Impaired spatial navigation and age-dependent hippocampal synaptic dysfunction are associated with chronic inflammatory response in db/db mice
Affiliations
Affiliations
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
- Undergraduate Medical Degree Program, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
- Neuroscience Axis, Research Center of CHU de Québec, Université Laval, Quebec City, Quebec, Canada.
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD), which has been proposed to be driven by an abnormal neuroinflammatory response affecting cognitive function. However, the impact of T2DM on hippocampal function and synaptic integrity during aging has not been investigated. Here, we investigated the effects of aging in T2DM on AD-like pathology using the leptin receptor-deficient db/db mouse model of T2DM. Our results indicate that adult T2DM mice exhibited impaired spatial acquisition in the Morris water maze (MWM). Morphological analysis showed an age-dependent neuronal loss in the dentate gyrus. We found that astrocyte density was significantly decreased in all regions of the hippocampus in T2DM mice. Our analysis showed that microglial activation was increased in the CA3 and the dentate gyrus of the hippocampus in an age-dependent manner in T2DM mice. However, the expression of presynaptic marker protein (synaptophysin) and the postsynaptic marker protein [postsynaptic density protein 95 (PSD95)] was unchanged in the hippocampus of adult T2DM mice. Interestingly, synaptophysin and PSD95 expression significantly decreased in the hippocampus of aged T2DM mice, suggesting an impaired hippocampal synaptic integrity. Cytokine profiling analysis displayed a robust pro-inflammatory cytokine profile in the hippocampus of aged T2DM mice compared with the younger cohort, outlining the role of aging in exacerbating the neuroinflammatory profile in the diabetic state. Our results suggest that T2DM impairs cognitive function by promoting neuronal loss in the dentate gyrus and triggering an age-dependent deterioration in hippocampal synaptic integrity, associated with an aberrant neuroinflammatory response.
Keywords: Alzheimer's disease; cytokines; diabetes mellitus; hippocampus; memory; neuroinflammation.
Similar articles
Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW.Neuroscience. 2009 Sep 29;163(1):55-72. doi: 10.1016/j.neuroscience.2009.05.071. Epub 2009 Jun 14.PMID: 19500657 Free PMC article.
Liu B, Kou J, Li F, Huo D, Xu J, Zhou X, Meng D, Ghulam M, Artyom B, Gao X, Ma N, Han D.Aging (Albany NY). 2020 May 11;12(9):8622-8639. doi: 10.18632/aging.103179. Epub 2020 May 11.PMID: 32392535 Free PMC article.
Matsuda T, Hisatsune T.J Alzheimers Dis. 2017;56(1):1-23. doi: 10.3233/JAD-160761.PMID: 27911310
Lazarov O, Minshall RD, Bonini MG.Int Rev Neurobiol. 2020;155:235-269. doi: 10.1016/bs.irn.2020.03.020.PMID: 32854856 Free PMC article. Review.
Spatial Navigation (Water Maze) Tasks.
Terry AV Jr.In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 13.PMID: 21204326 Free Books & Documents. Review.
