Synedrella nodiflora Extract Depresses Excitatory Synaptic Transmission and Chemically-Induced In Vitro Seizures in the Rat Hippocampus

Affiliations


Abstract

Extracts of the tropical Cinderella plant Synedrella nodiflora are used traditionally to manage convulsive conditions in the West African sub-region. This study sought to determine the neuronal basis of the effectiveness of these plant extracts to suppress seizure activity. Using the hippocampal slice preparation from rats, the ability of the extract to depress excitatory synaptic transmission and in vitro seizure activity were investigated. Bath perfusion of the hydro-ethanolic extract of Synedrella nodiflora (SNE) caused a concentration-dependent depression of evoked field excitatory postsynaptic potentials (fEPSPs) recorded extracellularly in the CA1 region of the hippocampus with maximal depression of about 80% and an estimated IC50 of 0.06 mg/ml. The SNE-induced fEPSP depression was accompanied by an increase in paired pulse facilitation. The fEPSP depression only recovered partially after 20 min washing out. The effect of SNE was not stimulus dependent as it was present even in the absence of synaptic stimulation. Furthermore, it did not show desensitization as repeat application after 10 min washout produced the same level of fEPSP depression as the first application. The SNE effect on fEPSPs was not via adenosine release as it was neither blocked nor reversed by 8-CPT, an adenosine A1 receptor antagonist. In addition, SNE depressed in vitro seizures induced by zero Mg2+ and high K+ -containing artificial cerebrospinal fluid (aCSF) in a concentration-dependent manner. The results show that SNE depresses fEPSPs and spontaneous bursting activity in hippocampal neurons that may underlie its ability to abort convulsive activity in persons with epilepsy.

Keywords: SNE; adenosine; field excitatory postsynaptic potentials; hippocampal slices; seizure.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Figures


Similar articles

Involvement of the adenosine neuromodulatory system in the benzodiazepine-induced depression of excitatory synaptic transmissions in rat hippocampal neurons in vitro.

Narimatsu E, Aoki M.Neurosci Res. 1999 Jan;33(1):57-64. doi: 10.1016/s0168-0102(98)00110-2.PMID: 10096472

Mechanisms underlying the depression of evoked fast EPSCs following in vitro ischemia in rat hippocampal CA1 neurons.

Tanaka E, Yasumoto S, Hattori G, Niiyama S, Matsuyama S, Higashi H.J Neurophysiol. 2001 Sep;86(3):1095-103. doi: 10.1152/jn.2001.86.3.1095.PMID: 11535660

Long-term continuous administration of a hydro-ethanolic extract of Synedrella nodiflora (L) Gaertn in male Sprague-Dawley rats: biochemical, haematological and histopathological changes.

Amoateng P, Adjei S, Osei-Safo D, Ahedor B, Mahmood SA, N'guessan BB, Asiedu-Gyekye IJ, Nyarko AK.Ghana Med J. 2016 Sep;50(3):163-171.PMID: 27752191 Free PMC article.

The involvement of adenosine neuromodulation in pentobarbital-induced field excitatory postsynaptic potentials depression in rat hippocampal slices.

Tohdoh Y, Narimatsu E, Kawamata M, Namiki A.Anesth Analg. 2000 Dec;91(6):1537-41. doi: 10.1097/00000539-200012000-00044.PMID: 11094014

Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices.

Hsu KS, Liang YC, Huang CC.J Neurosci Res. 2000 Nov 1;62(3):403-15. doi: 10.1002/1097-4547(20001101)62:3<403::AID-JNR11>3.0.CO;2-3.PMID: 11054810


