The Metabolic Matrix: Re-engineering ultraprocessed foods to feed the gut, protect the liver, and support the brain

Affiliations


Abstract

Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) protect the liver, (2) feed the gut, and (3) support the brain. The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a proof-of-concept. The key aim of our work is to not only make ultraprocessed food healthier but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.

Keywords: brain health; metabolic health; nutrition; re-engineering; ultraprocessed food.

Conflict of interest statement

RL is Chief Medical Officer of BioLumen Technologies, Kalin Health, Perfact, and Foogal, and a paid advisor for ReadOut Health, Levels Health, Simplex Health, and Myka Labs. AK is Chief Executive Officer of Perfact. PA is Executive Manager, Human and Environmental Health at KDD, and Chief Commercial Officer of Perfact. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Figures


Similar articles

Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

EFSA GMO Panel Working Group on Animal Feeding Trials.Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13.PMID: 18328408 Review.

The Minderoo-Monaco Commission on Plastics and Human Health.

Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S.Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.PMID: 36969097 Free PMC article. Review.

Trends in Consumption of Ultraprocessed Foods Among US Youths Aged 2-19 Years, 1999-2018.

Wang L, Martínez Steele E, Du M, Pomeranz JL, O'Connor LE, Herrick KA, Luo H, Zhang X, Mozaffarian D, Zhang FF.JAMA. 2021 Aug 10;326(6):519-530. doi: 10.1001/jama.2021.10238.PMID: 34374722 Free PMC article.

The relationship between voluntary product (re) formulation commitments and changes in the nutritional quality of products offered by the top packaged food and beverage companies in Canada from 2013 to 2017.

Vergeer L, Ahmed M, Vanderlee L, Mulligan C, Weippert M, Franco-Arellano B, Dickinson K, Bernstein JT, Labonté MÈ, L'Abbé MR.BMC Public Health. 2022 Feb 10;22(1):271. doi: 10.1186/s12889-022-12683-2.PMID: 35144589 Free PMC article.

Designing healthier plant-based foods: Fortification, digestion, and bioavailability.

McClements IF, McClements DJ.Food Res Int. 2023 Jul;169:112853. doi: 10.1016/j.foodres.2023.112853. Epub 2023 Apr 25.PMID: 37254427


Cited by

Cross-Classification Analysis of Food Products Based on Nutritional Quality and Degree of Processing.

Abreu S, Liz Martins M.Nutrients. 2023 Jul 12;15(14):3117. doi: 10.3390/nu15143117.PMID: 37513535 Free PMC article.


