Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana.
Department of Physiology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Medical Pharmacology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
School of Life Sciences, University of Warwick, Coventry, United Kingdom.
Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Health Science Center, Kuwait University, Safat, Kuwait.
Department of Pharmacology and Toxicology, School of Medicine and Medical Sciences, University for Development Studies, Tamale, Ghana.
Extracts of the tropical Cinderella plant Synedrella nodiflora are used traditionally to manage convulsive conditions in the West African sub-region. This study sought to determine the neuronal basis of the effectiveness of these plant extracts to suppress seizure activity. Using the hippocampal slice preparation from rats, the ability of the extract to depress excitatory synaptic transmission and in vitro seizure activity were investigated. Bath perfusion of the hydro-ethanolic extract of Synedrella nodiflora (SNE) caused a concentration-dependent depression of evoked field excitatory postsynaptic potentials (fEPSPs) recorded extracellularly in the CA1 region of the hippocampus with maximal depression of about 80% and an estimated IC50 of 0.06 mg/ml. The SNE-induced fEPSP depression was accompanied by an increase in paired pulse facilitation. The fEPSP depression only recovered partially after 20 min washing out. The effect of SNE was not stimulus dependent as it was present even in the absence of synaptic stimulation. Furthermore, it did not show desensitization as repeat application after 10 min washout produced the same level of fEPSP depression as the first application. The SNE effect on fEPSPs was not via adenosine release as it was neither blocked nor reversed by 8-CPT, an adenosine A1 receptor antagonist. In addition, SNE depressed in vitro seizures induced by zero Mg2+ and high K+ -containing artificial cerebrospinal fluid (aCSF) in a concentration-dependent manner. The results show that SNE depresses fEPSPs and spontaneous bursting activity in hippocampal neurons that may underlie its ability to abort convulsive activity in persons with epilepsy.
Keywords: SNE; adenosine; field excitatory postsynaptic potentials; hippocampal slices; seizure.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Abel C., Busia K. (2005). An exploratory ethnobotanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern. Med. Rev. 10, 112. - PubMed
Adjei P. (2017). Traditional medicine in the management of epilepsy: a global approach. London, United Kingdom: Cambridge University Press, Vol. 165, 162–164.
Adjei S., Amoateng P., Osei-Safo D., Sasu C., N’guessan B. B., Addo P., et al. (2014b). Sub-acute toxicity of a hydro-ethanolic whole plant extract of Synedrella nodiflora (L) Gaertn in rats. Int. J. Green Pharm. 8, 271–275. 10.4103/0973-8258.142695 - DOI
Adjei S., Amoateng P., Osei-Safo D., Ahedor B., N’guessan B., Addo P., et al. (2014a). Biochemical and haematological changes following an acute toxicity study of a hydro-ethanolic whole plant extract of Synedrella nodiflora (L) Gaertn in male Sprague-Dawley rats. J. Med. Biomed. Sci. 3, 31–37. 10.4314/jmbs.v3i1.5 - DOI
Alves M., Beamer E., Engel T. (2018). The metabotropic purinergic P2Y receptor family as novel drug target in epilepsy. Front. Pharmacol. 9, 193. 10.3389/fphar.2018.00193 - DOI - PMC - PubMed
Amoateng P., Adjei S., Osei-Safo D., Ahedor B., Mahmood S. A., N'Guessan B. B., et al. (2016). Long-term continuous administration of a hydro-ethanolic extract of Synedrella nodiflora (L) Gaertn in male Sprague-Dawley rats: biochemical, haematological and histopathological changes. Ghana Med. J. 50, 163–171. 10.4314/gmj.v50i3.8 - DOI - PMC - PubMed