KMEL References


References

  1.  
    1. Abel C., Busia K. (2005). An exploratory ethnobotanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern. Med. Rev. 10, 112. - PubMed
  2.  
    1. Adjei P. (2017). Traditional medicine in the management of epilepsy: a global approach. London, United Kingdom: Cambridge University Press, Vol. 165, 162–164.
  3.  
    1. Adjei S., Amoateng P., Osei-Safo D., Sasu C., N’guessan B. B., Addo P., et al. (2014b). Sub-acute toxicity of a hydro-ethanolic whole plant extract of Synedrella nodiflora (L) Gaertn in rats. Int. J. Green Pharm. 8, 271–275. 10.4103/0973-8258.142695 - DOI
  4.  
    1. Adjei S., Amoateng P., Osei-Safo D., Ahedor B., N’guessan B., Addo P., et al. (2014a). Biochemical and haematological changes following an acute toxicity study of a hydro-ethanolic whole plant extract of Synedrella nodiflora (L) Gaertn in male Sprague-Dawley rats. J. Med. Biomed. Sci. 3, 31–37. 10.4314/jmbs.v3i1.5 - DOI
  5.  
    1. Alves M., Beamer E., Engel T. (2018). The metabotropic purinergic P2Y receptor family as novel drug target in epilepsy. Front. Pharmacol. 9, 193. 10.3389/fphar.2018.00193 - DOI - PMC - PubMed
  6.  
    1. Amoateng P., Adjei S., Osei-Safo D., Ahedor B., Mahmood S. A., N'Guessan B. B., et al. (2016). Long-term continuous administration of a hydro-ethanolic extract of Synedrella nodiflora (L) Gaertn in male Sprague-Dawley rats: biochemical, haematological and histopathological changes. Ghana Med. J. 50, 163–171. 10.4314/gmj.v50i3.8 - DOI - PMC - PubMed
  7.  
    1. Amoateng P., Adjei S., Osei-Safo D., Ameyaw E. O., Ahedor B., N'Guessan B. B., et al. (2015). A hydro-ethanolic extract of Synedrella nodiflora (L.) Gaertn ameliorates hyperalgesia and allodynia in vincristine-induced neuropathic pain in rats. J. Basic Clin. Physiol. Pharmacol. 26, 383–394. 10.1515/jbcpp-2014-0084 - DOI - PubMed
  8.  
    1. Amoateng P., Adjei S., Osei-Safo D., Kukuia K. K., Bekoe E. O., Karikari T. K., et al. (2017). Extract of Synedrella nodiflora (L) Gaertn exhibits antipsychotic properties in murine models of psychosis. BMC Complement Altern. Med. 17, 389. 10.1186/s12906-017-1901-2 - DOI - PMC - PubMed
  9.  
    1. Amoateng P., Quansah E., Karikari T. K., Asase A., Osei-Safo D., Kukuia K. K. E., et al. (2018a). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement Altern. Med. 2018, 8590381. 10.1155/2018/8590381 - DOI - PMC - PubMed
  10.  
    1. Amoateng P., Quansah E., Karikari T. K., Asase A., Osei-Safo D., Kukuia K. K. E., et al. (2018b). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement Altern. Med. 2018, 8590381. 10.1155/2018/8590381 - DOI - PMC - PubMed
  11.  
    1. Amoateng P., Woode E., Kombian S. B. (2012). Anticonvulsant and related neuropharmacological effects of the whole plant extract of Synedrella nodiflora (L.) Gaertn (asteraceae). J. Pharm. Bioallied Sci. 4, 140–148. 10.4103/0975-7406.94816 - DOI - PMC - PubMed
  12.  
    1. Amoateng P., Assumeng Koffuor G., Sarpong K., Oteng Agyapong K. (2011). Free radical scavenging and anti-lipid peroxidative effects of a hydro-ethanolic extract of the whole plant of Synedrella nodiflora (L.) Gaertn (asteraceae). Free Radicals Antioxid. 1, 70–78. 10.5530/ax.2011.3.10 - DOI
  13.  
    1. Ananthalakshmi K. V., Edafiogho I. O., Kombian S. B. (2007). Anticonvulsant enaminone E139 suppresses epileptiform activity in rat hippocampal slices. Epilepsy Res. 76, 85–92. 10.1016/j.eplepsyres.2007.07.001 - DOI - PubMed
  14.  
    1. Anderson W. W., Fitzjohn S. M., Collingridge G. L. (2012). Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control. J. Neurosci. Methods 207, 148–160. 10.1016/j.jneumeth.2012.04.008 - DOI - PMC - PubMed
  15.  