KMEL References


References

  1.  
    1. Benziger CP, Roth GA, Moran AE. The global burden of disease study and the preventable burden of NCD. Glob Heart. (2016) 11:393–7. doi: 10.1016/j.gheart.2016.10.024 - DOI - PubMed
  2.  
    1. Davidson S, Litwin A, Peleg D, Erlich A. Are babies getting bigger? Secular trends in fetal growth in Israel–a retrospective hospital-based cohort study. Isr Med Assoc J. (2007) 9:649–51. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17939625 - PubMed
  3.  
    1. Ludwig DS, Rouse HL, Currie J. Pregnancy weight gain and childhood body weight: a within-family comparison. PLoS Med. (2013) 10:e1001521. doi: 10.1371/journal.pmed.1001521, PMID: - DOI - PMC - PubMed
  4.  
    1. Ulijaszek SJ. Secular trend in birthweight among the Purari delta population, Papua New Guinea. Ann Hum Biol. (2001) 28:246–55. doi: 10.1080/030144601300119061, PMID: - DOI - PubMed
  5.  
    1. Klimentidis YC, Beasley TM, Lin HY, Murati G, Glass GE, Guyton M, et al. . Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics. Proc Biol Sci. (2011) 278:1626–32. doi: 10.1098/rspb.2010.1890, PMID: - DOI - PMC - PubMed
  6.  
    1. Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, et al. . Obesity II: establishing causal links between chemical exposures and obesity. Biochem Pharmacol. (2022) 199:115015. doi: 10.1016/j.bcp.2022.115015, PMID: - DOI - PMC - PubMed
  7.  
    1. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diab Care. (1994) 17:961–9. doi: 10.2337/diacare.17.9.961, PMID: - DOI - PubMed
  8.  
    1. Iglesias Molli AE, Panero J, Dos Santos PC, González CD, Vilariño J, Sereday M, et al. . Metabolically healthy obese women have longer telomere length than obese women with metabolic syndrome. PLoS One. (2017) 12:e0174945. doi: 10.1371/journal.pone.0174945, PMID: - DOI - PMC - PubMed
  9.  
    1. O'Hearn M, Lauren BN, Wong JB, Kim DD, Mozaffarian D. Trends and disparities in cardiometabolic health among U.S. adults, 1999-2018. J Am Coll Cardiol. (2022) 80:138–51. doi: 10.1016/j.jacc.2022.04.046, PMID: - DOI - PubMed
  10.  
    1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief. (2020) 360:1–8. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32487284 - PubMed
  11.  
    1. Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG, Fielder PJ. The "little women of Loja"--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med. (1990) 323:1367–74. doi: 10.1056/NEJM199011153232002 - DOI - PubMed
  12.  
    1. Chehab FF. Obesity and lipodystrophy--where do the circles intersect? Endocrinology. (2008) 149:925–34. doi: 10.1210/en.2007-1355, PMID: - DOI - PMC - PubMed
  13.  
    1. Moubarac JC, Parra DC, Cannon G, Monteiro CA. Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep. (2014) 3:256–72. doi: 10.1007/s13679-014-0092-0, PMID: - DOI - PubMed
  14.  
    1. De Vogli R, Kouvonen A, Gimeno D. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis. Bull World Health Organ. (2014) 92:99–107. doi: 10.2471/blt.13.120287, PMID: - DOI - PMC - PubMed
  15.  
    1. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, et al. . Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med. (2020) 180:283–91. doi: 10.1001/jamainternmed.2019.5942, PMID: - DOI - PMC - PubMed
  16.  
    1. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. . Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ. (2019) 365:l1451. doi: 10.1136/bmj.l1451, PMID: - DOI - PMC - PubMed
  17.  
    1. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. . Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. (2018) 360:k322. doi: 10.1136/bmj.k322, PMID: - DOI - PMC - PubMed
