimohammadreza I, Raser KJ, Nath R, Nadimpalli R, Scott M, Wang KK.J Neurochem. 1997 Sep;69(3):1006-13. doi: 10.1046/j.1471-4159.1997.69031006.x.PMID: 9282922

Peptidomics: LC-MS operational parameters do matter.

Descamps A, Van der Borght K, De Spiegeleer A, Wynendaele E, De Spiegeleer B.J Pharm Biomed Anal. 2023 May 30;229:115348. doi: 10.1016/j.jpba.2023.115348. Epub 2023 Mar 20.PMID: 36963248 Review.


Cited by

Characterization of Calpain and Caspase-6-Generated Glial Fibrillary Acidic Protein Breakdown Products Following Traumatic Brain Injury and Astroglial Cell Injury.

Yang Z, Arja RD, Zhu T, Sarkis GA, Patterson RL, Romo P, Rathore DS, Moghieb A, Abbatiello S, Robertson CS, Haskins WE, Kobeissy F, Wang KKW.Int J Mol Sci. 2022 Aug 11;23(16):8960. doi: 10.3390/ijms23168960.PMID: 36012232 Free PMC article.


KMEL References


References

  1.  
    1. Avila J., Jiménez J.S., Sayas C.L., Bolós M., Zabala J.C., Rivas G., Hernández F. Tau Structures. Front. Aging Neurosci. 2016;8:262. doi: 10.3389/fnagi.2016.00262. - DOI - PMC - PubMed
  2.  
    1. Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704. doi: 10.1007/s00401-017-1707-9. - DOI - PMC - PubMed
  3.  
    1. Tan C.C., Zhang X.Y., Tan L., Yu J.T. Tauopathies: Mechanisms and Therapeutic Strategies. J. Alzheimers Dis. 2018;61:487–508. doi: 10.3233/JAD-170187. - DOI - PubMed
  4.  
    1. Pir G.J., Choudhary B., Mandelkow E. Models of Tauopathy. FASEB J. 2017;31:5137–5148. doi: 10.1096/fj.201701007. - DOI - PubMed
  5.  
    1. Kovacs G.G. Tauopathies. Handb. Clin. Neurol. 2017;145:355–368. - PubMed
  6.  
    1. Quinn J.P., Corbett N.J., Kellett K.A.B., Hooper N.M. Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. J. Alzheimers Dis. 2018;63:13–33. doi: 10.3233/JAD-170959. - DOI - PMC - PubMed
  7.  
    1. Mandelkow E.M., Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2012;2:a006247. doi: 10.1101/cshperspect.a006247. - DOI - PMC - PubMed
  8.  
    1. Lee G., Leugers C.J. Tau and Tauopathies. Prog. Mol. Biol. Transl. Sci. 2012;107:263–293. - PMC - PubMed
  9.  
    1. Ono Y., Sorimachi H. Calpains—An elaborate proteolytic system. Biochim. Biophys. Acta BBA Proteins Proteomics. 2012;1824:224–236. doi: 10.1016/j.bbapap.2011.08.005. - DOI - PubMed
  10.  
    1. Liu S., Yin F., Zhang J., Qian Y. The role of calpains in traumatic brain injury. Brain Inj. 2014;28:133–137. doi: 10.3109/02699052.2013.860479. - DOI - PubMed
  11.  
    1. Ferreira A. Calpain dysregulation in Alzheimer’s disease. ISRN Biochem. 2012;2012:728571. doi: 10.5402/2012/728571. - DOI - PMC - PubMed
  12.  
    1. Nakajima E., Hammond K.B., Rosales J.L., Shearer T.R., Azuma M. Calpain, Not Caspase, Is the Causative Protease for Hypoxic Damage in Cultured Monkey Retinal Cells. Investig. Ophthalmol. Vis. Sci. 2011;52:7059–7067. doi: 10.1167/iovs.11-7497. - DOI - PMC - PubMed
  13.  
    1. Siman R., Baudry M., Lynch G. Brain fodrin: Substrate for calpain I, an endogenous calcium-activated protease. Proc. Natl. Acad. Sci. USA. 1984;81:3572–3576. doi: 10.1073/pnas.81.11.3572. - DOI - PMC - PubMed
  14.  
    1. Mondello S., Robicsek S.A., Gabrielli A., Brophy G.M., Papa L., Tepas J., III, Robertson C., Buki A., Scharf D., Jixiang M., et al. αII-Spectrin Breakdown Products (SBDPs): Diagnosis and Outcome in Severe Traumatic Brain Injury Patients. J. Neurotrauma. 2010;27:1203–1213. doi: 10.1089/neu.2010.1278. - DOI - PMC - PubMed
  15.  
    1. Park S.Y., Ferreira A. The Generation of a 17 kDa Neurotoxic Fragment: An Alternative Mechanism by which Tau Mediates β-Amyloid-Induced Neurodegeneration. J. Neurosci. 2005;25:5365–5375. doi: 10.1523/JNEUROSCI.1125-05.2005. - DOI - PMC - PubMed
  16.  
    1. Kurbatskaya K., Phillips E.C., Croft C.L., Dentoni G., Hughes M.M., Wade M.A., Al-Sarraj S., Troakes C., O’Neill M.J., Perez-Nievas B.G., et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol. Commun. 2016;4:34. doi: 10.1186/s40478-016-0299-2. - DOI - PMC - PubMed
  17.  
    1. Reifert J., Hartung-Cranston D., Feinstein S.C. Amyloid beta-mediated cell death of cultured hippocampal neurons reveals extensive Tau fragmentation without increased full-length tau phosphorylation. J. Biol. Chem. 2011;286:20797–20811. doi: 10.1074/jbc.M111.234674. - DOI - PMC - PubMed
