Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) protect the liver, (2) feed the gut, and (3) support the brain. The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a proof-of-concept. The key aim of our work is to not only make ultraprocessed food healthier but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.
RL is Chief Medical Officer of BioLumen Technologies, Kalin Health, Perfact, and Foogal, and a paid advisor for ReadOut Health, Levels Health, Simplex Health, and Myka Labs. AK is Chief Executive Officer of Perfact. PA is Executive Manager, Human and Environmental Health at KDD, and Chief Commercial Officer of Perfact. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S.Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.PMID: 36969097 Free PMC article. Review.
Wang L, Martínez Steele E, Du M, Pomeranz JL, O'Connor LE, Herrick KA, Luo H, Zhang X, Mozaffarian D, Zhang FF.JAMA. 2021 Aug 10;326(6):519-530. doi: 10.1001/jama.2021.10238.PMID: 34374722 Free PMC article.
Benziger CP, Roth GA, Moran AE. The global burden of disease study and the preventable burden of NCD. Glob Heart. (2016) 11:393–7. doi: 10.1016/j.gheart.2016.10.024 - DOI - PubMed
Davidson S, Litwin A, Peleg D, Erlich A. Are babies getting bigger? Secular trends in fetal growth in Israel–a retrospective hospital-based cohort study. Isr Med Assoc J. (2007) 9:649–51. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17939625 - PubMed
Ludwig DS, Rouse HL, Currie J. Pregnancy weight gain and childhood body weight: a within-family comparison. PLoS Med. (2013) 10:e1001521. doi: 10.1371/journal.pmed.1001521, PMID: - DOI - PMC - PubMed
Ulijaszek SJ. Secular trend in birthweight among the Purari delta population, Papua New Guinea. Ann Hum Biol. (2001) 28:246–55. doi: 10.1080/030144601300119061, PMID: - DOI - PubMed
Klimentidis YC, Beasley TM, Lin HY, Murati G, Glass GE, Guyton M, et al. . Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics. Proc Biol Sci. (2011) 278:1626–32. doi: 10.1098/rspb.2010.1890, PMID: - DOI - PMC - PubMed
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, et al. . Obesity II: establishing causal links between chemical exposures and obesity. Biochem Pharmacol. (2022) 199:115015. doi: 10.1016/j.bcp.2022.115015, PMID: - DOI - PMC - PubMed
Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diab Care. (1994) 17:961–9. doi: 10.2337/diacare.17.9.961, PMID: - DOI - PubMed
Iglesias Molli AE, Panero J, Dos Santos PC, González CD, Vilariño J, Sereday M, et al. . Metabolically healthy obese women have longer telomere length than obese women with metabolic syndrome. PLoS One. (2017) 12:e0174945. doi: 10.1371/journal.pone.0174945, PMID: - DOI - PMC - PubMed
O'Hearn M, Lauren BN, Wong JB, Kim DD, Mozaffarian D. Trends and disparities in cardiometabolic health among U.S. adults, 1999-2018. J Am Coll Cardiol. (2022) 80:138–51. doi: 10.1016/j.jacc.2022.04.046, PMID: - DOI - PubMed
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief. (2020) 360:1–8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32487284 - PubMed
Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG, Fielder PJ. The "little women of Loja"--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med. (1990) 323:1367–74. doi: 10.1056/NEJM199011153232002 - DOI - PubMed
Chehab FF. Obesity and lipodystrophy--where do the circles intersect? Endocrinology. (2008) 149:925–34. doi: 10.1210/en.2007-1355, PMID: - DOI - PMC - PubMed
Moubarac JC, Parra DC, Cannon G, Monteiro CA. Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep. (2014) 3:256–72. doi: 10.1007/s13679-014-0092-0, PMID: - DOI - PubMed