  18.  
    1. Li H, Li S, Yang H, Zhang Y, Zhang S, Ma Y, et al. . Association of ultraprocessed food consumption with risk of dementia: a prospective cohort. Neurology. (2022) 99:e1056–66. doi: 10.1212/wnl.0000000000200871, PMID: - DOI - PubMed
  19.  
    1. Hecht EM, Rabil A, Martinez Steele E, Abrams GA, Ware D, Landy DC, et al. . Cross-sectional examination of ultra-processed food consumption and adverse mental health symptoms. Public Health Nutr. (2022) 25:3225–34. doi: 10.1017/s1368980022001586, PMID: - DOI - PMC - PubMed
  20.  
    1. Schutte S, Esser D, Siebelink E, Michielsen CJR, Daanje M, Matualatupauw JC, et al. . Diverging metabolic effects of 2 energy-restricted diets differing in nutrient quality: a 12-week randomized controlled trial in subjects with abdominal obesity. Am J Clin Nutr. (2022) 116:132–50. doi: 10.1093/ajcn/nqac025, PMID: - DOI - PMC - PubMed
  21.  
    1. Lustig RH. Processed food — an experiment that failed. JAMA Pediatr. (2017) 171:212–4. doi: 10.1001/jamapediatrics.2016.4136, PMID: - DOI - PubMed
  22.  
    1. Lustig RH, Schmidt LA, Brindis CD. The toxic truth about sugar. Nature. (2012) 482:27–9. doi: 10.1038/482027a, PMID: - DOI - PubMed
  23.  
    1. Credit Suisse Research Institute . Sugar: Consumption at a crossroads. (2013). Available at: http://archive.wphna.org/wp-content/uploads/2014/01/13-09_Credit_Suisse_...
  24.  
    1. Morgan Stanley Research . Sugar economics: Consumption and diabetes. (2015). Available at: https://www.morganstanley.com/ideas/sugar-economics-how-sweet-it-isnt
  25.  
    1. Rabobank . Sweetness and lite: How vulnerable is global sugar consumption to food & beverage trends? (2017). Available at: https://research.rabobank.com/far/en/sectors/sugar/sweetness-and-lite.html
  26.  
    1. Schroders . Sugar, obesity, and noncommunicable disease: Investor expectations. (2017). Available at: https://prod.schroders.com/en/sysglobalassets/news/sugar-investor-expect...
  27.  
    1. Food Business News . Emerging brands form alliance to reduce sugar consumption (2022). Available at: https://www.foodbusinessnews.net/articles/20501-emerging-brands-form-all...
  28.  
    1. Gustafson DI, Decker EA, Drewnowski A, Hamm MW, Hwang J, Merrigan KA. Making healthy, sustainable diets accessible and achievable: a new framework for assessing the nutrition, environmental, and equity impacts of packaged foods. Curr Dev Nutr. (2022) 6:nzac136. doi: 10.1093/cdn/nzac136, PMID: - DOI - PMC - PubMed
  29.  
    1. Gregori D, Ballali S, Vögele C, Gafare CE, Stefanini G, Widhalm K. Evaluating food front-of-pack labelling: a pan-European survey on consumers' attitudes toward food labelling. Int J Food Sci Nutr. (2014) 65:177–86. doi: 10.3109/09637486.2013.854743, PMID: - DOI - PubMed
  30.  
    1. Machín L, Aschemann-Witzel J, Curutchet MR, Giménez A, Ares G. Traffic light system can increase healthfulness perception: implications for policy making. J Nutr Educ Behav. (2018) 50:668–74. doi: 10.1016/j.jneb.2018.03.005, PMID: - DOI - PubMed
  31.  
    1. Vanderlee L, Franco-Arellano B, Ahmed M, Oh A, Lou W, L'Abbé MR. The efficacy of 'high in' warning labels, health star and traffic light front-of-package labelling: an online randomised control trial. Public Health Nutr. (2021) 24:62–74. doi: 10.1017/s1368980020003213, PMID: - DOI - PubMed
  32.  
    1. Katz DL, Njike VY, Rhee LQ, Reingold A, Ayoob KT. Performance characteristics of NuVal and the overall nutritional quality index (ONQI). Am J Clin Nutr. (2010) 91:S1102–8. doi: 10.3945/ajcn.2010.28450E, PMID: - DOI - PubMed
  33.  