KMEL References
References
-
- Aizenman, Y., & de Vellis, J. (1987). Synergistic action of thyroid hormone, insulin and hydrocortisone on astrocyte differentiation. Brain Research, 414, 301-308. https://doi.org/10.1016/0006-8993(87)90010-2
-
- Al-Onaizi, M., Al-Khalifah, A., Qasem, D., & ElAli, A. (2020). Role of microglia in modulating adult neurogenesis in health and neurodegeneration. International Journal of Molecular Sciences, 21, 6875. https://doi.org/10.3390/ijms21186875
-
- Al-Onaizi, M. A., Parfitt, G. M., Kolisnyk, B., Law, C. S., Guzman, M. S., Barros, D. M., Leung, L. S., Prado, M. A., & Prado, V. F. (2017). Regulation of cognitive processing by hippocampal cholinergic tone. Cerebral Cortex, 27, 1615-1628. https://doi.org/10.1093/cercor/bhv349
-
- Alpers, C. E., & Hudkins, K. L. (2011). Mouse models of diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 20, 278-284. https://doi.org/10.1097/MNH.0b013e3283451901
-
- Arnold, S. E., Lucki, I., Brookshire, B. R., Carlson, G. C., Browne, C. A., Kazi, H., Bang, S., Choi, B. R., Chen, Y., McMullen, M. F., & Kim, S. F. (2014). High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiology of Disease, 67, 79-87. https://doi.org/10.1016/j.nbd.2014.03.011
-
- Baydas, G., Nedzvetskii, V. S., Tuzcu, M., Yasar, A., & Kirichenko, S. V. (2003). Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: Effects of vitamin E. European Journal of Pharmacology, 462, 67-71. https://doi.org/10.1016/S0014-2999(03)01294-9
-
- Bell, R. D., & Zlokovic, B. V. (2009). Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathologica, 118, 103-113. https://doi.org/10.1007/s00401-009-0522-3
-
- Biessels, G. J., & Reagan, L. P. (2015). Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews. Neuroscience, 16, 660-671. https://doi.org/10.1038/nrn4019
-
- Bonds, J. A., Shetti, A., Stephen, T. K. L., Bonini, M. G., Minshall, R. D., & Lazarov, O. (2020). Deficits in hippocampal neurogenesis in obesity-dependent and -independent type-2 diabetes mellitus mouse models. Scientific Reports, 10, 16368. https://doi.org/10.1038/s41598-020-73401-9
-
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
-
- Brands, A. M., Kessels, R. P., de Haan, E. H., Kappelle, L. J., & Biessels, G. J. (2004). Cerebral dysfunction in type 1 diabetes: Effects of insulin, vascular risk factors and blood-glucose levels. European Journal of Pharmacology, 490, 159-168. https://doi.org/10.1016/j.ejphar.2004.02.053
-
- Brennan, A. M., & Mantzoros, C. S. (2006). Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nature Clinical Practice. Endocrinology & Metabolism, 2, 318-327. https://doi.org/10.1038/ncpendmet0196
-
- Brodie, C., Goldreich, N., Haiman, T., & Kazimirsky, G. (1998). Functional IL-4 receptors on mouse astrocytes: IL-4 inhibits astrocyte activation and induces NGF secretion. Journal of Neuroimmunology, 81, 20-30. https://doi.org/10.1016/S0165-5728(97)00154-9
-
- Brody, D. L., & Holtzman, D. M. (2006). Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Experimental Neurology, 197, 330-340. https://doi.org/10.1016/j.expneurol.2005.10.020
-
- Burke, S. J., Batdorf, H. M., Burk, D. H., Noland, R. C., Eder, A. E., Boulos, M. S., Karlstad, M. D., & Collier, J. J. (2017). db/db mice exhibit features of human type 2 diabetes that are not present in weight-matched C57BL/6J mice fed a Western diet. Journal Diabetes Research, 2017, 8503754-17. https://doi.org/10.1155/2017/8503754
-
- Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer's disease. Nature Neuroscience, 20, 1236-1246. https://doi.org/10.1038/nn.4608
-
- Casse, F., Richetin, K., & Toni, N. (2018). Astrocytes' contribution to adult neurogenesis in physiology and Alzheimer's disease. Frontiers in Cellular Neuroscience, 12, 432. https://doi.org/10.3389/fncel.2018.00432