    1. Anderson W. W., Lewis D. V., Swartzwelder H. S., Wilson W. A. (1986). Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 19 (398), 215–219. 10.1016/0006-8993(86)91274-6 - DOI - PubMed
  16.  
    1. Avoli M. (2019). Inhibition, oscillations and focal seizures: an overview inspired by some historical notes. Neurobiol. Dis. 130, 104478. 10.1016/j.nbd.2019.104478 - DOI - PubMed
  17.  
    1. Calfa G., Li W., Rutherford J. M., Pozzo‐Miller L. (2015). Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice. Hippocampus 25, 159–168. 10.1002/hipo.22360 - DOI - PMC - PubMed
  18.  
    1. Cavarsan C. F., Malheiros J., Hamani C., Najm I., Covolan L. (2018). Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front. Neurol. 9, 1023. 10.3389/fneur.2018.01023 - DOI - PMC - PubMed
  19.  
    1. Clarke R. J., Glasgow N. G., Johnson J. W. (2013). Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock. J. Neurosci. 33, 4140–4150. 10.1523/JNEUROSCI.3712-12.2013 - DOI - PMC - PubMed
  20.  
    1. Farrell J. S., Nguyen Q.-A., Soltesz I. (2019). Resolving the micro-macro disconnect to address core features of seizure networks. Neuron 101, 1016–1028. 10.1016/j.neuron.2019.01.043 - DOI - PMC - PubMed
  21.  
    1. Feng Z., Durand D. M. (2003). Low-calcium epileptiform activity in the hippocampus in vivo . J. Neurophysiol. 90, 2253–2260. 10.1152/jn.00241.2003 - DOI - PubMed
  22.  
    1. Gao W. J., Goldman-Rakic P. S. (2006). NMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons. Exp. Neurol. 197, 495–504. 10.1016/j.expneurol.2005.05.018 - DOI - PubMed
  23.  
    1. Gean P. W., Shinnick-Gallagher P. (1988). Characterization of the epileptiform activity induced by magnesium-free solution in rat amygdala slices: an intracellular study. Exp. Neurol. 101, 248–255. 10.1016/0014-4886(88)90008-8 - DOI - PubMed
  24.  
    1. Gunn B., Baram T. (2017). Stress and seizures: space, time and hippocampal circuits. Trends Neurosci. 40, 667–679. 10.1016/j.tins.2017.08.004 - DOI - PMC - PubMed
  25.  
    1. Hablitz J. J., Heinemann U. (1987). Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Brain Res. 433, 299–303. 10.1016/0165-3806(87)90036-8 - DOI - PubMed
  26.  
    1. Horne A. L., Harrison N. L., Turner J. P., Simmonds M. A. (1986). Spontaneous paroxysmal activity induced by zero magnesium and bicuculline: suppression by NMDA antagonists and GABA mimetics. Eur. J. Pharmacol. 122, 231–238. 10.1016/0014-2999(86)90107-x - DOI - PubMed
  27.  
    1. Huang Z., Gibb A. J. (2014). Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078. 10.1113/jphysiol.2013.267864 - DOI - PMC - PubMed
  28.  
    1. Huberfeld G., Blauwblomme T., Miles R. (2015). Hippocampus and epilepsy: findings from human tissues. Rev. Neurol. 171, 236–251. 10.1016/j.neurol.2015.01.563 - DOI - PMC - PubMed
  29.  
    1. Johnston D., Brown T. H. (1986). Control theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. Adv. Neurol. 44, 263–274. - PubMed
  30.  
    1. Khazipov R., Valeeva G., Khalilov I. (2015). Depolarizing GABA and developmental epilepsies. CNS Neurosci. Ther. 21, 83–91. 10.1111/cns.12353 - DOI - PMC - PubMed
  31.  
    1. Kim N. K., Robinson H. P. (2011). Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. Eur. J. Neurosci. 34, 199–212. 10.1111/j.1460-9568.2011.07768.x - DOI - PubMed
  32.  
    1. Klapstein G. J., Colmers W. F. (1997). Neuropeptide Y suppresses epileptiform activity in rat hippocampus in vitro . J. Neurophysiol. 78, 1651–1661. 10.1152/jn.1997.78.3.1651 - DOI - PubMed
  33.  
    1. Köhling R., Gladwell S., Bracci E., Vreugdenhil M., Jefferys J. (2001). Prolonged epileptiform bursting induced by 0-Mg2+ in rat hippocampal slices depends on gap junctional coupling. Neuroscience 105, 579–587. 10.1016/s0306-4522(01)00222-6 - DOI - PubMed
