Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization

Affiliations


Abstract

Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.

Conflict of interest statement

The authors have declared that no competing interests exist.


Figures


Similar articles

Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

Martin L, Magnaudeix A, Esclaire F, Yardin C, Terro F.Brain Res. 2009 Feb 3;1252:66-75. doi: 10.1016/j.brainres.2008.11.057. Epub 2008 Nov 30.PMID: 19071093

Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance.

Jiang T, Yu JT, Zhu XC, Zhang QQ, Cao L, Wang HF, Tan MS, Gao Q, Qin H, Zhang YD, Tan L.Neuropharmacology. 2014 Oct;85:121-30. doi: 10.1016/j.neuropharm.2014.05.032. Epub 2014 May 29.PMID: 24880087

Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors.

Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, Mouginot D, Lévesque G, Hébert SS, Planel E.Sci Rep. 2012;2:480. doi: 10.1038/srep00480. Epub 2012 Jun 29.PMID: 22761989 Free PMC article.

Physiology and pathology of tau protein kinases in relation to Alzheimer's disease.

Imahori K, Uchida T.J Biochem. 1997 Feb;121(2):179-88.PMID: 9089387 Review.

Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders.

Kaur P, Khera A, Alajangi HK, Sharma A, Jaiswal PK, Singh G, Barnwal RP.Mol Neurobiol. 2023 Mar;60(3):1690-1720. doi: 10.1007/s12035-022-03164-z. Epub 2022 Dec 23.PMID: 36562884 Review.


Cited by

Neurobiochemical, Peptidomic, and Bioinformatic Approaches to Characterize Tauopathy Peptidome Biomarker Candidates in Experimental Mouse Model of Traumatic Brain Injury.

Yadikar H, Johnson C, Pafundi N, Nguyen L, Kurup M, Torres I, Al-Enezy A, Yang Z, Yost R, Kobeissy FH, Wang KKW.Mol Neurobiol. 2023 Apr;60(4):2295-2319. doi: 10.1007/s12035-022-03165-y. Epub 2023 Jan 13.PMID: 36635478

CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders.

Baier A, Szyszka R.Front Mol Biosci. 2022 Oct 6;9:916063. doi: 10.3389/fmolb.2022.916063. eCollection 2022.PMID: 36275622 Free PMC article. Review.

Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease.

White A, McGlone A, Gomez-Pastor R.Biomedicines. 2022 Aug 15;10(8):1979. doi: 10.3390/biomedicines10081979.PMID: 36009526 Free PMC article. Review.

Glimepiride mitigates tauopathy and neuroinflammation in P301S transgenic mice: role of AKT/GSK3β signaling.

Zaki MO, El-Desouky S, Elsherbiny DA, Salama M, Azab SS.Inflammopharmacology. 2022 Oct;30(5):1871-1890. doi: 10.1007/s10787-022-01023-w. Epub 2022 Aug 3.PMID: 35922737 Free PMC article.

Unveiling the Multitarget Anti-Alzheimer Drug Discovery Landscape: A Bibliometric Analysis.

Sampietro A, Pérez-Areales FJ, Martínez P, Arce EM, Galdeano C, Muñoz-Torrero D.Pharmaceuticals (Basel). 2022 Apr 28;15(5):545. doi: 10.3390/ph15050545.PMID: 35631371 Free PMC article.