  18.  
    1. Qi H., Prabakaran S., Cantrelle F.X., Chambraud B., Gunawardena J., Lippens G., Landrieu I. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. J. Biol. Chem. 2016;291:7742–7753. doi: 10.1074/jbc.M115.700914. - DOI - PMC - PubMed
  19.  
    1. Gendron T.F., Petrucelli L. The role of tau in neurodegeneration. Mol. Neurodegener. 2009;4:13. doi: 10.1186/1750-1326-4-13. - DOI - PMC - PubMed
  20.  
    1. Lee S., Shea T.B. Regulation of tau proteolysis by phosphatases. Brain Res. 2013;1495:30–36. doi: 10.1016/j.brainres.2012.10.023. - DOI - PubMed
  21.  
    1. Favre B., Turowski P., Hemmings B.A. Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J. Biol. Chem. 1997;272:13856–13863. doi: 10.1074/jbc.272.21.13856. - DOI - PubMed
  22.  
    1. Baker S., Gotz J. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta Neuropathol. Commun. 2016;4:32. doi: 10.1186/s40478-016-0300-0. - DOI - PMC - PubMed
  23.  
    1. Boban M., Babic Leko M., Miskic T., Hof P.R., Simic G. Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J. Neurosci. Methods. 2019;319:60–68. doi: 10.1016/j.jneumeth.2018.09.030. - DOI - PMC - PubMed
  24.  
    1. Zhang Z., Simpkins J.W. An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res. 2010;1359:233–246. doi: 10.1016/j.brainres.2010.08.077. - DOI - PMC - PubMed
  25.  
    1. Liu M.C., Kobeissy F., Zheng W., Zhang Z., Hayes R.L., Wang K.K. Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN Neuro. 2011;3:e00051. doi: 10.1042/AN20100012. - DOI - PMC - PubMed
  26.  
    1. Manguy J., Jehl P., Dillon E.T., Davey N.E., Shields D.C., Holton T.A. Peptigram: A Web-Based Application for Peptidomics Data Visualization. J. Proteome Res. 2017;16:712–719. doi: 10.1021/acs.jproteome.6b00751. - DOI - PubMed
  27.  
    1. Ozaki H., Ishihara H., Kohama K., Nonomura Y., Shibata S., Karaki H. Calcium-independent phosphorylation of smooth muscle myosin light chain by okadaic acid isolated from black sponge (Halichondria okadai) J. Pharmacol. Exp. Ther. 1987;243:1167–1173. - PubMed
  28.  
    1. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 1988;256:283–290. doi: 10.1042/bj2560283. - DOI - PMC - PubMed
  29.  
    1. Chen Y., Wang C., Hu M., Pan J., Chen J., Duan P., Zhai T., Ding J., Xu C. Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells. Planta Med. 2012;78:1337–1341. doi: 10.1055/s-0032-1314965. - DOI - PubMed
  30.  
    1. Jones N.C., Nguyen T., Corcoran N.M., Velakoulis D., Chen T., Grundy R., O’Brien T.J., Hovens C.M. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol. Dis. 2012;45:897–901. doi: 10.1016/j.nbd.2011.12.005. - DOI - PubMed
  31.  
    1. Kamat P.K., Rai S., Swarnkar S., Shukla R., Ali S., Najmi A.K., Nath C. Okadaic acid-induced Tau phosphorylation in rat brain: Role of NMDA receptor. Neuroscience. 2013;238:97–113. doi: 10.1016/j.neuroscience.2013.01.075. - DOI - PubMed
  32.  
    1. Wang Y.P., Biernat J., Pickhardt M., Mandelkow E., Mandelkow E.M. Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc. Natl. Acad. Sci. USA. 2007;104:10252–10257. doi: 10.1073/pnas.0703676104. - DOI - PMC - PubMed
  33.  
    1. Ruegg U.T., Burgess G.M. Staurosporine, K-252 and UCN-01: Potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. 1989;10:218–220. doi: 10.1016/0165-6147(89)90263-0. - DOI - PubMed
  34.  
    1. Darbinyan A., Kaminski R., White M.K., Darbinian N., Khalili K. Isolation and propagation of primary human and rodent embryonic neural progenitor cells and cortical neurons. Methods Mol. Biol. 2013;1078:45–54. - PMC - PubMed
  35.  
    1. Mattson M.P., Rychlik B. Cell culture of cryopreserved human fetal cerebral cortical and hippocampal neurons: Neuronal development and responses to trophic factors. Brain Res. 1990;522:204–214. doi: 10.1016/0006-8993(90)91462-P. - DOI - PubMed
  36.  
    1. Fenske P., Grauel M.K., Brockmann M.M., Dorrn A.L., Trimbuch T., Rosenmund C. Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Sci. Rep. 2019;9:4890. doi: 10.1038/s41598-019-41259-1. - DOI - PMC - PubMed