Exome-wide association study of plasma lipids in >300,000 individuals

Dajiang J Liu 1Gina M Peloso 2 3Haojie Yu 4Adam S Butterworth 5 6Xiao Wang 7Anubha Mahajan 8Danish Saleheen 5 9 10Connor Emdin 3 11Dewan Alam 12Alexessander Couto Alves 13Philippe Amouyel 14Emanuele Di Angelantonio 5 6Dominique Arveiler 15Themistocles L Assimes 16 17Paul L Auer 18Usman Baber 19Christie M Ballantyne 20Lia E Bang 21Marianne Benn 22 23Joshua C Bis 24Michael Boehnke 25Eric Boerwinkle 26 27Jette Bork-Jensen 28Erwin P Bottinger 29Ivan Brandslund 30 31Morris Brown 32Fabio Busonero 33Mark J Caulfield 32 34 35John C Chambers 36 37 38Daniel I Chasman 39 40Y Eugene Chen 41Yii-Der Ida Chen 42Rajiv Chowdhury 5Cramer Christensen 43Audrey Y Chu 39 44John M Connell 45Francesco Cucca 33 46L Adrienne Cupples 2 44Scott M Damrauer 47 48Gail Davies 49 50Ian J Deary 49 50George Dedoussis 51Joshua C Denny 52 53Anna Dominiczak 54Marie-Pierre Dubé 55 56 57Tapani Ebeling 58Gudny Eiriksdottir 59Tõnu Esko 3 60Aliki-Eleni Farmaki 51Mary F Feitosa 61Marco Ferrario 62Jean Ferrieres 63Ian Ford 64Myriam Fornage 65Paul W Franks 66 67 68Timothy M Frayling 69Ruth Frikke-Schmidt 22 23Lars G Fritsche 25Philippe Frossard 10Valentin Fuster 19 70Santhi K Ganesh 41 71Wei Gao 72Melissa E Garcia 73Christian Gieger 74 75 76Franco Giulianini 39Mark O Goodarzi 77 78Harald Grallert 74 75 76Niels Grarup 28Leif Groop 79Megan L Grove 26Vilmundur Gudnason 59 80Torben Hansen 28 81Tamara B Harris 82Caroline Hayward 83Joel N Hirschhorn 3 84Oddgeir L Holmen 85 86Jennifer Huffman 83Yong Huo 87Kristian Hveem 88Sehrish Jabeen 10Anne U Jackson 25Johanna Jakobsdottir 59 89Marjo-Riitta Jarvelin 13Gorm B Jensen 90Marit E Jørgensen 91 92J Wouter Jukema 93 94Johanne M Justesen 28Pia R Kamstrup 95Stavroula Kanoni 96Fredrik Karpe 97 98Frank Kee 99Amit V Khera 3 11Derek Klarin 3 11 100Heikki A Koistinen 101 102 103Jaspal S Kooner 37 38 104Charles Kooperberg 105Kari Kuulasmaa 101Johanna Kuusisto 106Markku Laakso 106Timo Lakka 107 108 109Claudia Langenberg 110Anne Langsted 95 111Lenore J Launer 82Torsten Lauritzen 112David C M Liewald 49 50Li An Lin 65Allan Linneberg 113 114 115Ruth J F Loos 29 116Yingchang Lu 29Xiangfeng Lu 41 117Reedik Mägi 60Anders Malarstig 118 119Ani Manichaikul 120Alisa K Manning 3 11 121Pekka Mäntyselkä 122Eirini Marouli 96Nicholas G D