  34.  
    1. Kombian S. B., Phillips O. A. (2013). Novel actions of oxazolidinones: in vitro screening of a triazolyloxazolidinone for anticonvulsant activity. Med. Princ. Pract. 22, 340–345. 10.1159/000346005 - DOI - PMC - PubMed
  35.  
    1. Kreir M., Van Deuren B., Versweyveld S., De Bondt A., Van Den Wyngaert I., Van Der Linde H., et al. (2018). Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans? Toxicol. Appl. Pharmacol. 346, 45–57. 10.1016/j.taap.2018.03.028 - DOI - PubMed
  36.  
    1. Kukuia K. K., Ameyaw E. O., Woode E., Mante P. K., Adongo D. W. (2016). Enhancement of inhibitory neurotransmission and inhibition of excitatory mechanisms underlie the anticonvulsant effects of mallotus oppositifolius. J. Pharm. Bioallied Sci. 8, 253. 10.4103/0975-7406.183226 - DOI - PMC - PubMed
  37.  
    1. Kupferberg H. (2001). Animal models used in the screening of antiepileptic drugs. Epilepsia 42, 7–12. 10.1046/j.1528-1157.2001.0420s4007.x - DOI - PubMed
  38.  
    1. Lothman E. W., Collins R. C. (1981). Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 218, 299–318. 10.1016/0006-8993(81)91308-1 - DOI - PubMed
  39.  
    1. Mangan P. S., Kapur J. (2004). Factors underlying bursting behavior in a network of cultured hippocampal neurons exposed to zero magnesium. J. Neurophysiol. 91, 946–957. 10.1152/jn.00547.2003 - DOI - PMC - PubMed
  40.  
    1. Mante P. K., Adongo D. W., Woode E., Kukuia K. K. E., Ameyaw E. O. (2013). Anticonvulsant effect of Antiaris toxicaria (Pers.) Lesch.(Moraceae) aqueous extract in rodents. ISRN Pharmacol. 2013, 519208. 10.1155/2013/519208 - DOI - PMC - PubMed
  41.  
    1. Mareš P., Kubová H. (2015). GABAB, not GABAA receptors play a role in cortical postictal refractoriness. Neuropharmacology 88, 99–102. 10.1016/j.neuropharm.2014.09.007 - DOI - PubMed
  42.  
    1. Mareš P., Kubova H. (2008). What is the role of neurotransmitter systems in cortical seizures. Physiol. Res. 57, S111–S120. - PubMed
  43.  
    1. Mayer M. L., Westbrook G. L., Guthrie P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263. 10.1038/309261a0 - DOI - PubMed
  44.  
    1. Mshana N. R., Abbiw D. K., Addae-Mensah I., Adjanohoun E., Ahyi M. R. A., Enow-Orock E. G., et al. (2000). Traditional medicine and pharmacopoeia. Contribution to the revision of ethnobotanical and 297 floristic studies in Ghana. Scientific, technical and research commission of the organization of 298 african unity. Scientific.Technical and Research Commission (OAU).
  45.  
    1. Page C. E., Coutellier L. (2019). Prefrontal excitatory/inhibitory balance in stress and emotional disorders: evidence for over-inhibition. Neurosci. Biobehav. Rev. 105, 39–51. 10.1016/j.neubiorev.2019.07.024 - DOI - PubMed
  46.  
    1. Parent J. M., Timothy W. Y., Leibowitz R. T., Geschwind D. H., Sloviter R. S., Lowenstein D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738. 10.1523/jneurosci.17-10-03727.1997 - DOI - PMC - PubMed
  47.  
    1. Petroff O. A. (2002). Book review: GABA and glutamate in the human brain. Neuroscientist 8, 562–573. 10.1177/1073858402238515 - DOI - PubMed
  48.  
    1. Rassner M. P., Moser A., Follo M., Joseph K., van Velthoven‐Wurster V., Feuerstein T. J. (2016). Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti‐seizure mechanism. J. Neurochem. 137, 177–189. 10.1111/jnc.13555 - DOI - PubMed
  49.  
    1. Rates S. M. K. (2001). Plants as source of drugs. Toxicon 39, 603–613. 10.1016/s0041-0101(00)00154-9 - DOI - PubMed
  50.  
    1. Real J. I., Simões A. P., Cunha R. A., Ferreira S. G., Rial D. (2018). Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur. J. Neurosci. 47, 1127–1134. 10.1111/ejn.13912 - DOI - PubMed
  51.  