    1. World Health Organization . Development of a new front-of-pack nutrition label in France: The five colour Nutri-score. (2017). Available at: https://apps.who.int/iris/bitstream/handle/10665/325207/php-3-4-712-725-...
  34.  
    1. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The U.N. decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. (2018) 21:5–17. doi: 10.1017/s1368980017000234, PMID: - DOI - PubMed
  35.  
    1. Kim SP, Ellmerer M, Van Citters GW, Bergman RN. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes. (2003) 52:2453–60. doi: 10.2337/diabetes.52.10.2453, PMID: - DOI - PubMed
  36.  
    1. Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. . Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. (2020) 11:571731. doi: 10.3389/fimmu.2020.571731, PMID: - DOI - PMC - PubMed
  37.  
    1. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. . Role of brain insulin receptor in control of body weight and reproduction. Science. (2000) 289:2122–5. doi: 10.1126/science.289.5487.2122, PMID: - DOI - PubMed
  38.  
    1. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. (2000) 342:1392–8. doi: 10.1056/nejm200005113421903, PMID: - DOI - PubMed
  39.  
    1. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. (2018) 23:705–15. doi: 10.1016/j.chom.2018.05.012 - DOI - PubMed
  40.  
    1. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. (2019) 393:434–45. doi: 10.1016/s0140-6736(18)31809-9 - DOI - PubMed
  41.  
    1. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. . Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. (2019) 51:600–5. doi: 10.1038/s41588-019-0350-x, PMID: - DOI - PMC - PubMed
  42.  
    1. Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD, et al. . Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front Microbiol. (2021) 12:711359. doi: 10.3389/fmicb.2021.711359, PMID: - DOI - PMC - PubMed
  43.  
    1. Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. (2021) 13:1–24. doi: 10.1080/19490976.2021.1897212, PMID: - DOI - PMC - PubMed
  44.  
    1. Van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. (2021) 29:700–12. doi: 10.1016/j.tim.2021.02.001 - DOI - PubMed
  45.  
    1. Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis of metabolic syndrome. Pediatrics. (2012) 129:557–70. doi: 10.1542/peds.2011-2912, PMID: - DOI - PMC - PubMed
  46.  
    1. Templeman NM, Skovsø S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol. (2017) 232:R173–83. doi: 10.1530/joe-16-0449 - DOI - PubMed
  47.  
    1. Lustig RH. Ultraprocessed food: addictive, toxic, and ready for regulation. Nutrients. (2020) 12:a3401. doi: 10.3390/nu12113401, PMID: - DOI - PMC - PubMed
  48.  
    1. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. (2018) 132:41–8. doi: 10.1016/j.plefa.2018.03.004 - DOI - PubMed
  49.  
    1. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. (2011) 93:950–62. doi: 10.3945/ajcn.110.006643, PMID: - DOI - PMC - PubMed
  50.  
    1. Albert BB, Derraik JG, Brennan CM. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci Rep. (2014) 4:6697. doi: 10.1038/srep06697, PMID: - DOI - PMC - PubMed
  51.  
    1. Hu Y, Hu FB, Manson JE. Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127,477 participants. J Am Heart Assoc. (2019) 8:e013543. doi: 10.1161/JAHA.119.013543, PMID: - DOI - PMC - PubMed
  52.  
    1. Avallone R, Vitale G, Bertolotti M. Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci.. (2019) 20:4256. doi: 10.3390/ijms20174256 - DOI - PMC - PubMed
  53.  
    1. Darcey L. Valerie *, Serafine M. Katherine. Omega-3 fatty acids and vulnerability to addiction: reviewing preclinical and clinical evidence. Current Pharmaceutical Design. (2020) 26. doi: 10.2174/1381612826666200429094158 - DOI - PubMed