KMEL References


References

  1.  
    1. Sparks P, Lawrence T, Hinze S. Neuroimaging in the Diagnosis of Chronic Traumatic Encephalopathy: A Systematic Review. Clin J Sport Med. 2017. Epub 2017/10/25. 10.1097/JSM.0000000000000541 . - DOI - PubMed
  2.  
    1. Panza F, Imbimbo BP, Lozupone M, Greco A, Seripa D, Logroscino G, et al. Disease-modifying therapies for tauopathies: agents in the pipeline. Expert Rev Neurother. 2019. Epub 2019/04/12. 10.1080/14737175.2019.1606715 . - DOI - PubMed
  3.  
    1. Mohamed AZ, Cumming P, Gotz J, Nasrallah F, Department of Defense Alzheimer's Disease Neuroimaging I. Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury. Eur J Nucl Med Mol Imaging. 2019;46(5):1139–51. Epub 2019/01/09. 10.1007/s00259-018-4241-7 - DOI - PMC - PubMed
  4.  
    1. Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of Tau Imaging in Staging Alzheimer Disease and Revealing Interactions Between beta-Amyloid and Tauopathy. JAMA Neurol. 2016;73(9):1070–7. Epub 2016/07/28. 10.1001/jamaneurol.2016.2078 - DOI - PMC - PubMed
  5.  
    1. Besser LM, Mock C, Teylan MA, Hassenstab J, Kukull WA, Crary JF. Differences in Cognitive Impairment in Primary Age-Related Tauopathy Versus Alzheimer Disease. J Neuropathol Exp Neurol. 2019. Epub 2019/02/05. 10.1093/jnen/nly132 - DOI - PMC - PubMed
  6.  
    1. Pir GJ, Choudhary B, Mandelkow E. models of tauopathy. FASEB J. 2017;31(12):5137–48. 10.1096/fj.201701007 . - DOI - PubMed
  7.  
    1. Perrine K, Helcer J, Tsiouris AJ, Pisapia DJ, Stieg P. The Current Status of Research on Chronic Traumatic Encephalopathy. World Neurosurg. 2017;102:533–44. Epub 2017/02/27. 10.1016/j.wneu.2017.02.084 . - DOI - PubMed
  8.  
    1. Kovacs GG. Tauopathies. Handb Clin Neurol. 2017;145:355–68. 10.1016/B978-0-12-802395-2.00025-0 . - DOI - PubMed
  9.  
    1. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 1986;387(3):271–80. Epub 1986/12/01. 10.1016/0169-328x(86)90033-1 . - DOI - PubMed
  10.  
    1. Avila J, Jiménez JS, Sayas CL, Bolós M, Zabala JC, Rivas G, et al. Tau Structures. Front Aging Neurosci. 2016;8:262 Epub 2016/11/08. 10.3389/fnagi.2016.00262 - DOI - PMC - PubMed
  11.  
    1. Lee G, Leugers CJ. Tau and Tauopathies. Prog Mol Biol Transl Sci. 2012;107:263–93. 10.1016/B978-0-12-385883-2.00004-7 - DOI - PMC - PubMed
  12.  
    1. Goedert M, Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J. 1990;9(13):4225–30. Epub 1990/12/01. - PMC - PubMed
  13.  
    1. Liu C, Gotz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS One. 2013;8(12):e84849 Epub 2014/01/05. 10.1371/journal.pone.0084849 - DOI - PMC - PubMed
  14.  
    1. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67(6):953–66. Epub 2010/09/28. 10.1016/j.neuron.2010.08.044 - DOI - PMC - PubMed
  15.  
    1. Huseby CJ, Hoffman CN, Cooper GL, Cocuron JC, Alonso AP, Thomas SN, et al. Quantification of Tau Protein Lysine Methylation in Aging and Alzheimer's Disease. J Alzheimers Dis. 2019;71(3):979–91. Epub 2019/08/28. 10.3233/JAD-190604 - DOI - PMC - PubMed
  16.  
    1. Funk KE, Thomas SN, Schafer KN, Cooper GL, Liao Z, Clark DJ, et al. Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem J. 2014;462(1):77–88. Epub 2014/05/30. 10.1042/BJ20140372 - DOI - PMC - PubMed
  17.  
    1. Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int. 2011;58(4):458–71. Epub 2011/01/11. 10.1016/j.neuint.2010.12.023 . - DOI - PubMed
  18.  
    1. Guan PP, Yu X, Zou YH, Wang P. Cyclooxygenase-2 is critical for the propagation of beta-amyloid protein and reducing the glycosylation of tau in Alzheimer's disease. Cell Mol Immunol. 2019;16(11):892–4. Epub 2019/09/26. 10.1038/s41423-019-0294-1 - DOI - PMC - PubMed
  19.  
    1. Qin M, Li H, Bao J, Xia Y, Ke D, Wang Q, et al. SET SUMOylation promotes its cytoplasmic retention and induces tau pathology and cognitive impairments. Acta neuropathologica communications. 2019;7(1):21 Epub 2019/02/16. 10.1186/s40478-019-0663-0 - DOI - PMC - PubMed
  20.  
    1. Theendakara V, Bredesen DE, Rao RV. Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer's disease. Mol Cell Neurosci. 2017;83:83–91. Epub 2017/07/15. 10.1016/j.mcn.2017.07.002 . - DOI - PubMed
  21.  