Masca 123 124Andrea Maschio 33James B Meigs 3 121 125Olle Melander 126Andres Metspalu 60Andrew P Morris 8 127Alanna C Morrison 26Antonella Mulas 33Martina Müller-Nurasyid 76 128 129Patricia B Munroe 32 35Matt J Neville 97Jonas B Nielsen 41Sune F Nielsen 95 111Børge G Nordestgaard 95 111Jose M Ordovas 130 131 132Roxana Mehran 19Christoper J O'Donnell 100 40Marju Orho-Melander 126Cliona M Molony 133Pieter Muntendam 134Sandosh Padmanabhan 54Colin N A Palmer 45Dorota Pasko 69Aniruddh P Patel 3 11 40 135Oluf Pedersen 28Markus Perola 101 136Annette Peters 74 76 129Charlotta Pisinger 115Giorgio Pistis 33Ozren Polasek 137 138Neil Poulter 139Bruce M Psaty 24 140 141Daniel J Rader 142Asif Rasheed 10Rainer Rauramaa 108 109Dermot F Reilly 133Alex P Reiner 105 143Frida Renström 66 144Stephen S Rich 120Paul M Ridker 39John D Rioux 55Neil R Robertson 8 97Dan M Roden 52 53Jerome I Rotter 42Igor Rudan 138Veikko Salomaa 101Nilesh J Samani 123 124Serena Sanna 33Naveed Sattar 54 97Ellen M Schmidt 145Robert A Scott 110Peter Sever 139Raquel S Sevilla 146Christian M Shaffer 53Xueling Sim 25 147Suthesh Sivapalaratnam 148Kerrin S Small 149Albert V Smith 59 80Blair H Smith 150 151Sangeetha Somayajula 152Lorraine Southam 8 153Timothy D Spector 149Elizabeth K Speliotes 145 154John M Starr 49 155Kathleen E Stirrups 96 156Nathan Stitziel 157 158Konstantin Strauch 159 160Heather M Stringham 25Praveen Surendran 5Hayato Tada 161Alan R Tall 162Hua Tang 163Jean-Claude Tardif 55 57Kent D Taylor 42Stella Trompet 93 164Philip S Tsao 16 17Jaakko Tuomilehto 165 166 167 168Anne Tybjaerg-Hansen 22 23Natalie R van Zuydam 8 45Anette Varbo 95 111Tibor V Varga 66Jarmo Virtamo 101Melanie Waldenberger 75 76 129Nan Wang 162Nick J Wareham 110Helen R Warren 32 35Peter E Weeke 53 169Joshua Weinstock 25Jennifer Wessel 170 171James G Wilson 172Peter W F Wilson 173 174Ming Xu 175Hanieh Yaghootkar 69Robin Young 5Eleftheria Zeggini 153He Zhang 41Neil S Zheng 176Weihua Zhang 36Yan Zhang 87Wei Zhou 145Yanhua Zhou 2Magdalena Zoledziewska 33Charge Diabetes Working GroupEPIC-InterAct ConsortiumEPIC-CVD ConsortiumGOLD ConsortiumVA Million Veteran ProgramJoanna M M Howson 5John Danesh 5 6 153Mark I McCarthy 8 97 98Chad A Cowan 4 177Goncalo Abecasis 25Panos Deloukas 96 178Kiran Musunuru 7Cristen J Willer 41 71 145Sekar Kathiresan 3 11 40 135