-
- Chatterjee, S., & Mudher, A. (2018). Alzheimer's disease and type 2 diabetes: A critical assessment of the shared pathological traits. Frontiers in Neuroscience, 12, 383. https://doi.org/10.3389/fnins.2018.00383
-
- Chatzigeorgiou, A., Harokopos, V., Mylona-Karagianni, C., Tsouvalas, E., Aidinis, V., & Kamper, E. F. (2010). The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Annals of Medicine, 42, 426-438. https://doi.org/10.3109/07853890.2010.495951
-
- Chen, J., Liang, L., Zhan, L., Zhou, Y., Zheng, L., Sun, X., Gong, J., Sui, H., Jiang, R., Zhang, F., & Zhang, L. (2014). ZiBuPiYin recipe protects db/db mice from diabetes-associated cognitive decline through improving multiple pathological changes. PLoS ONE, 9, e91680. https://doi.org/10.1371/journal.pone.0091680
-
- Coleman, E., Judd, R., Hoe, L., Dennis, J., & Posner, P. (2004). Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia, 48, 166-178. https://doi.org/10.1002/glia.20068
-
- Coleman, E. S., Dennis, J. C., Braden, T. D., Judd, R. L., & Posner, P. (2010). Insulin treatment prevents diabetes-induced alterations in astrocyte glutamate uptake and GFAP content in rats at 4 and 8 weeks of diabetes duration. Brain Research, 1306, 131-141. https://doi.org/10.1016/j.brainres.2009.10.005
-
- Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019-2022. https://doi.org/10.1073/pnas.0336073100
-
- Cope, E. C., LaMarca, E. A., Monari, P. K., Olson, L. B., Martinez, S., Zych, A. D., Katchur, N. J., & Gould, E. (2018). Microglia play an active role in obesity-associated cognitive decline. The Journal of Neuroscience, 38, 8889-8904. https://doi.org/10.1523/JNEUROSCI.0789-18.2018
-
- Craft, S., Claxton, A., Baker, L. D., Hanson, A. J., Cholerton, B., Trittschuh, E. H., Dahl, D., Caulder, E., Neth, B., Montine, T. J., Jung, Y., Maldjian, J., Whitlow, C., & Friedman, S. (2017). Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: A pilot clinical trial. Journal of Alzheimer's Disease, 57, 1325-1334. https://doi.org/10.3233/JAD-161256
-
- Cukierman, T., Gerstein, H. C., & Williamson, J. D. (2005). Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia, 48, 2460-2469. https://doi.org/10.1007/s00125-005-0023-4
-
- Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752-758. https://doi.org/10.1038/nn1472
-
- De Felice, F. G. (2013). Alzheimer's disease and insulin resistance: Translating basic science into clinical applications. The Journal of Clinical Investigation, 123, 531-539. https://doi.org/10.1172/JCI64595
-
- De Felice, F. G., & Ferreira, S. T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes, 63, 2262-2272. https://doi.org/10.2337/db13-1954
-
- de la Monte, S. M., Re, E., Longato, L., & Tong, M. (2012). Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer's disease. Journal of Alzheimer's Disease, 30(Suppl 2), S217-S229. https://doi.org/10.3233/JAD-2012-111728
-
- Derecki, N. C., Cardani, A. N., Yang, C. H., Quinnies, K. M., Crihfield, A., Lynch, K. R., & Kipnis, J. (2010a). Regulation of learning and memory by meningeal immunity: A key role for IL-4. Journal of Experimental Medicine, 207, 1067-1080. https://doi.org/10.1084/jem.20091419
-
- Derecki, N. C., Cardani, A. N., Yang, C. H., Quinnies, K. M., Crihfield, A., Lynch, K. R., & Kipnis, J. (2010b). Regulation of learning and memory by meningeal immunity: A key role for IL-4. The Journal of Experimental Medicine, 207, 1067-1080. https://doi.org/10.1084/jem.20091419
-
- Dinel, A. L., Andre, C., Aubert, A., Ferreira, G., Laye, S., & Castanon, N. (2011). Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE, 6, e24325. https://doi.org/10.1371/journal.pone.0024325
-