De Vogli R, Kouvonen A, Gimeno D. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis. Bull World Health Organ. (2014) 92:99–107. doi: 10.2471/blt.13.120287, PMID: - DOI - PMC - PubMed
Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, et al. . Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med. (2020) 180:283–91. doi: 10.1001/jamainternmed.2019.5942, PMID: - DOI - PMC - PubMed
Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. . Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ. (2019) 365:l1451. doi: 10.1136/bmj.l1451, PMID: - DOI - PMC - PubMed
Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. . Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. (2018) 360:k322. doi: 10.1136/bmj.k322, PMID: - DOI - PMC - PubMed
Li H, Li S, Yang H, Zhang Y, Zhang S, Ma Y, et al. . Association of ultraprocessed food consumption with risk of dementia: a prospective cohort. Neurology. (2022) 99:e1056–66. doi: 10.1212/wnl.0000000000200871, PMID: - DOI - PubMed
Hecht EM, Rabil A, Martinez Steele E, Abrams GA, Ware D, Landy DC, et al. . Cross-sectional examination of ultra-processed food consumption and adverse mental health symptoms. Public Health Nutr. (2022) 25:3225–34. doi: 10.1017/s1368980022001586, PMID: - DOI - PMC - PubMed
Schutte S, Esser D, Siebelink E, Michielsen CJR, Daanje M, Matualatupauw JC, et al. . Diverging metabolic effects of 2 energy-restricted diets differing in nutrient quality: a 12-week randomized controlled trial in subjects with abdominal obesity. Am J Clin Nutr. (2022) 116:132–50. doi: 10.1093/ajcn/nqac025, PMID: - DOI - PMC - PubMed
Lustig RH. Processed food — an experiment that failed. JAMA Pediatr. (2017) 171:212–4. doi: 10.1001/jamapediatrics.2016.4136, PMID: - DOI - PubMed
Lustig RH, Schmidt LA, Brindis CD. The toxic truth about sugar. Nature. (2012) 482:27–9. doi: 10.1038/482027a, PMID: - DOI - PubMed
Gustafson DI, Decker EA, Drewnowski A, Hamm MW, Hwang J, Merrigan KA. Making healthy, sustainable diets accessible and achievable: a new framework for assessing the nutrition, environmental, and equity impacts of packaged foods. Curr Dev Nutr. (2022) 6:nzac136. doi: 10.1093/cdn/nzac136, PMID: - DOI - PMC - PubMed
Gregori D, Ballali S, Vögele C, Gafare CE, Stefanini G, Widhalm K. Evaluating food front-of-pack labelling: a pan-European survey on consumers' attitudes toward food labelling. Int J Food Sci Nutr. (2014) 65:177–86. doi: 10.3109/09637486.2013.854743, PMID: - DOI - PubMed
Machín L, Aschemann-Witzel J, Curutchet MR, Giménez A, Ares G. Traffic light system can increase healthfulness perception: implications for policy making. J Nutr Educ Behav. (2018) 50:668–74. doi: 10.1016/j.jneb.2018.03.005, PMID: - DOI - PubMed
Vanderlee L, Franco-Arellano B, Ahmed M, Oh A, Lou W, L'Abbé MR. The efficacy of 'high in' warning labels, health star and traffic light front-of-package labelling: an online randomised control trial. Public Health Nutr. (2021) 24:62–74. doi: 10.1017/s1368980020003213, PMID: - DOI - PubMed
Katz DL, Njike VY, Rhee LQ, Reingold A, Ayoob KT. Performance characteristics of NuVal and the overall nutritional quality index (ONQI). Am J Clin Nutr. (2010) 91:S1102–8. doi: 10.3945/ajcn.2010.28450E, PMID: - DOI - PubMed
Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The U.N. decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. (2018) 21:5–17. doi: 10.1017/s1368980017000234, PMID: - DOI - PubMed
Kim SP, Ellmerer M, Van Citters GW, Bergman RN. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes. (2003) 52:2453–60. doi: 10.2337/diabetes.52.10.2453, PMID: - DOI - PubMed
Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. . Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. (2020) 11:571731. doi: 10.3389/fimmu.2020.571731, PMID: - DOI - PMC - PubMed
Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. . Role of brain insulin receptor in control of body weight and reproduction. Science. (2000) 289:2122–5. doi: 10.1126/science.289.5487.2122, PMID: - DOI - PubMed
Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. (2000) 342:1392–8. doi: 10.1056/nejm200005113421903, PMID: - DOI - PubMed
Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. (2018) 23:705–15. doi: 10.1016/j.chom.2018.05.012 - DOI - PubMed
Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. (2019) 393:434–45. doi: 10.1016/s0140-6736(18)31809-9 - DOI - PubMed
Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. . Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. (2019) 51:600–5. doi: 10.1038/s41588-019-0350-x, PMID: - DOI - PMC - PubMed
Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD, et al. . Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front Microbiol. (2021) 12:711359. doi: 10.3389/fmicb.2021.711359, PMID: - DOI - PMC - PubMed
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. (2021) 13:1–24. doi: 10.1080/19490976.2021.1897212, PMID: - DOI - PMC - PubMed
Van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. (2021) 29:700–12. doi: 10.1016/j.tim.2021.02.001 - DOI - PubMed
Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis of metabolic syndrome. Pediatrics. (2012) 129:557–70. doi: 10.1542/peds.2011-2912, PMID: - DOI - PMC - PubMed
Templeman NM, Skovsø S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol. (2017) 232:R173–83. doi: 10.1530/joe-16-0449 - DOI - PubMed
Lustig RH. Ultraprocessed food: addictive, toxic, and ready for regulation. Nutrients. (2020) 12:a3401. doi: 10.3390/nu12113401, PMID: - DOI - PMC - PubMed
Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. (2011) 93:950–62. doi: 10.3945/ajcn.110.006643, PMID: - DOI - PMC - PubMed
Albert BB, Derraik JG, Brennan CM. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci Rep. (2014) 4:6697. doi: 10.1038/srep06697, PMID: - DOI - PMC - PubMed
Hu Y, Hu FB, Manson JE. Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127,477 participants. J Am Heart Assoc. (2019) 8:e013543. doi: 10.1161/JAHA.119.013543, PMID: - DOI - PMC - PubMed
Avallone R, Vitale G, Bertolotti M. Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci.. (2019) 20:4256. doi: 10.3390/ijms20174256 - DOI - PMC - PubMed
Darcey L. Valerie *, Serafine M. Katherine. Omega-3 fatty acids and vulnerability to addiction: reviewing preclinical and clinical evidence. Current Pharmaceutical Design. (2020) 26. doi: 10.2174/1381612826666200429094158 - DOI - PubMed
Hakimian JK, Dong TS, Barahona JA, Lagishetty V, Tiwari S, Azani D, et al. . Dietary supplementation with omega-3 polyunsaturated fatty acids reduces opioid-seeking behaviors and alters the gut microbiome. Nutrients. (2019) 11:1900. doi: 10.3390/nu11081900, PMID: - DOI - PMC - PubMed
Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. (2015) 7:52. doi: 10.3389/fnagi.2015.00052, PMID: - DOI - PMC - PubMed
Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, et al. . Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry. (2016) 209:192–201. doi: 10.1192/bjp.bp.114.160242, PMID: - DOI - PMC - PubMed
Hibbeln JR, Gow RV. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids. Mil Med. (2014) 179:117–28. doi: 10.7205/milmed-d-14-00153, PMID: - DOI - PubMed
Renoir T, Hasebe K, Gray L. Mind and body: how the health of the body impacts on neuropsychiatry. Front Pharmacol. (2013) 4:158–8. doi: 10.3389/fphar.2013.00158, PMID: - DOI - PMC - PubMed