  54.  
    1. Hakimian JK, Dong TS, Barahona JA, Lagishetty V, Tiwari S, Azani D, et al. . Dietary supplementation with omega-3 polyunsaturated fatty acids reduces opioid-seeking behaviors and alters the gut microbiome. Nutrients. (2019) 11:1900. doi: 10.3390/nu11081900, PMID: - DOI - PMC - PubMed
  55.  
    1. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. (2015) 7:52. doi: 10.3389/fnagi.2015.00052, PMID: - DOI - PMC - PubMed
  56.  
    1. Hallahan B, Ryan T, Hibbeln JR, Murray IT, Glynn S, Ramsden CE, et al. . Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br J Psychiatry. (2016) 209:192–201. doi: 10.1192/bjp.bp.114.160242, PMID: - DOI - PMC - PubMed
  57.  
    1. Hibbeln JR, Gow RV. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids. Mil Med. (2014) 179:117–28. doi: 10.7205/milmed-d-14-00153, PMID: - DOI - PubMed
  58.  
    1. Renoir T, Hasebe K, Gray L. Mind and body: how the health of the body impacts on neuropsychiatry. Front Pharmacol. (2013) 4:158–8. doi: 10.3389/fphar.2013.00158, PMID: - DOI - PMC - PubMed
  59.  
    1. Barth J, Schumacher M, Herrmann-Lingen C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom Med. (2004) 66:802–13. doi: 10.1097/01.psy.0000146332.53619.b2 - DOI - PubMed
  60.  
    1. Bush DE, Ziegelstein RC, Patel UV, Thombs BD, Ford DE, Fauerbach JA, et al. . Post-myocardial infarction depression. Evid Rep Technol Assess (Summ). (2005) 123:1–8. - PMC - PubMed
  61.  
    1. Nemeroff CB, Musselman DL. Are platelets the link between depression and ischemic heart disease? Am Heart J. (2000) 140:S57–62. doi: 10.1067/mhj.2000.109978 - DOI - PubMed
  62.  
    1. DiNicolantonio JJ, O’Keefe JH. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart. (2018) 5:e000898. doi: 10.1136/openhrt-2018-000898, PMID: - DOI - PMC - PubMed
  63.  
    1. Simopoulos AP, Bourne PG, Faergeman O. Bellagio report on healthy agriculture, healthy nutrition, healthy people. Rev Panam Salud Publica. (2013) 33:230–6. doi: 10.1590/s1020-49892013000300010, PMID: - DOI - PubMed
  64.  
    1. World Economic Forum . 5 ways to transform our food system to benefit people and planet. (2021). Available at: https://www.weforum.org/agenda/2021/03/5-ways-transform-food-system-sust...
  65.  
    1. Jones A, Neal B, Reeve B, Ni Mhurchu C, Thow AM. Front-of-pack nutrition labelling to promote healthier diets: current practice and opportunities to strengthen regulation worldwide. BMJ Glob Health. (2019) 4:e001882. doi: 10.1136/bmjgh-2019-001882, PMID: - DOI - PMC - PubMed
  66.  
    1. Food and Drug Administration . Food serving sizes have a reality check. (2022). Available at: https://www.fda.gov/consumers/consumer-updates/food-serving-sizes-have-r...
  67.  
    1. Food and Drug Administration . FDA proposes updated definition of ‘healthy’ claim on food packages to help improve diet, reduce chronic disease. (2022). Available at: https://www.fda.gov/news-events/press-announcements/fda-proposes-updated...
  68.  
    1. Sagaceta-Mejía J, Tolentino-Mayo L, Cruz-Casarrubias C, Nieto C, Barquera S. Understanding of front of package nutrition labels: guideline daily amount and warning labels in Mexicans with non-communicable diseases. PLoS One. (2022) 17:e0269892. doi: 10.1371/journal.pone.0269892, PMID: - DOI - PMC - PubMed
  69.  
    1. Swedish Food Agency Code of Statute . Regulations amending the Swedish food Agency's regulations (SLVFS 2005:9) on the use of the keyhole symbol. (2021). Available at: https://www.livsmedelsverket.se/globalassets/om-oss/lagstiftning/livsmed...