    1. Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005;1739(2–3):280–97. 10.1016/j.bbadis.2004.06.017 . - DOI - PubMed
  22.  
    1. Ni R, Ji B, Ono M, Sahara N, Zhang MR, Aoki I, et al. Comparative in-vitro and in-vivo quantifications of pathological tau deposits and their association with neurodegeneration in tauopathy mouse models. J Nucl Med. 2018. Epub 2018/02/01. 10.2967/jnumed.117.201632 . - DOI - PubMed
  23.  
    1. Sahara N, Shimojo M, Ono M, Takuwa H, Febo M, Higuchi M, et al. Tau Imaging for a Diagnostic Platform of Tauopathy Using the rTg4510 Mouse Line. Front Neurol. 2017;8:663 Epub 2017/12/07. 10.3389/fneur.2017.00663 - DOI - PMC - PubMed
  24.  
    1. Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry. 2018;83(4):369–76. Epub 2017/06/13. 10.1016/j.biopsych.2017.06.004 - DOI - PMC - PubMed
  25.  
    1. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, et al. Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev. 2013;12(1):289–309. Epub 2012/06/30. 10.1016/j.arr.2012.06.003 . - DOI - PubMed
  26.  
    1. Rosenberger AF, Morrema TH, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, et al. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology. J Neuroinflammation. 2016;13:4 Epub 2016/01/06. 10.1186/s12974-015-0470-x - DOI - PMC - PubMed
  27.  
    1. Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J. 2017;36(21):3120–38. Epub 2017/09/01. 10.15252/embj.201797724 - DOI - PMC - PubMed
  28.  
    1. Liu W, Zhao J, Lu G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease. Biochem Biophys Res Commun. 2016;478(2):852–7. Epub 2016/08/09. 10.1016/j.bbrc.2016.08.037 . - DOI - PubMed
  29.  
    1. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77(6):953–71. Epub 2015/03/21. 10.1002/ana.24394 - DOI - PMC - PubMed
  30.  
    1. Dolan PJ, Johnson GV. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Devel. 2010;13(5):595–603. - PMC - PubMed
  31.  
    1. Bennett PC, Zhao W, Ng KT. Concentration-dependent effects of protein phosphatase (PP) inhibitors implicate PP1 and PP2A in different stages of memory formation. Neurobiology of learning and memory. 2001;75(1):91–110. Epub 2000/12/22. 10.1006/nlme.1999.3959 . - DOI - PubMed
  32.  
    1. Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Abeta42-Induced Tau Toxicity. PLoS Genet. 2016;12(3):e1005917 Epub 2016/03/31. 10.1371/journal.pgen.1005917 - DOI - PMC - PubMed
  33.  
    1. Gerson JE, Farmer KM, Henson N, Castillo-Carranza DL, Carretero Murillo M, Sengupta U, et al. Tau oligomers mediate alpha-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener. 2018;13(1):13 Epub 2018/03/17. 10.1186/s13024-018-0245-9 - DOI - PMC - PubMed
  34.  
    1. Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis. 2018;61(2):487–508. Epub 2017/12/28. 10.3233/JAD-170187 . - DOI - PubMed
  35.  
    1. Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018;18(2):165–80. Epub 2018/01/23. 10.1080/14737159.2018.1428089 . - DOI - PMC - PubMed
  36.  
    1. Aldag M, Armstrong RC, Bandak F, Bellgowan PSF, Bentley T, Biggerstaff S, et al. The Biological Basis of Chronic Traumatic Encephalopathy following Blast Injury: A Literature Review. J Neurotrauma. 2017;34(S1):S26–S43. 10.1089/neu.2017.5218 - DOI - PMC - PubMed
  37.  
    1. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, et al. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy. Immunotherapy. 2016;8(9):1119–34. 10.2217/imt-2016-0019 . - DOI - PubMed
  38.  
    1. Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andrés MV, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29(4):470–8. Epub 2014/02/14. 10.1002/mds.25824 . - DOI - PubMed
  39.  
    1. Georgievska B, Sandin J, Doherty J, Mörtberg A, Neelissen J, Andersson A, et al. AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J Neurochem. 2013;125(3):446–56. Epub 2013/03/11. 10.1111/jnc.12203 . - DOI - PubMed
  40.  
    1. Ludolph AC, Kassubek J, Landwehrmeyer BG, Mandelkow E, Mandelkow EM, Burn DJ, et al. Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur J Neurol. 2009;16(3):297–309. 10.1111/j.1468-1331.2008.02513.x - DOI - PMC - PubMed
  41.  
    1. Medina M. An Overview on the Clinical Development of Tau-Based Therapeutics. Int J Mol Sci. 2018;19(4). Epub 2018/04/12. 10.3390/ijms19041160 - DOI - PMC - PubMed