Amoateng P., Adjei S., Osei-Safo D., Ameyaw E. O., Ahedor B., N'Guessan B. B., et al. (2015). A hydro-ethanolic extract of Synedrella nodiflora (L.) Gaertn ameliorates hyperalgesia and allodynia in vincristine-induced neuropathic pain in rats. J. Basic Clin. Physiol. Pharmacol. 26, 383–394. 10.1515/jbcpp-2014-0084 - DOI - PubMed
Amoateng P., Adjei S., Osei-Safo D., Kukuia K. K., Bekoe E. O., Karikari T. K., et al. (2017). Extract of Synedrella nodiflora (L) Gaertn exhibits antipsychotic properties in murine models of psychosis. BMC Complement Altern. Med. 17, 389. 10.1186/s12906-017-1901-2 - DOI - PMC - PubMed
Amoateng P., Quansah E., Karikari T. K., Asase A., Osei-Safo D., Kukuia K. K. E., et al. (2018a). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement Altern. Med. 2018, 8590381. 10.1155/2018/8590381 - DOI - PMC - PubMed
Amoateng P., Quansah E., Karikari T. K., Asase A., Osei-Safo D., Kukuia K. K. E., et al. (2018b). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement Altern. Med. 2018, 8590381. 10.1155/2018/8590381 - DOI - PMC - PubMed
Amoateng P., Woode E., Kombian S. B. (2012). Anticonvulsant and related neuropharmacological effects of the whole plant extract of Synedrella nodiflora (L.) Gaertn (asteraceae). J. Pharm. Bioallied Sci. 4, 140–148. 10.4103/0975-7406.94816 - DOI - PMC - PubMed
Amoateng P., Assumeng Koffuor G., Sarpong K., Oteng Agyapong K. (2011). Free radical scavenging and anti-lipid peroxidative effects of a hydro-ethanolic extract of the whole plant of Synedrella nodiflora (L.) Gaertn (asteraceae). Free Radicals Antioxid. 1, 70–78. 10.5530/ax.2011.3.10 - DOI
Ananthalakshmi K. V., Edafiogho I. O., Kombian S. B. (2007). Anticonvulsant enaminone E139 suppresses epileptiform activity in rat hippocampal slices. Epilepsy Res. 76, 85–92. 10.1016/j.eplepsyres.2007.07.001 - DOI - PubMed
Anderson W. W., Fitzjohn S. M., Collingridge G. L. (2012). Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control. J. Neurosci. Methods 207, 148–160. 10.1016/j.jneumeth.2012.04.008 - DOI - PMC - PubMed
Anderson W. W., Lewis D. V., Swartzwelder H. S., Wilson W. A. (1986). Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 19 (398), 215–219. 10.1016/0006-8993(86)91274-6 - DOI - PubMed
Avoli M. (2019). Inhibition, oscillations and focal seizures: an overview inspired by some historical notes. Neurobiol. Dis. 130, 104478. 10.1016/j.nbd.2019.104478 - DOI - PubMed
Calfa G., Li W., Rutherford J. M., Pozzo‐Miller L. (2015). Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice. Hippocampus 25, 159–168. 10.1002/hipo.22360 - DOI - PMC - PubMed
Cavarsan C. F., Malheiros J., Hamani C., Najm I., Covolan L. (2018). Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front. Neurol. 9, 1023. 10.3389/fneur.2018.01023 - DOI - PMC - PubMed
Clarke R. J., Glasgow N. G., Johnson J. W. (2013). Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock. J. Neurosci. 33, 4140–4150. 10.1523/JNEUROSCI.3712-12.2013 - DOI - PMC - PubMed
Farrell J. S., Nguyen Q.-A., Soltesz I. (2019). Resolving the micro-macro disconnect to address core features of seizure networks. Neuron 101, 1016–1028. 10.1016/j.neuron.2019.01.043 - DOI - PMC - PubMed
Feng Z., Durand D. M. (2003). Low-calcium epileptiform activity in the hippocampus in vivo . J. Neurophysiol. 90, 2253–2260. 10.1152/jn.00241.2003 - DOI - PubMed
Gao W. J., Goldman-Rakic P. S. (2006). NMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons. Exp. Neurol. 197, 495–504. 10.1016/j.expneurol.2005.05.018 - DOI - PubMed
Gean P. W., Shinnick-Gallagher P. (1988). Characterization of the epileptiform activity induced by magnesium-free solution in rat amygdala slices: an intracellular study. Exp. Neurol. 101, 248–255. 10.1016/0014-4886(88)90008-8 - DOI - PubMed
Gunn B., Baram T. (2017). Stress and seizures: space, time and hippocampal circuits. Trends Neurosci. 40, 667–679. 10.1016/j.tins.2017.08.004 - DOI - PMC - PubMed
Hablitz J. J., Heinemann U. (1987). Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Brain Res. 433, 299–303. 10.1016/0165-3806(87)90036-8 - DOI - PubMed