  70.  
    1. Mozaffarian D, El-Abbadi NH, O’Hearn M, Erndt-Marino J, Masters WA, Jacques P, et al. . Food compass is a nutrient profiling system using expanded characteristics for assessing healthfulness of foods. Nature Food. (2021) 2:809–18. doi: 10.1038/s43016-021-00381-y - DOI
  71.  
    1. Niewoehner CB, Neil B, Martin T. Hepatic uptake and metabolism of oral galactose in adult fasted rats. Am J Phys. (1990) 259:E804–13. doi: 10.1152/ajpendo.1990.259.6.E804, PMID: - DOI - PubMed
  72.  
    1. Menichetti G, Ravandi B, Mozaffarian D, Barabási A-L. Machine learning prediction of food processing. medRxiv. (2022). doi: 10.1101/2021.05.22.21257615 - DOI
  73.  
    1. Food and Drug Administration . Substances added to food (formerly EAFUS). (2022). Available at: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FoodSubstances
  74.  
    1. Hercberg S, Touvier M, Salas-Salvado J. The Nutri-score nutrition label. Int J Vitamin Nutr Res. (2022) 92:147–57. doi: 10.1024/0300-9831/a000722 - DOI - PubMed
  75.  
    1. Mamudu HM, Yang JS, Novotny TE. U.N. resolution on the prevention and control of non-communicable diseases: an opportunity for global action. Glob Public Health. (2011) 6:347–53. doi: 10.1080/17441692.2011.574230 - DOI - PubMed
  76.  
    1. United Nations Food Systems Summit . The true cost and the true price of food. (2021). Available at: https://sc-fss2021.org/wp-content/uploads/2021/06/UNFSS_true_cost_of_foo...
  77.  
    1. Gow RV, Hibbeln JR. Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child Adolesc Psychiatr Clin NA. (2014) 23:555–90. doi: 10.1016/j.chc.2014.02.002, PMID: - DOI - PMC - PubMed
  78.  
    1. Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol. (2017) 13:536–46. doi: 10.1038/nrendo.2017.51, PMID: - DOI - PubMed
  79.  
    1. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. . Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. (2019) 30:67–77.e3. doi: 10.1016/j.cmet.2019.05.008, PMID: - DOI - PMC - PubMed
  80.  
    1. Softic S, Meyer JG, Wang G-X, Gupta MK, Batista TM, Lauritzen HPMM, et al. . Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. (2019) 30:735–753.e4. doi: 10.1016/j.cmet.2019.09.003, PMID: - DOI - PMC - PubMed
  81.  
    1. Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, et al. . Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. (2017) 153:743–52. doi: 10.1053/j.gastro.2017.05.043, PMID: - DOI - PMC - PubMed
  82.  
    1. Bong HY, Kim JY, Jeong HI, Moon MS, Kim J, Kwon O. Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet. Nutr Res Pract. (2010) 4:106–13. doi: 10.4162/nrp.2010.4.2.106, PMID: - DOI - PMC - PubMed
  83.  
    1. Méndez-García LA, Bueno-Hernández N, Cid-Soto MA, De León KL, Mendoza-Martínez VM, Espinosa-Flores AJ, et al. . Ten-week sucralose consumption induces gut dysbiosis and altered glucose and insulin levels in healthy young adults. Microorganisms. (2022) 10:434. doi: 10.3390/microorganisms10020434, PMID: - DOI - PMC - PubMed
  84.  
    1. Taneri PE, Wehrli F, Roa-Díaz ZM, Itodo OA, Salvador D, Raeisi-Dehkordi H, et al. . Association between ultra-processed food intake and all-cause mortality: a systematic review and meta-analysis. Am J Epidemiol. (2022) 191:1323–35. doi: 10.1093/aje/kwac039, PMID: - DOI - PubMed
  85.  
    1. Liese AD, Schulz M, Fang F, Wolever TM, D'Agostino RB, Jr, Sparks KC, et al. . Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the insulin resistance atherosclerosis study. Diabetes Care. (2005) 28:2832–8. doi: 10.2337/diacare.28.12.2832, PMID: - DOI - PubMed
  86.  