  42.  
    1. Tell V, Hilgeroth A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front Cell Neurosci. 2013;7:189 Epub 2013/11/19. 10.3389/fncel.2013.00189 - DOI - PMC - PubMed
  43.  
    1. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 2005;102(19):6990–5. Epub 2005/05/04. 10.1073/pnas.0500466102 - DOI - PMC - PubMed
  44.  
    1. Llorens-Martin M, Jurado J, Hernandez F, Avila J. GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014;7:46 Epub 2014/06/07. 10.3389/fnmol.2014.00046 - DOI - PMC - PubMed
  45.  
    1. Medina M, Garrido JJ, Wandosell FG. Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Front Mol Neurosci. 2011;4:24 Epub 2011/10/19. 10.3389/fnmol.2011.00024 - DOI - PMC - PubMed
  46.  
    1. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14(7):399–415. Epub 2018/06/14. 10.1038/s41582-018-0013-z - DOI - PMC - PubMed
  47.  
    1. Bhat RV, Andersson U, Andersson S, Knerr L, Bauer U, Sundgren-Andersson AK. The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning? J Alzheimers Dis. 2018;64(s1):S547–S54. Epub 2018/05/16. 10.3233/JAD-179934 . - DOI - PubMed
  48.  
    1. Mathuram TL, Reece LM, Cherian KM. GSK-3 Inhibitors: A Double-Edged Sword?—An Update on Tideglusib. Drug Res (Stuttg). 2018;68(8):436–43. Epub 2018/02/02. 10.1055/s-0044-100186 . - DOI - PubMed
  49.  
    1. Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ, et al. A phase II trial of tideglusib in Alzheimer's disease. J Alzheimers Dis. 2015;45(1):75–88. Epub 2014/12/30. 10.3233/JAD-141959 . - DOI - PubMed
  50.  
    1. Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, et al. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem. 2010;285(40):30851–60. Epub 2010/07/27. 10.1074/jbc.M110.110957 - DOI - PMC - PubMed
  51.  
    1. Simic G, Babic Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milosevic N, et al. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules. 2016;6(1):6 Epub 2016/01/12. 10.3390/biom6010006 - DOI - PMC - PubMed
  52.  
    1. Rabano A, Cuadros R, Merino-Serrais P, Rodal I, Benavides-Piccione R, Gomez E, et al. Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease. Methods Mol Biol. 2016;1303:143–60. Epub 2015/08/04. 10.1007/978-1-4939-2627-5_7 . - DOI - PubMed
  53.  
    1. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15(23):2321–8. Epub 2008/10/16. 10.2174/092986708785909111 - DOI - PMC - PubMed
  54.  
    1. Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front Mol Neurosci. 2014;7:16 Epub 2014/03/22. 10.3389/fnmol.2014.00016 - DOI - PMC - PubMed
  55.  
    1. Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci U S A. 2006;103(25):9673–8. Epub 2006/06/14. 10.1073/pnas.0602913103 - DOI - PMC - PubMed
  56.  
    1. Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK, et al. Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience. 2013;238:97–113. Epub 2013/02/13. 10.1016/j.neuroscience.2013.01.075 . - DOI - PubMed
  57.  
    1. Ho YS, Yang X, Lau JC, Hung CH, Wuwongse S, Zhang Q, et al. Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer's disease pathogenesis. J Alzheimers Dis. 2012;28(4):839–54. 10.3233/JAD-2011-111037 . - DOI - PubMed
  58.  
    1. Jones NC, Nguyen T, Corcoran NM, Velakoulis D, Chen T, Grundy R, et al. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis. 2012;45(3):897–901. Epub 2011/12/11. 10.1016/j.nbd.2011.12.005 . - DOI - PubMed
  59.  
    1. Broetto N, Hansen F, Brolese G, Batassini C, Lirio F, Galland F, et al. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation. Brain Res Bull. 2016;124:136–43. Epub 2016/04/21. 10.1016/j.brainresbull.2016.04.014 . - DOI - PubMed
  60.  
    1. Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett. 2001;507(1):81–7. Epub 2001/10/30. 10.1016/s0014-5793(01)02944-1 . - DOI - PubMed
  61.  
    1. Baker S, Gotz J. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta neuropathologica communications. 2016;4:32 Epub 2016/04/03. 10.1186/s40478-016-0300-0 - DOI - PMC - PubMed
  62.  
    1. Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988;256(1):283–90. 10.1042/bj2560283 - DOI - PMC - PubMed
  63.  