- Dominguez, R. O., Pagano, M. A., Marschoff, E. R., Gonzalez, S. E., Repetto, M. G., & Serra, J. A. (2014). Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: Associations and a hypothesis. Neurología, 29, 567-572. https://doi.org/10.1016/j.nrl.2013.05.006
-
- Duarte, A. I., Moreira, P. I., & Oliveira, C. R. (2012). Insulin in central nervous system: More than just a peripheral hormone. Journal of Aging Research, 2012, 384017. https://doi.org/10.1155/2012/384017
-
- Duarte, J. M., Agostinho, P. M., Carvalho, R. A., & Cunha, R. A. (2012). Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS ONE, 7, e21899. https://doi.org/10.1371/journal.pone.0021899
-
- Dutheil, S., Ota, K. T., Wohleb, E. S., Rasmussen, K., & Duman, R. S. (2016). High-fat diet induced anxiety and anhedonia: Impact on brain homeostasis and inflammation. Neuropsychopharmacology, 41, 1874-1887. https://doi.org/10.1038/npp.2015.357
-
- Erion, J. R., Wosiski-Kuhn, M., Dey, A., Hao, S., Davis, C. L., Pollock, N. K., & Stranahan, A. M. (2014). Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. The Journal of Neuroscience, 34, 2618-2631. https://doi.org/10.1523/JNEUROSCI.4200-13.2014
-
- Ernst, A., Sharma, A. N., Elased, K. M., Guest, P. C., Rahmoune, H., & Bahn, S. (2013). Diabetic db/db mice exhibit central nervous system and peripheral molecular alterations as seen in neurological disorders. Translational Psychiatry, 3, e263. https://doi.org/10.1038/tp.2013.42
-
- Fernandez, A. M., & Torres-Aleman, I. (2012). The many faces of insulin-like peptide signalling in the brain. Nature Reviews. Neuroscience, 13, 225-239. https://doi.org/10.1038/nrn3209
-
- Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the new York Academy of Sciences, 908, 244-254.
-
- Frankola, K. A., Greig, N. H., Luo, W., & Tweedie, D. (2011). Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & Neurological Disorders Drug Targets, 10, 391-403. https://doi.org/10.2174/187152711794653751
-
- Gadani, S. P., Cronk, J. C., Norris, G. T., & Kipnis, J. (2012). IL-4 in the brain: A cytokine to remember. Journal of Immunology, 189, 4213-4219. https://doi.org/10.4049/jimmunol.1202246
-
- Galloway, D. A., Phillips, A. E. M., Owen, D. R. J., & Moore, C. S. (2019). Phagocytosis in the brain: Homeostasis and disease. Frontiers in Immunology, 10, 790. https://doi.org/10.3389/fimmu.2019.00790
-
- Gao, Z., Ure, K., Ables, J. L., Lagace, D. C., Nave, K. A., Goebbels, S., Eisch, A. J., & Hsieh, J. (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. Nature Neuroscience, 12, 1090-1092. https://doi.org/10.1038/nn.2385
-
- Garthe, A., Behr, J., & Kempermann, G. (2009). Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE, 4, e5464. https://doi.org/10.1371/journal.pone.0005464
-
- Garthe, A., & Kempermann, G. (2013). An old test for new neurons: Refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Frontiers in Neuroscience, 7, 63. https://doi.org/10.3389/fnins.2013.00063
-
- Gil-Bea, F. J., Solas, M., Solomon, A., Mugueta, C., Winblad, B., Kivipelto, M., Ramirez, M. J., & Cedazo-Minguez, A. (2010). Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease. Journal of Alzheimer's Disease, 22, 405-413. https://doi.org/10.3233/JAD-2010-100795
-
- Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., Tsui, W., Richardson, S., Javier, E., & Convit, A. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711-719. https://doi.org/10.1007/s00125-007-0602-7
-
- Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122, 16-26. https://doi.org/10.1037/0735-7044.122.1.16
-
- Gordon, G. R., Baimoukhametova, D. V., Hewitt, S. A., Rajapaksha, W. R., Fisher, T. E., & Bains, J. S. (2005). Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature Neuroscience, 8, 1078-1086. https://doi.org/10.1038/nn1498
-