    1. Holmes ZC, Villa MM, Durand HK, Jiang S, Dallow EP, Petrone BL, et al. . Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome. (2022) 10:114. doi: 10.1186/s40168-022-01307-x, PMID: - DOI - PMC - PubMed
  87.  
    1. Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, et al. . Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. (2022) 162:743–56. doi: 10.1053/j.gastro.2021.11.006, PMID: - DOI - PMC - PubMed
  88.  
    1. Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. . Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cells. (2022) 185:e3319: 3307–28. doi: 10.1016/j.cell.2022.07.016, PMID: - DOI - PubMed
  89.  
    1. Hoepner LA. Bisphenol a: a narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma. Environ Res. (2019) 173:54–68. doi: 10.1016/j.envres.2019.03.012, PMID: - DOI - PubMed
  90.  
    1. Wang L, Martínez Steele E, Du M, Pomeranz JL, O'Connor LE, Herrick KA, et al. . Trends in consumption of ultraprocessed foods among U.S. youths aged 2-19 years, 1999-2018. JAMA. (2021) 326:519–30. doi: 10.1001/jama.2021.10238, PMID: - DOI - PMC - PubMed
  91.  
    1. Leite FHM, Khandpur N, Andrade GC, Anastasiou K, Baker P, Lawrence M, et al. . Ultra-processed foods should be central to global food systems dialogue and action on biodiversity. BMJ glob Health. (2022) 7:e008269. doi: 10.1136/bmjgh-2021-008269, PMID: - DOI - PMC - PubMed
  92.  
    1. World Health Organization . Incentives and disincentives for reducing sugar in manufactured foods: An exploratory supply chain analysis: A set of insights for member states in the context of the WHO European food and nutrition action plan 2015–2020. (2017). Available at: https://apps.who.int/iris/handle/10665/345828
  93.  
    1. Russell C, Grimes C, Baker P, Sievert K, Lawrence MA. The drivers, trends and dietary impacts of non-nutritive sweeteners in the food supply: a narrative review. Nutr Res Rev. (2021) 34:185–208. doi: 10.1017/s0954422420000268, PMID: - DOI - PubMed
  94.  
    1. Qin P, Li Q, Zhao Y, Chen Q, Sun X, Liu Y, et al. . Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. (2020) 35:655–71. doi: 10.1007/s10654-020-00655-y, PMID: - DOI - PubMed
  95.  
    1. Wölnerhanssen BK, Meyer-Gerspach AC, Schmidt A, Zimak N, Peterli R, Beglinger C, et al. . Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: a pilot study. PLoS One. (2015) 10:e0130280. doi: 10.1371/journal.pone.0130280, PMID: - DOI - PMC - PubMed
  96.  
    1. Walker RE, Jackson KH, Tintle NL, Shearer GC, Bernasconi A, Masson S, et al. . Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr. (2019) 110:1034–40. doi: 10.1093/ajcn/nqz161, PMID: - DOI - PubMed
  97.  
    1. Simopoulos AP. The omega-6/omega-3 fatty acid ratio: health implications. OCL. (2010) 17:267–75. doi: 10.1051/ocl.2010.0325 - DOI
  98.  
    1. Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-anti-obesity effects related to energy metabolism and inflammation. Biofactors. (2022). doi: 10.1002/biof.1921, PMID: - DOI - PubMed
  99.  
    1. Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. (2015) 102:215–21. doi: 10.3945/ajcn.114.103283, PMID: - DOI - PubMed
  100.  
    1. Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, et al. . Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. (2018) 15:e1002670. doi: 10.1371/journal.pmed.1002670, PMID: - DOI - PMC - PubMed
  101.  
    1. Bulló M, Lamuela-Raventós R, Salas-Salvado J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. (2011) 11:1797–810. doi: 10.2174/156802611796235062, PMID: - DOI - PubMed
  102.  
    1. Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. . Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and lifestyle task Force. J Clin Lipidology. (2019) 13:e1: 689–711. doi: 10.1016/j.jacl.2019.08.003, PMID: - DOI - PubMed