    1. Swingle M, Ni L, Honkanen RE. Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol. 2007;365:23–38. Epub 2007/01/04. 10.1385/1-59745-267-X:23 - DOI - PMC - PubMed
  64.  
    1. Amundsen R, Asberg A, Ohm IK, Christensen H. Cyclosporine A- and tacrolimus-mediated inhibition of CYP3A4 and CYP3A5 in vitro. Drug Metab Dispos. 2012;40(4):655–61. Epub 2011/12/30. 10.1124/dmd.111.043018 . - DOI - PubMed
  65.  
    1. Serkova N, Brand A, Christians U, Leibfritz D. Evaluation of the effects of immunosuppressants on neuronal and glial cells in vitro by multinuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1996;1314(1–2):93–104. Epub 1996/11/08. 10.1016/s0167-4889(96)00081-x . - DOI - PubMed
  66.  
    1. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem. 2003;278(35):33067–77. Epub 2003/06/11. 10.1074/jbc.M212635200 . - DOI - PubMed
  67.  
    1. Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001;280(3):720–5. Epub 2001/02/13. 10.1006/bbrc.2000.4169 . - DOI - PubMed
  68.  
    1. Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003;278(46):45937–45. Epub 2003/08/21. 10.1074/jbc.M306268200 . - DOI - PubMed
  69.  
    1. Prabhakaran J, Zanderigo F, Solingapuram Sai KK, Rubin-Falcone H, Jorgensen MJ, Kaplan JR, et al. Radiosynthesis and in Vivo Evaluation of [11C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain. ACS Chem Neurosci. 2017;8(8):1697–703. 10.1021/acschemneuro.6b00376 - DOI - PMC - PubMed
  70.  
    1. Prabhakaran J, Zanderigo F, Sai KKS, Rubin-Falcone H, Jorgensen MJ, Kaplan JR, et al. Radiosynthesis and in Vivo Evaluation of [ACS Chem Neurosci. 2017;8(8):1697–703. Epub 2017/05/17. 10.1021/acschemneuro.6b00376 - DOI - PMC - PubMed
  71.  
    1. Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, et al. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987;142(2):436–40. Epub 1987/01/30. 10.1016/0006-291x(87)90293-2 . - DOI - PubMed
  72.  
    1. Ruegg UT, Burgess GM. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends in pharmacological sciences. 1989;10(6):218–20. Epub 1989/06/01. 10.1016/0165-6147(89)90263-0 . - DOI - PubMed
  73.  
    1. Thuret G, Chiquet C, Herrag S, Dumollard JM, Boudard D, Bednarz J, et al. Mechanisms of staurosporine induced apoptosis in a human corneal endothelial cell line. Br J Ophthalmol. 2003;87(3):346–52. Epub 2003/02/25. 10.1136/bjo.87.3.346 - DOI - PMC - PubMed
  74.  
    1. Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Molecular oncology. 2009;3(3):248–61. Epub 2009/04/28. 10.1016/j.molonc.2009.01.002 - DOI - PMC - PubMed
  75.  
    1. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. European journal of biochemistry. 1997;243(1–2):527–36. Epub 1997/01/15. 10.1111/j.1432-1033.1997.t01-2-00527.x . - DOI - PubMed
  76.  
    1. Rubenstein R, Sharma DR, Chang B, Oumata N, Cam M, Vaucelle L, et al. Novel Mouse Tauopathy Model for Repetitive Mild Traumatic Brain Injury: Evaluation of Long-Term Effects on Cognition and Biomarker Levels After Therapeutic Inhibition of Tau Phosphorylation. Front Neurol. 2019;10:124 Epub 2019/03/28. 10.3389/fneur.2019.00124 - DOI - PMC - PubMed
  77.  
    1. Zhao Z, Wang L, Volk AG, Birch NW, Stoltz KL, Bartom ET, et al. Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia. Genes Dev. 2019;33(1–2):61–74. Epub 2018/12/24. 10.1101/gad.319830.118 - DOI - PMC - PubMed
  78.  
    1. Segura-Egea JJ, Jimenez-Rubio A, Rios-Santos JV, Velasco-Ortega E, Calvo-Gutierrez JR. In vitro inhibitory effect of EGTA on macrophage adhesion: endodontic implications. Journal of endodontics. 2003;29(3):211–3. Epub 2003/04/03. 10.1097/00004770-200303000-00012 . - DOI - PubMed
  79.  
    1. Knaryan VH, Samantaray S, Park S, Azuma M, Inoue J, Banik NL. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone. J Neurochem. 2014;130(2):280–90. Epub 2013/12/18. 10.1111/jnc.12629 - DOI - PMC - PubMed
  80.  
    1. Henzing AJ, Dodson H, Reid JM, Kaufmann SH, Baxter RL, Earnshaw WC. Synthesis of novel caspase inhibitors for characterization of the active caspase proteome in vitro and in vivo. J Med Chem. 2006;49(26):7636–45. Epub 2006/12/22. 10.1021/jm060385h - DOI - PMC - PubMed
  81.  
    1. Chopra P, Gupta S, Dastidar SG, Ray A. Development of cell death-based method for the selectivity screening of caspase-1 inhibitors. Cytotechnology. 2009;60(1–3):77 Epub 2009/08/06. 10.1007/s10616-009-9217-9 - DOI - PMC - PubMed