Horne A. L., Harrison N. L., Turner J. P., Simmonds M. A. (1986). Spontaneous paroxysmal activity induced by zero magnesium and bicuculline: suppression by NMDA antagonists and GABA mimetics. Eur. J. Pharmacol. 122, 231–238. 10.1016/0014-2999(86)90107-x - DOI - PubMed
Huang Z., Gibb A. J. (2014). Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078. 10.1113/jphysiol.2013.267864 - DOI - PMC - PubMed
Huberfeld G., Blauwblomme T., Miles R. (2015). Hippocampus and epilepsy: findings from human tissues. Rev. Neurol. 171, 236–251. 10.1016/j.neurol.2015.01.563 - DOI - PMC - PubMed
Johnston D., Brown T. H. (1986). Control theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. Adv. Neurol. 44, 263–274. - PubMed
Khazipov R., Valeeva G., Khalilov I. (2015). Depolarizing GABA and developmental epilepsies. CNS Neurosci. Ther. 21, 83–91. 10.1111/cns.12353 - DOI - PMC - PubMed
Kim N. K., Robinson H. P. (2011). Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. Eur. J. Neurosci. 34, 199–212. 10.1111/j.1460-9568.2011.07768.x - DOI - PubMed
Klapstein G. J., Colmers W. F. (1997). Neuropeptide Y suppresses epileptiform activity in rat hippocampus in vitro . J. Neurophysiol. 78, 1651–1661. 10.1152/jn.1997.78.3.1651 - DOI - PubMed
Köhling R., Gladwell S., Bracci E., Vreugdenhil M., Jefferys J. (2001). Prolonged epileptiform bursting induced by 0-Mg2+ in rat hippocampal slices depends on gap junctional coupling. Neuroscience 105, 579–587. 10.1016/s0306-4522(01)00222-6 - DOI - PubMed
Kombian S. B., Phillips O. A. (2013). Novel actions of oxazolidinones: in vitro screening of a triazolyloxazolidinone for anticonvulsant activity. Med. Princ. Pract. 22, 340–345. 10.1159/000346005 - DOI - PMC - PubMed
Kreir M., Van Deuren B., Versweyveld S., De Bondt A., Van Den Wyngaert I., Van Der Linde H., et al. (2018). Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans? Toxicol. Appl. Pharmacol. 346, 45–57. 10.1016/j.taap.2018.03.028 - DOI - PubMed
Kukuia K. K., Ameyaw E. O., Woode E., Mante P. K., Adongo D. W. (2016). Enhancement of inhibitory neurotransmission and inhibition of excitatory mechanisms underlie the anticonvulsant effects of mallotus oppositifolius. J. Pharm. Bioallied Sci. 8, 253. 10.4103/0975-7406.183226 - DOI - PMC - PubMed
Kupferberg H. (2001). Animal models used in the screening of antiepileptic drugs. Epilepsia 42, 7–12. 10.1046/j.1528-1157.2001.0420s4007.x - DOI - PubMed
Lothman E. W., Collins R. C. (1981). Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 218, 299–318. 10.1016/0006-8993(81)91308-1 - DOI - PubMed
Mangan P. S., Kapur J. (2004). Factors underlying bursting behavior in a network of cultured hippocampal neurons exposed to zero magnesium. J. Neurophysiol. 91, 946–957. 10.1152/jn.00547.2003 - DOI - PMC - PubMed
Mante P. K., Adongo D. W., Woode E., Kukuia K. K. E., Ameyaw E. O. (2013). Anticonvulsant effect of Antiaris toxicaria (Pers.) Lesch.(Moraceae) aqueous extract in rodents. ISRN Pharmacol. 2013, 519208. 10.1155/2013/519208 - DOI - PMC - PubMed
Mareš P., Kubová H. (2015). GABAB, not GABAA receptors play a role in cortical postictal refractoriness. Neuropharmacology 88, 99–102. 10.1016/j.neuropharm.2014.09.007 - DOI - PubMed
Mareš P., Kubova H. (2008). What is the role of neurotransmitter systems in cortical seizures. Physiol. Res. 57, S111–S120. - PubMed
Mayer M. L., Westbrook G. L., Guthrie P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263. 10.1038/309261a0 - DOI - PubMed
Mshana N. R., Abbiw D. K., Addae-Mensah I., Adjanohoun E., Ahyi M. R. A., Enow-Orock E. G., et al. (2000). Traditional medicine and pharmacopoeia. Contribution to the revision of ethnobotanical and 297 floristic studies in Ghana. Scientific, technical and research commission of the organization of 298 african unity. Scientific.Technical and Research Commission (OAU).