  103.  
    1. Astrup A, Magkos F, Bier DM, Brenna JT, de Oliveira Otto MC, Hill JO, et al. . Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J Am Coll Cardiol. (2020) 76:844–57. doi: 10.1016/j.jacc.2020.05.077, PMID: - DOI - PubMed
  104.  
    1. DuBroff R, de Lorgeril M. Fat or fiction: the diet-heart hypothesis. BMJ Evid Based Med. (2021) 26:3–7. doi: 10.1136/bmjebm-2019-111180 - DOI - PubMed
  105.  
    1. Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, et al. . The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr. (2021) 114:1873–85. doi: 10.1093/ajcn/nqab270, PMID: - DOI - PMC - PubMed
  106.  
    1. Drehmer M, Pereira MA, Schmidt MI, Alvim S, Lotufo PA, Luft VC, et al. . Total and full-fat, but not low-fat, dairy product intakes are inversely associated with metabolic syndrome in adults. J Nutr. (2016) 146:81–9. doi: 10.3945/jn.115.220699, PMID: - DOI - PubMed
  107.  
    1. Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. Br J Nutr. (2018) 120:373–84. doi: 10.1017/s0007114518001460, PMID: - DOI - PubMed
  108.  
    1. Swarup S, Goyal A, Grigorova Y, Zeltser R. Metabolic syndrome In:. StatPearls: StatPearls Publishing LLC; (2022) - PubMed
  109.  
    1. Brouwer-Brolsma EM, van Woudenbergh GJ, Oude Elferink SJ, Singh-Povel CM, Hofman A, Dehghan A, et al. . Intake of different types of dairy and its prospective association with risk of type 2 diabetes: the Rotterdam study. Nutr Metab Cardiovasc Dis. (2016) 26:987–95. doi: 10.1016/j.numecd.2016.08.003, PMID: - DOI - PubMed
  110.  
    1. Brouwer-Brolsma EM, Sluik D, Singh-Povel CM, Feskens EJM. Dairy product consumption is associated with pre-diabetes and newly diagnosed type 2 diabetes in the lifelines cohort study. Br J Nutr. (2018) 119:442–55. doi: 10.1017/s0007114517003762, PMID: - DOI - PubMed
  111.  
    1. Yakoob MY, Shi P, Willett WC, Rexrode KM, Campos H, Orav EJ, et al. . Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation. (2016) 133:1645–54. doi: 10.1161/circulationaha.115.018410, PMID: - DOI - PMC - PubMed
  112.  
    1. He FJ, Pombo-Rodrigues S, Mac Gregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. (2014) 4:e004549. doi: 10.1136/bmjopen-2013-004549, PMID: - DOI - PMC - PubMed
  113.  
    1. Population Reference Bureau . Noncommunicable diseases in the Middle East and North Africa: Addressing risk factors among young people is key to curbing the epidemic. (2017). Available at: https://www.prb.org/wp-content/uploads/2017/12/NCDs_in_MENA_Data_Sheet.pdf
  114.  
    1. Vreman RA, Goodell AJ, Rodriguez LA, Porco TC, Lustig RH, Kahn JG. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model. BMJ Open. (2017) 7:e013543. doi: 10.1136/bmjopen-2016-013543, PMID: - DOI - PMC - PubMed
  115.  
    1. Shangguan S, Mozaffarian D, Sy S, Lee Y, Liu J, Wilde PE, et al. . Health impact and cost-effectiveness of achieving the National Salt and sugar reduction initiative voluntary sugar reduction targets in the United States: a microsimulation study. Circulation. (2021) 144:1362–76. doi: 10.1161/CIRCULATIONAHA.121.053678, PMID: - DOI - PMC - PubMed
  116.  
    1. White M, Aguirre E, Finegood DT, Holmes C, Sacks G, Smith R. What role should the commercial food system play in promoting health through better diet? BMJ. (2020) 368:m545. doi: 10.1136/bmj.m545, PMID: - DOI - PMC - PubMed
  117.  
    1. Barnidge EK, Stenmark SH, DeBor M, Seligman HK. The right to food: building upon "food is medicine". Am J Prev Med. (2020) 59:611–4. doi: 10.1016/j.amepre.2020.04.011, PMID: - DOI - PMC - PubMed