  82.  
    1. Goedert M, Jakes R, Vanmechelen E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett. 1995;189(3):167–9. Epub 1995/04/21. 10.1016/0304-3940(95)11484-e . - DOI - PubMed
  83.  
    1. Strang KH, Goodwin MS, Riffe C, Moore BD, Chakrabarty P, Levites Y, et al. Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau. Acta neuropathologica communications. 2017;5(1):58 Epub 2017/08/02. 10.1186/s40478-017-0458-0 - DOI - PMC - PubMed
  84.  
    1. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, et al. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem J. 1994;301 (Pt 3):871–7. Epub 1994/08/01. 10.1042/bj3010871 - DOI - PMC - PubMed
  85.  
    1. Ercan E, Eid S, Weber C, Kowalski A, Bichmann M, Behrendt A, et al. A validated antibody panel for the characterization of tau post-translational modifications. Mol Neurodegener. 2017;12(1):87 Epub 2017/11/22. 10.1186/s13024-017-0229-1 - DOI - PMC - PubMed
  86.  
    1. d'Abramo C, Acker CM, Schachter JB, Terracina G, Wang X, Forest SK, et al. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment. Neurobiology of aging. 2016;37:58–65. Epub 2015/10/29. 10.1016/j.neurobiolaging.2015.09.017 - DOI - PMC - PubMed
  87.  
    1. Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, Hebert SS, et al. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions. PLoS One. 2014;9(5):e94251 Epub 2014/05/03. 10.1371/journal.pone.0094251 - DOI - PMC - PubMed
  88.  
    1. Acker CM, Forest SK, Zinkowski R, Davies P, d'Abramo C. Sensitive quantitative assays for tau and phospho-tau in transgenic mouse models. Neurobiology of aging. 2013;34(1):338–50. Epub 2012/06/26. 10.1016/j.neurobiolaging.2012.05.010 - DOI - PMC - PubMed
  89.  
    1. Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1970;65(1):129–36. Epub 1970/01/01. 10.1073/pnas.65.1.129 - DOI - PMC - PubMed
  90.  
    1. Pacifici M, Peruzzi F. Isolation and culture of rat embryonic neural cells: a quick protocol. J Vis Exp. 2012;(63):e3965 Epub 2012/06/06. 10.3791/3965 - DOI - PMC - PubMed
  91.  
    1. Boban M, Babic Leko M, Miskic T, Hof PR, Simic G. Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species. J Neurosci Methods. 2019;319:60–8. Epub 2018/10/03. 10.1016/j.jneumeth.2018.09.030 - DOI - PMC - PubMed
  92.  
    1. Shen XY, Luo T, Li S, Ting OY, He F, Xu J, et al. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+‑calpain‑p25‑CDK5 pathway in HT22 cells. Int J Mol Med. 2018;41(2):1138–46. Epub 2017/11/22. 10.3892/ijmm.2017.3281 . - DOI - PubMed
  93.  
    1. Zhang Z, Simpkins JW. An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res. 2010;1359:233–46. Epub 2010/09/03. 10.1016/j.brainres.2010.08.077 . - DOI - PMC - PubMed
  94.  
    1. Valdiglesias V, Prego-Faraldo MV, Pasaro E, Mendez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs. 2013;11(11):4328–49. Epub 2013/11/05. 10.3390/md11114328 - DOI - PMC - PubMed
  95.  
    1. Koumura A, Nonaka Y, Hyakkoku K, Oka T, Shimazawa M, Hozumi I, et al. A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience. 2008;157(2):309–18. Epub 2008/09/10. 10.1016/j.neuroscience.2008.09.007 . - DOI - PubMed
  96.  
    1. Drognitz O, Obermaier R, Liu X, Neeff H, von Dobschuetz E, Hopt UT, et al. Effects of organ preservation, ischemia time and caspase inhibition on apoptosis and microcirculation in rat pancreas transplantation. Am J Transplant. 2004;4(7):1042–50. Epub 2004/06/16. 10.1111/j.1600-6143.2004.00457.x . - DOI - PubMed
  97.  
    1. Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, et al. Degradation of betaII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol Neurobiol. 2015;52(1):696–709. Epub 2014/10/02. 10.1007/s12035-014-8898-z - DOI - PMC - PubMed
  98.  
    1. Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, et al. αII-Spectrin Breakdown Products (SBDPs): Diagnosis and Outcome in Severe Traumatic Brain Injury Patients. J Neurotrauma. 2010;27(7):1203–13. 10.1089/neu.2010.1278 . - DOI - PMC - PubMed
  99.  
    1. Espinoza M, de Silva R, Dickson DW, Davies P. Differential incorporation of tau isoforms in Alzheimer's disease. J Alzheimers Dis. 2008;14(1):1–16. Epub 2008/06/06. 10.3233/jad-2008-14101 - DOI - PMC - PubMed