Affiliations

01 December 2017

-

doi: 10.1038/ng.3977


Abstract

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.


References

  1.  
    1. Loh PR, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47:284–90. - PMC - PubMed
  2.  
    1. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13. - PMC - PubMed
  3.  
    1. Asselbergs FW, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet. 2012;91:823–38. - PMC - PubMed
  4.  
    1. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83. - PMC - PubMed
  5.  
    1. Albrechtsen A, et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia. 2013;56:298–310. - PMC - PubMed
  6.  
    1. Peloso GM, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. American Journal of Human Genetics. 2014;94:223–232. - PMC - PubMed
  7.  
    1. Surakka I, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47:589–97. - PMC - PubMed
  8.  
    1. Tang CS, et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat Commun. 2015;6:10206. - PMC - PubMed
  9.  
    1. Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9. - PMC - PubMed
  10.  
    1. Burkhardt R, et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010;120:4410–4. - PMC - PubMed
  11.  
    1. Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80. - PMC - PubMed
  12.  
    1. Do R, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52. - PMC - PubMed
  13.  
    1. Lu X, et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants contributing to lipid levels and coronary artery disease. Nature Genetics. 2017 - PMC - PubMed
  14.  
    1. Feng S, Liu D, Zhan X, Wing MK, Abecasis GR. RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics. 2014;30:2828–9. - PMC - PubMed
  15.  
    1. Liu DJ, et al. Meta-analysis of gene-level tests for rare variant association. Nat Genet. 2014;46:200–4. - PMC - PubMed
  16.  
    1. Locke AE, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. - PMC - PubMed
  17.  
    1. Holmen OL, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46:345–51. - PMC - PubMed
  18.  
    1. Klarin D et al. Genetics of lipids in >300,000 participants in the Million Veteran Program. Under Review
  19.  
    1. Shen X, et al. Identification of genes affecting apolipoprotein B secretion following siRNA-mediated gene knockdown in primary human hepatocytes. Atherosclerosis. 2012;222:154–7. - PubMed
  20.  
    1. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61. - PubMed
  21.  
    1. James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8. - PubMed
  22.  
    1. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90. - PubMed
  23.  
    1. Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97. - PubMed
  24.  
    1. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. - PMC - PubMed
  25.  
    1. Jaiswal S, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–121. - PMC - PubMed
  26.  
    1. Mullally A, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96. - PMC - PubMed
  27.  
    1. Lellek H, et al. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J Biol Chem. 2000;275:19848–56. - PubMed
  28.  
    1. Mehta A, Kinter MT, Sherman NE, Driscoll DM. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol. 2000;20:1846–54. - PMC - PubMed
  29.  
    1. Galloway CA, Ashton J, Sparks JD, Mooney RA, Smith HC. Metabolic regulation of APOBEC-1 complementation factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes. Biochim Biophys Acta. 2010;1802:976–85. - PMC - PubMed
  30.  
    1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11. - PMC - PubMed
  31.  
    1. Fessas P, Stamatoyannopoulos G, Keys A. Serum-cholesterol and thalassemia trait. Lancet. 1963;1:1182–3. - PubMed
  32.  
    1. Sidore C, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47:1272–81. - PMC - PubMed
  33.  
    1. Chen W, et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A. 2010;107:7401–6. - PMC - PubMed
  34.  
    1. Neale BM, et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC) Proc Natl Acad Sci U S A. 2010;107:7395–400. - PMC - PubMed
  35.  
    1. Wang YF, et al. CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration. Sci Rep. 2015;5:15711. - PMC - PubMed
  36.  
    1. Cheng CY, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015;6:6063. - PMC - PubMed
  37.  
    1. Momozawa Y, et al. Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related macular degeneration in the Japanese population. Hum Mol Genet. 2016;25:5027–5034. - PubMed
  38.  
    1. Lotta LA, et al. Association between low-Density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: A meta-analysis. JAMA. 2016;316:1383–1391. - PMC - PubMed
  39.  
    1. Schmidt AF, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2016 - PMC - PubMed
  40.  
    1. Ference BA, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–2153. - PubMed
  41.  
    1. Mahajan A, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. bioRxiv. 2017 - PMC - PubMed
  42.  
    1. Myocardial Infarction Genetics & CARDIoGRAM Exome Consortia Investigators. Coding variation in ANGPTL4, LPL, SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374:1134–44. - PMC - PubMed
  43.  
    1. Goldstein JI, et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics. 2012;28:2543–5. - PMC - PubMed
  44.  
    1. Grove ML, et al. Best practices and joint calling of the HumanExome BeadChip: The CHARGE Consortium. PLoS One. 2013;8:e68095. - PMC - PubMed
  45.  
    1. Tennessen JA, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9. - PMC - PubMed
  46.  
    1. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. - PMC - PubMed
  47.  
    1. Zhan X, Liu DJ. SEQMINER: An R-Package to Facilitate the Functional Interpretation of Sequence-Based Associations. Genet Epidemiol. 2015;39:619–23. - PMC - PubMed
  48.  
    1. Fritsche LG, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:134–43. - PMC - PubMed
  49.  
    1. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90. - PMC - PubMed
  50.  
    1. Gaulton KJ, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25. - PMC - PubMed
  51.  
    1. Fuchsberger C, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7. - PMC - PubMed
  52.  
    1. The UK Biobank. Genotyping and quality control of UK Biobank, a large-scale, extensively phenotyped prospective resource. 2015 http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotypi....
  53.  
    1. Speliotes EK, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324. - PMC - PubMed
  54.  
    1. Baber U, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65:1065–74. - PubMed