Barth J, Schumacher M, Herrmann-Lingen C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom Med. (2004) 66:802–13. doi: 10.1097/01.psy.0000146332.53619.b2 - DOI - PubMed
Bush DE, Ziegelstein RC, Patel UV, Thombs BD, Ford DE, Fauerbach JA, et al. . Post-myocardial infarction depression. Evid Rep Technol Assess (Summ). (2005) 123:1–8. - PMC - PubMed
Nemeroff CB, Musselman DL. Are platelets the link between depression and ischemic heart disease? Am Heart J. (2000) 140:S57–62. doi: 10.1067/mhj.2000.109978 - DOI - PubMed
DiNicolantonio JJ, O’Keefe JH. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart. (2018) 5:e000898. doi: 10.1136/openhrt-2018-000898, PMID: - DOI - PMC - PubMed
Simopoulos AP, Bourne PG, Faergeman O. Bellagio report on healthy agriculture, healthy nutrition, healthy people. Rev Panam Salud Publica. (2013) 33:230–6. doi: 10.1590/s1020-49892013000300010, PMID: - DOI - PubMed
Jones A, Neal B, Reeve B, Ni Mhurchu C, Thow AM. Front-of-pack nutrition labelling to promote healthier diets: current practice and opportunities to strengthen regulation worldwide. BMJ Glob Health. (2019) 4:e001882. doi: 10.1136/bmjgh-2019-001882, PMID: - DOI - PMC - PubMed
Mozaffarian D, El-Abbadi NH, O’Hearn M, Erndt-Marino J, Masters WA, Jacques P, et al. . Food compass is a nutrient profiling system using expanded characteristics for assessing healthfulness of foods. Nature Food. (2021) 2:809–18. doi: 10.1038/s43016-021-00381-y - DOI
Niewoehner CB, Neil B, Martin T. Hepatic uptake and metabolism of oral galactose in adult fasted rats. Am J Phys. (1990) 259:E804–13. doi: 10.1152/ajpendo.1990.259.6.E804, PMID: - DOI - PubMed
Menichetti G, Ravandi B, Mozaffarian D, Barabási A-L. Machine learning prediction of food processing. medRxiv. (2022). doi: 10.1101/2021.05.22.21257615 - DOI
Hercberg S, Touvier M, Salas-Salvado J. The Nutri-score nutrition label. Int J Vitamin Nutr Res. (2022) 92:147–57. doi: 10.1024/0300-9831/a000722 - DOI - PubMed
Mamudu HM, Yang JS, Novotny TE. U.N. resolution on the prevention and control of non-communicable diseases: an opportunity for global action. Glob Public Health. (2011) 6:347–53. doi: 10.1080/17441692.2011.574230 - DOI - PubMed
Gow RV, Hibbeln JR. Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child Adolesc Psychiatr Clin NA. (2014) 23:555–90. doi: 10.1016/j.chc.2014.02.002, PMID: - DOI - PMC - PubMed
Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol. (2017) 13:536–46. doi: 10.1038/nrendo.2017.51, PMID: - DOI - PubMed
Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. . Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. (2019) 30:67–77.e3. doi: 10.1016/j.cmet.2019.05.008, PMID: - DOI - PMC - PubMed
Softic S, Meyer JG, Wang G-X, Gupta MK, Batista TM, Lauritzen HPMM, et al. . Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. (2019) 30:735–753.e4. doi: 10.1016/j.cmet.2019.09.003, PMID: - DOI - PMC - PubMed
Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, et al. . Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. (2017) 153:743–52. doi: 10.1053/j.gastro.2017.05.043, PMID: - DOI - PMC - PubMed
Bong HY, Kim JY, Jeong HI, Moon MS, Kim J, Kwon O. Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet. Nutr Res Pract. (2010) 4:106–13. doi: 10.4162/nrp.2010.4.2.106, PMID: - DOI - PMC - PubMed
Méndez-García LA, Bueno-Hernández N, Cid-Soto MA, De León KL, Mendoza-Martínez VM, Espinosa-Flores AJ, et al. . Ten-week sucralose consumption induces gut dysbiosis and altered glucose and insulin levels in healthy young adults. Microorganisms. (2022) 10:434. doi: 10.3390/microorganisms10020434, PMID: - DOI - PMC - PubMed