Page C. E., Coutellier L. (2019). Prefrontal excitatory/inhibitory balance in stress and emotional disorders: evidence for over-inhibition. Neurosci. Biobehav. Rev. 105, 39–51. 10.1016/j.neubiorev.2019.07.024 - DOI - PubMed
Parent J. M., Timothy W. Y., Leibowitz R. T., Geschwind D. H., Sloviter R. S., Lowenstein D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738. 10.1523/jneurosci.17-10-03727.1997 - DOI - PMC - PubMed
Petroff O. A. (2002). Book review: GABA and glutamate in the human brain. Neuroscientist 8, 562–573. 10.1177/1073858402238515 - DOI - PubMed
Rassner M. P., Moser A., Follo M., Joseph K., van Velthoven‐Wurster V., Feuerstein T. J. (2016). Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti‐seizure mechanism. J. Neurochem. 137, 177–189. 10.1111/jnc.13555 - DOI - PubMed
Rates S. M. K. (2001). Plants as source of drugs. Toxicon 39, 603–613. 10.1016/s0041-0101(00)00154-9 - DOI - PubMed
Real J. I., Simões A. P., Cunha R. A., Ferreira S. G., Rial D. (2018). Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur. J. Neurosci. 47, 1127–1134. 10.1111/ejn.13912 - DOI - PubMed
Rogawski M. A., Löscher W., Rho J. M. (2016). Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb Perspect. Med. 6, a022780. 10.1101/cshperspect.a022780 - DOI - PMC - PubMed
Rowley N. M., Madsen K. K., Schousboe A., White H. S. (2012). Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem. Int. 61, 546–558. 10.1016/j.neuint.2012.02.013 - DOI - PubMed
Scharfman H. E., Schwartzkroin P. A. (1990). Consequences of prolonged afferent stimulation of the rat fascia dentata: epileptiform activity in area CA3 of hippocampus. Neuroscience 35, 505–517. 10.1016/0306-4522(90)90325-x - DOI - PubMed
Silverman R. B. (2018). Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem. Rev. 118, 4037–4070. 10.1021/acs.chemrev.8b00009 - DOI - PubMed
Soh P. N., Benoit-Vical F. (2007). Are West African plants a source of future antimalarial drugs? J. Ethnopharmacol. 114, 130–140. 10.1016/j.jep.2007.08.012 - DOI - PubMed
Soukupova M., Binaschi A., Falcicchia C., Palma E., Roncon P., Zucchini S., et al. (2015). Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Neuroscience 301, 246–253. 10.1016/j.neuroscience.2015.06.013 - DOI - PubMed
Sperk G., Furtinger S., Schwarzer C., Pirker S. (2004). GABA and its receptors in epilepsy, Recent Adv. Exp. Med. Biol. 548, 92–103. 10.1007/978-1-4757-6376-8_7 - DOI - PubMed
Stafford G. I., Pedersen M. E., van Staden J., Jäger A. K. (2008). Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol 119, 513–537. 10.1016/j.jep.2008.08.010 - DOI - PubMed
Stasheff S. F., Bragdon A. C., Wilson W. A. (1985). Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli. Brain Res. 344, 296–302. 10.1016/0006-8993(85)90807-8 - DOI - PubMed
Tian J., Li Y., Yang S. (1991). Model of stimulus train-induced bursting in rat hippocampal slice and the effect of L-glutamate on it. J. West China Univ. Med. Sci. 22, 27–30. - PubMed
Traynelis S. F., Dingledine R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276. 10.1152/jn.1988.59.1.259 - DOI - PubMed
Treiman D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia 42 (Suppl. 3), 8–12. 10.1046/j.1528-1157.2001.042suppl.3008.x - DOI - PubMed
Van Andel T., Myren B., Van Onselen S. (2012). Ghana's herbal market. J. Ethnopharmacol. 140, 368–378. 10.1016/j.jep.2012.01.028 - DOI - PubMed
Vogel H. G., Vogel W. H. (2013). Drug discovery and evaluation: pharmacological assays. Berlin Heidelberg New York: Springer‐Verlag, 2068.
Wong M. (2011). Epilepsy in a dish: an in vitro model of epileptogenesis: epilepsy in a dish. Epilepsy Curr. 11, 153–154. 10.5698/1535-7511-11.5.153 - DOI - PMC - PubMed
Woode E., Alagpulinsa D. A., Abotsi W. K. M. (2011a). Anti-nociceptive, anxiolytic and anticonvulsant effects of an aqueous leaf extract of Leea guineensis G. Don (Family: Leeaceae). Afr. J. Pharm. Pharmacol. 5, 1132–1144. 10.5897/AJPP10.407 - DOI
Woode E., Poku R. A., Abotsi W. K. M. (2011b). Anticonvulsant effects of a leaf extract of Ficus exasperata Vahl (Moraceae) in Mice. Int. J. Pharmacol. 7, 405–409. 10.3923/ijp.2011.405.409 - DOI
Woode E., Amoateng P., Ansah C., Duwiejua M. (2009). Anti-Nociceptive effects of an ethanolic extract of the whole plant of Synedrella nodiflora (L.) Gaertn in mice: involvement of adenosinergic mechanisms. J. Pharmacol. Toxicol. 4, 17–29. 10.3923/jpt.2009.17.29 - DOI
Xia J. X., Xiong J. X., Wang H. K., Duan S. M., Ye J. N., Hu Z. A. (2012). Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons. Neuroscience 201, 46–56. 10.1016/j.neuroscience.2011.11.019 - DOI - PubMed