    1. Rogawski M. A., Löscher W., Rho J. M. (2016). Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb Perspect. Med. 6, a022780. 10.1101/cshperspect.a022780 - DOI - PMC - PubMed
  52.  
    1. Rowley N. M., Madsen K. K., Schousboe A., White H. S. (2012). Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem. Int. 61, 546–558. 10.1016/j.neuint.2012.02.013 - DOI - PubMed
  53.  
    1. Scharfman H. E., Schwartzkroin P. A. (1990). Consequences of prolonged afferent stimulation of the rat fascia dentata: epileptiform activity in area CA3 of hippocampus. Neuroscience 35, 505–517. 10.1016/0306-4522(90)90325-x - DOI - PubMed
  54.  
    1. Silverman R. B. (2018). Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem. Rev. 118, 4037–4070. 10.1021/acs.chemrev.8b00009 - DOI - PubMed
  55.  
    1. Soh P. N., Benoit-Vical F. (2007). Are West African plants a source of future antimalarial drugs? J. Ethnopharmacol. 114, 130–140. 10.1016/j.jep.2007.08.012 - DOI - PubMed
  56.  
    1. Soukupova M., Binaschi A., Falcicchia C., Palma E., Roncon P., Zucchini S., et al. (2015). Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience 301, 246–253. 10.1016/j.neuroscience.2015.06.013 - DOI - PubMed
  57.  
    1. Sperk G., Furtinger S., Schwarzer C., Pirker S. (2004). GABA and its receptors in epilepsy, Recent Adv. Exp. Med. Biol. 548, 92–103. 10.1007/978-1-4757-6376-8_7 - DOI - PubMed
  58.  
    1. Stafford G. I., Pedersen M. E., van Staden J., Jäger A. K. (2008). Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol 119, 513–537. 10.1016/j.jep.2008.08.010 - DOI - PubMed
  59.  
    1. Stasheff S. F., Bragdon A. C., Wilson W. A. (1985). Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli. Brain Res. 344, 296–302. 10.1016/0006-8993(85)90807-8 - DOI - PubMed
  60.  
    1. Tian J., Li Y., Yang S. (1991). Model of stimulus train-induced bursting in rat hippocampal slice and the effect of L-glutamate on it. J. West China Univ. Med. Sci. 22, 27–30. - PubMed
  61.  
    1. Traynelis S. F., Dingledine R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. 10.1152/jn.1988.59.1.259 - DOI - PubMed
  62.  
    1. Treiman D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia 42 (Suppl. 3), 8–12. 10.1046/j.1528-1157.2001.042suppl.3008.x - DOI - PubMed
  63.  
    1. Van Andel T., Myren B., Van Onselen S. (2012). Ghana's herbal market. J. Ethnopharmacol. 140, 368–378. 10.1016/j.jep.2012.01.028 - DOI - PubMed
  64.  
    1. Vogel H. G., Vogel W. H. (2013). Drug discovery and evaluation: pharmacological assays. Berlin Heidelberg New York: Springer‐Verlag, 2068.
  65.  
    1. Wong M. (2011). Epilepsy in a dish: an in vitro model of epileptogenesis: epilepsy in a dish. Epilepsy Curr. 11, 153–154. 10.5698/1535-7511-11.5.153 - DOI - PMC - PubMed
  66.  
    1. Woode E., Alagpulinsa D. A., Abotsi W. K. M. (2011a). Anti-nociceptive, anxiolytic and anticonvulsant effects of an aqueous leaf extract of Leea guineensis G. Don (Family: Leeaceae). Afr. J. Pharm. Pharmacol. 5, 1132–1144. 10.5897/AJPP10.407 - DOI
  67.  
    1. Woode E., Poku R. A., Abotsi W. K. M. (2011b). Anticonvulsant effects of a leaf extract of Ficus exasperata Vahl (Moraceae) in Mice. Int. J. Pharmacol. 7, 405–409. 10.3923/ijp.2011.405.409 - DOI
  68.  
    1. Woode E., Amoateng P., Ansah C., Duwiejua M. (2009). Anti-Nociceptive effects of an ethanolic extract of the whole plant of Synedrella nodiflora (L.) Gaertn in mice: involvement of adenosinergic mechanisms. J. Pharmacol. Toxicol. 4, 17–29. 10.3923/jpt.2009.17.29 - DOI
  69.  
    1. Xia J. X., Xiong J. X., Wang H. K., Duan S. M., Ye J. N., Hu Z. A. (2012). Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons. Neuroscience 201, 46–56. 10.1016/j.neuroscience.2011.11.019 - DOI - PubMed