Taneri PE, Wehrli F, Roa-Díaz ZM, Itodo OA, Salvador D, Raeisi-Dehkordi H, et al. . Association between ultra-processed food intake and all-cause mortality: a systematic review and meta-analysis. Am J Epidemiol. (2022) 191:1323–35. doi: 10.1093/aje/kwac039, PMID: - DOI - PubMed
Liese AD, Schulz M, Fang F, Wolever TM, D'Agostino RB, Jr, Sparks KC, et al. . Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the insulin resistance atherosclerosis study. Diabetes Care. (2005) 28:2832–8. doi: 10.2337/diacare.28.12.2832, PMID: - DOI - PubMed
Holmes ZC, Villa MM, Durand HK, Jiang S, Dallow EP, Petrone BL, et al. . Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome. (2022) 10:114. doi: 10.1186/s40168-022-01307-x, PMID: - DOI - PMC - PubMed
Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, et al. . Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. (2022) 162:743–56. doi: 10.1053/j.gastro.2021.11.006, PMID: - DOI - PMC - PubMed
Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. . Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cells. (2022) 185:e3319: 3307–28. doi: 10.1016/j.cell.2022.07.016, PMID: - DOI - PubMed
Hoepner LA. Bisphenol a: a narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma. Environ Res. (2019) 173:54–68. doi: 10.1016/j.envres.2019.03.012, PMID: - DOI - PubMed
Wang L, Martínez Steele E, Du M, Pomeranz JL, O'Connor LE, Herrick KA, et al. . Trends in consumption of ultraprocessed foods among U.S. youths aged 2-19 years, 1999-2018. JAMA. (2021) 326:519–30. doi: 10.1001/jama.2021.10238, PMID: - DOI - PMC - PubMed
Leite FHM, Khandpur N, Andrade GC, Anastasiou K, Baker P, Lawrence M, et al. . Ultra-processed foods should be central to global food systems dialogue and action on biodiversity. BMJ glob Health. (2022) 7:e008269. doi: 10.1136/bmjgh-2021-008269, PMID: - DOI - PMC - PubMed
World Health Organization . Incentives and disincentives for reducing sugar in manufactured foods: An exploratory supply chain analysis: A set of insights for member states in the context of the WHO European food and nutrition action plan 2015–2020. (2017). Available at: https://apps.who.int/iris/handle/10665/345828
Russell C, Grimes C, Baker P, Sievert K, Lawrence MA. The drivers, trends and dietary impacts of non-nutritive sweeteners in the food supply: a narrative review. Nutr Res Rev. (2021) 34:185–208. doi: 10.1017/s0954422420000268, PMID: - DOI - PubMed
Qin P, Li Q, Zhao Y, Chen Q, Sun X, Liu Y, et al. . Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. (2020) 35:655–71. doi: 10.1007/s10654-020-00655-y, PMID: - DOI - PubMed
Wölnerhanssen BK, Meyer-Gerspach AC, Schmidt A, Zimak N, Peterli R, Beglinger C, et al. . Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: a pilot study. PLoS One. (2015) 10:e0130280. doi: 10.1371/journal.pone.0130280, PMID: - DOI - PMC - PubMed
Walker RE, Jackson KH, Tintle NL, Shearer GC, Bernasconi A, Masson S, et al. . Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr. (2019) 110:1034–40. doi: 10.1093/ajcn/nqz161, PMID: - DOI - PubMed
Simopoulos AP. The omega-6/omega-3 fatty acid ratio: health implications. OCL. (2010) 17:267–75. doi: 10.1051/ocl.2010.0325 - DOI
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-anti-obesity effects related to energy metabolism and inflammation. Biofactors. (2022). doi: 10.1002/biof.1921, PMID: - DOI - PubMed
Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. (2015) 102:215–21. doi: 10.3945/ajcn.114.103283, PMID: - DOI - PubMed
Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, et al. . Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. (2018) 15:e1002670. doi: 10.1371/journal.pmed.1002670, PMID: - DOI - PMC - PubMed
Bulló M, Lamuela-Raventós R, Salas-Salvado J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. (2011) 11:1797–810. doi: 10.2174/156802611796235062, PMID: - DOI - PubMed
Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. . Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and lifestyle task Force. J Clin Lipidology. (2019) 13:e1: 689–711. doi: 10.1016/j.jacl.2019.08.003, PMID: - DOI - PubMed
Astrup A, Magkos F, Bier DM, Brenna JT, de Oliveira Otto MC, Hill JO, et al. . Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J Am Coll Cardiol. (2020) 76:844–57. doi: 10.1016/j.jacc.2020.05.077, PMID: - DOI - PubMed
DuBroff R, de Lorgeril M. Fat or fiction: the diet-heart hypothesis. BMJ Evid Based Med. (2021) 26:3–7. doi: 10.1136/bmjebm-2019-111180 - DOI - PubMed
Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, et al. . The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr. (2021) 114:1873–85. doi: 10.1093/ajcn/nqab270, PMID: - DOI - PMC - PubMed
Drehmer M, Pereira MA, Schmidt MI, Alvim S, Lotufo PA, Luft VC, et al. . Total and full-fat, but not low-fat, dairy product intakes are inversely associated with metabolic syndrome in adults. J Nutr. (2016) 146:81–9. doi: 10.3945/jn.115.220699, PMID: - DOI - PubMed
Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. Br J Nutr. (2018) 120:373–84. doi: 10.1017/s0007114518001460, PMID: - DOI - PubMed
Swarup S, Goyal A, Grigorova Y, Zeltser R. Metabolic syndrome In:. StatPearls: StatPearls Publishing LLC; (2022) - PubMed
Brouwer-Brolsma EM, van Woudenbergh GJ, Oude Elferink SJ, Singh-Povel CM, Hofman A, Dehghan A, et al. . Intake of different types of dairy and its prospective association with risk of type 2 diabetes: the Rotterdam study. Nutr Metab Cardiovasc Dis. (2016) 26:987–95. doi: 10.1016/j.numecd.2016.08.003, PMID: - DOI - PubMed
Brouwer-Brolsma EM, Sluik D, Singh-Povel CM, Feskens EJM. Dairy product consumption is associated with pre-diabetes and newly diagnosed type 2 diabetes in the lifelines cohort study. Br J Nutr. (2018) 119:442–55. doi: 10.1017/s0007114517003762, PMID: - DOI - PubMed
Yakoob MY, Shi P, Willett WC, Rexrode KM, Campos H, Orav EJ, et al. . Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation. (2016) 133:1645–54. doi: 10.1161/circulationaha.115.018410, PMID: - DOI - PMC - PubMed
He FJ, Pombo-Rodrigues S, Mac Gregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. (2014) 4:e004549. doi: 10.1136/bmjopen-2013-004549, PMID: - DOI - PMC - PubMed
Vreman RA, Goodell AJ, Rodriguez LA, Porco TC, Lustig RH, Kahn JG. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ Open. (2017) 7:e013543. doi: 10.1136/bmjopen-2016-013543, PMID: - DOI - PMC - PubMed
Shangguan S, Mozaffarian D, Sy S, Lee Y, Liu J, Wilde PE, et al. . Health impact and cost-effectiveness of achieving the National Salt and sugar reduction initiative voluntary sugar reduction targets in the United States: a microsimulation study. Circulation. (2021) 144:1362–76. doi: 10.1161/CIRCULATIONAHA.121.053678, PMID: - DOI - PMC - PubMed
White M, Aguirre E, Finegood DT, Holmes C, Sacks G, Smith R. What role should the commercial food system play in promoting health through better diet? BMJ. (2020) 368:m545. doi: 10.1136/bmj.m545, PMID: - DOI - PMC - PubMed
Barnidge EK, Stenmark SH, DeBor M, Seligman HK. The right to food: building upon "food is medicine". Am J Prev Med. (2020) 59:611–4. doi: 10.1016/j.amepre.2020.04.011, PMID: - DOI - PMC - PubMed