  100.  
    1. Khélifa T, Beck WT. Induction of apoptosis by dexrazoxane (ICRF-187) through caspases in the absence of c-jun expression and c-Jun NH2-terminal kinase 1 (JNK1) activation in VM-26-resistant CEM cells. Biochem Pharmacol. 1999;58(8):1247–57. 10.1016/s0006-2952(99)00213-0 . - DOI - PubMed
  101.  
    1. Iimoto DS, Masliah E, DeTeresa R, Terry RD, Saitoh T. Aberrant casein kinase II in Alzheimer's disease. Brain Res. 1990;507(2):273–80. Epub 1990/01/22. 10.1016/0006-8993(90)90282-g . - DOI - PubMed
  102.  
    1. Toledo FD, Pérez LM, Basiglio CL, Ochoa JE, Sanchez Pozzi EJ, Roma MG. The Ca2⁺-calmodulin-Ca2⁺/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes. Arch Toxicol. 2014;88(9):1695–709. Epub 2014/03/11. 10.1007/s00204-014-1219-5 . - DOI - PubMed
  103.  
    1. Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci U S A. 1999;96(5):2435–8. 10.1073/pnas.96.5.2435 - DOI - PMC - PubMed
  104.  
    1. Tapley P, Lamballe F, Barbacid M. K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene. 1992;7(2):371–81. Epub 1992/02/01. . - PubMed
  105.  
    1. Zimmermann A, Keller H. Effects of staurosporine, K 252a and other structurally related protein kinase inhibitors on shape and locomotion of Walker carcinosarcoma cells. Br J Cancer. 1992;66(6):1077–82. Epub 1992/12/01. 10.1038/bjc.1992.413 - DOI - PMC - PubMed
  106.  
    1. Zhao L, Xiao Y, Wang XL, Pei J, Guan ZZ. Original Research: Influence of okadaic acid on hyperphosphorylation of tau and nicotinic acetylcholine receptors in primary neurons. Exp Biol Med (Maywood). 2016;241(16):1825–33. Epub 2016/05/13. 10.1177/1535370216650759 - DOI - PMC - PubMed
  107.  
    1. Hübinger G, Geis S, LeCorre S, Mühlbacher S, Gordon S, Fracasso RP, et al. Inhibition of PHF-like tau hyperphosphorylation in SH-SY5Y cells and rat brain slices by K252a. J Alzheimers Dis. 2008;13(3):281–94. 10.3233/jad-2008-13306 . - DOI - PubMed
  108.  
    1. Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, et al. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep. 2012;2:480 Epub 2012/06/29. 10.1038/srep00480 - DOI - PMC - PubMed
  109.  
    1. Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma. 2014;31(13):1129–38. Epub 2014/04/11. 10.1089/neu.2013.3303 - DOI - PMC - PubMed
  110.  
    1. Chen Y, Wang C, Hu M, Pan J, Chen J, Duan P, et al. Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells. Planta Med. 2012;78(12):1337–41. Epub 2012/06/14. 10.1055/s-0032-1314965 . - DOI - PubMed
  111.  
    1. Schlachetzki JC, Saliba SW, Oliveira AC. Studying neurodegenerative diseases in culture models. Rev Bras Psiquiatr. 2013;35 Suppl 2:S92-100. 10.1590/1516-4446-2013-1159 . - DOI - PubMed
  112.  
    1. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A. 1998;95(22):13103–7. Epub 1998/10/28. 10.1073/pnas.95.22.13103 - DOI - PMC - PubMed
  113.  
    1. Chen C, Shi Q, Zhang BY, Wang GR, Zhou W, Gao C, et al. The prepared tau exon-specific antibodies revealed distinct profiles of tau in CSF of the patients with Creutzfeldt-Jakob disease. PLoS One. 2010;5(7):e11886 Epub 2010/08/06. 10.1371/journal.pone.0011886 - DOI - PMC - PubMed
  114.  
    1. Voss K, Gamblin TC. GSK-3beta phosphorylation of functionally distinct tau isoforms has differential, but mild effects. Mol Neurodegener. 2009;4:18 Epub 2009/05/05. 10.1186/1750-1326-4-18 - DOI - PMC - PubMed
  115.  
    1. von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A. 2000;97(10):5129–34. 10.1073/pnas.97.10.5129 - DOI - PMC - PubMed
  116.  
    1. Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, et al. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci. 2007;25(10):3020–9. Epub 2007/06/15. 10.1111/j.1460-9568.2007.05555.x . - DOI - PubMed
  117.  
    1. Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, et al. Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. J Biol Chem. 2011;286(26):23063–76. Epub 2011/05/10. 10.1074/jbc.M111.237974 - DOI - PMC - PubMed
  118.  
    1. Makrides V, Shen TE, Bhatia R, Smith BL, Thimm J, Lal R, et al. Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J Biol Chem. 2003;278(35):33298–304. Epub 2003/06/14. 10.1074/jbc.M305207200 . - DOI - PubMed
  119.  
    1. Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R. Preparation and characterization of neurotoxic tau oligomers. Biochemistry. 2010;49(47):10039–41. Epub 2010/11/05. 10.1021/bi1016233 . - DOI - PubMed
  120.  
    1. Henkins KM, Sokolow S, Miller CA, Vinters HV, Poon WW, Cornwell LB, et al. Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer's cortical synapses. Brain Pathol. 2012;22(6):826–33. Epub 2012/04/11. 10.1111/j.1750-3639.2012.00598.x - DOI - PMC - PubMed
  121.  
    1. Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci. 2018;12:44 Epub 2018/02/23. 10.3389/fnins.2018.00044 - DOI - PMC - PubMed
  122.  
    1. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol. 2002;103(1):26–35. 10.1007/s004010100423 . - DOI - PubMed
  123.  
    1. Davis DR, Brion JP, Couck AM, Gallo JM, Hanger DP, Ladhani K, et al. The phosphorylation state of the microtubule-associated protein tau as affected by glutamate, colchicine and beta-amyloid in primary rat cortical neuronal cultures. Biochem J. 1995;309 (Pt 3):941–9. Epub 1995/08/01. 10.1042/bj3090941 - DOI - PMC - PubMed
  124.  
    1. Sarno S, Papinutto E, Franchin C, Bain J, Elliott M, Meggio F, et al. ATP site-directed inhibitors of protein kinase CK2: an update. Curr Top Med Chem. 2011;11(11):1340–51. 10.2174/156802611795589638 . - DOI - PubMed
  125.  
    1. Avila J, Ulloa L, González J, Moreno F, Díaz-Nido J. Phosphorylation of microtubule-associated proteins by protein kinase CK2 in neuritogenesis. Cell Mol Biol Res. 1994;40(5–6):573–9. . - PubMed
  126.  
    1. Greenwood JA, Scott CW, Spreen RC, Caputo CB, Johnson GV. Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J Biol Chem. 1994;269(6):4373–80. . - PubMed
  127.  
    1. Zhang Q, Xia Y, Wang Y, Shentu Y, Zeng K, Mahaman YAR, et al. CK2 Phosphorylating I2(PP2A)/SET Mediates Tau Pathology and Cognitive Impairment. Front Mol Neurosci. 2018;11:146 Epub 2018/05/16. 10.3389/fnmol.2018.00146 - DOI - PMC - PubMed
  128.  
    1. Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 2004;7(4):387–90. Epub 2004/07/26. 10.1017/S1461145704004535 . - DOI - PubMed
  129.  
    1. Orena SJ, Torchia AJ, Garofalo RS. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes. J Biol Chem. 2000;275(21):15765–72. Epub 2000/04/05. 10.1074/jbc.M910002199 . - DOI - PubMed
  130.  
    1. Fu ZQ, Yang Y, Song J, Jiang Q, Lin ZC, Wang Q, et al. LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3beta in vivo and in vitro. J Alzheimers Dis. 2010;21(4):1107–17. Epub 2010/01/01. 10.3233/jad-2010-100687 . - DOI - PubMed
  131.  
    1. Lee S, Shea TB. Regulation of tau proteolysis by phosphatases. Brain Res. 2013;1495:30–6. Epub 2012/11/15. 10.1016/j.brainres.2012.10.023 . - DOI - PubMed
  132.  
    1. Kramer T, Schmidt B, Lo Monte F. Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis. 2012;2012:381029 Epub 2012/08/14. 10.1155/2012/381029 - DOI - PMC - PubMed
  133.  
    1. Liu J, Yang J, Xu Y, Guo G, Cai L, Wu H, et al. Roscovitine, a CDK5 Inhibitor, Alleviates Sevoflurane-Induced Cognitive Dysfunction via Regulation Tau/GSK3beta and ERK/PPARgamma/CREB Signaling. Cell Physiol Biochem. 2017;44(2):423–35. Epub 2017/11/16. 10.1159/000485008 . - DOI - PubMed
  134.  
    1. Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Gotz J. Amyloid-beta and tau complexity—towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14(1):22–39. Epub 2017/12/16. 10.1038/nrneurol.2017.162 . - DOI - PubMed
  135.  
    1. Liu J, Farmer JD Jr., Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66(4):807–15. Epub 1991/09/02. 10.1016/0092-8674(91)90124-h . - DOI - PubMed
  136.  
    1. Wang Q, Wang J. Injection of bradykinin or cyclosporine A to hippocampus induces Alzheimer-like phosphorylation of Tau and abnormal behavior in rats. Chin Med J (Engl). 2002;115(6):884–7. Epub 2002/07/19. . - PubMed
  137.  
    1. Yu DY, Luo J, Bu F, Song GJ, Zhang LQ, Wei Q. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice. Biol Chem. 2006;387(7):977–83. Epub 2006/08/18. 10.1515/BC.2006.121 . - DOI - PubMed
  138.  
    1. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem. 2000;275(8):5535–44. Epub 2000/02/22. 10.1074/jbc.275.8.5535 . - DOI - PubMed