- Hallschmid, M., Benedict, C., Born, J., & Kern, W. (2007). Targeting metabolic and cognitive pathways of the CNS by intranasal insulin administration. Expert Opinion on Drug Delivery, 4, 319-322. https://doi.org/10.1517/17425247.4.4.319
-
- Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nature Reviews. Immunology, 14, 463-477. https://doi.org/10.1038/nri3705
-
- Hu, W. T., Howell, J. C., Ozturk, T., Gangishetti, U., Kollhoff, A. L., Hatcher-Martin, J. M., Anderson, A. M., & Tyor, W. R. (2019). CSF cytokines in aging, multiple sclerosis, and dementia. Frontiers in Immunology, 10, 480. https://doi.org/10.3389/fimmu.2019.00480
-
- Hwang, I. K., Choi, J. H., Nam, S. M., Park, O. K., Yoo, D. Y., Kim, W., Yi, S. S., Won, M. H., Seong, J. K., & Yoon, Y. S. (2014). Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurological Research, 36, 824-832. https://doi.org/10.1179/1743132814Y.0000000330
-
- Kamal, A., Biessels, G. J., Duis, S. E., & Gispen, W. H. (2000). Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing. Diabetologia, 43, 500-506. https://doi.org/10.1007/s001250051335
-
- Kamal, M. A., Priyamvada, S., Anbazhagan, A. N., Jabir, N. R., Tabrez, S., & Greig, N. H. (2014). Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS & Neurological Disorders Drug Targets, 13, 338-346. https://doi.org/10.2174/18715273113126660137
-
- Kim, B., & Feldman, E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Experimental & Molecular Medicine, 47, e149. https://doi.org/10.1038/emm.2015.3
-
- Klein, W. L. (2006). Synaptic targeting by a beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer's disease. Alzheimers Dement, 2, 43-55. https://doi.org/10.1016/j.jalz.2005.11.003
-
- Kleinridders, A., Ferris, H. A., Cai, W., & Kahn, C. R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 63, 2232-2243. https://doi.org/10.2337/db14-0568
-
- Kolisnyk, B., al-Onaizi, M., Soreq, L., Barbash, S., Bekenstein, U., Haberman, N., Hanin, G., Kish, M. T., Souza da Silva, J., Fahnestock, M., Ule, J., Soreq, H., Prado, V. F., & Prado, M. A. M. (2017). Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer's-like pathology. Cerebral Cortex, 27, 3553-3567. https://doi.org/10.1093/cercor/bhw177
-
- Korolenko, T. A., Dubrovina, N. I., Ovsyukova, M. V., Bgatova, N. P., Tenditnik, M. V., Pupyshev, A. B., Akopyan, A. A., Goncharova, N. V., Lin, C. L., Zavjalov, E. L., Tikhonova, M., & Amstislavskaya, T. (2021). Treatment with autophagy inducer Trehalose alleviates memory and behavioral impairments and Neuroinflammatory brain processes in db/db mice. Cell, 10, 2557. https://doi.org/10.3390/cells10102557
-
- Kovacs, G. G. (2016). Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. International Journal of Molecular Sciences, 17, 189. https://doi.org/10.3390/ijms17020189
-
- Kovacs, G. G. (2019). Molecular pathology of neurodegenerative diseases: Principles and practice. Journal of Clinical Pathology, 72, 725-735. https://doi.org/10.1136/jclinpath-2019-205952
-
- Kuwabara, T., Hsieh, J., Muotri, A., Yeo, G., Warashina, M., Lie, D. C., Moore, L., Nakashima, K., Asashima, M., & Gage, F. H. (2009). Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neuroscience, 12, 1097-1105. https://doi.org/10.1038/nn.2360
-
- Lannert, H., & Hoyer, S. (1998). Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neuroscience, 112, 1199-1208. https://doi.org/10.1037/0735-7044.112.5.1199
-
- LaPorte, S. L., Juo, Z. S., Vaclavikova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., & Garcia, K. C. (2008). Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell, 132, 259-272. https://doi.org/10.1016/j.cell.2007.12.030
-
- Lazar, M. A. (2005). How obesity causes diabetes: Not a tall tale. Science, 307, 373-375. https://doi.org/10.1126/science.1104342
-
- Lechuga-Sancho, A. M., Arroba, A. I., Frago, L. M., Garcia-Caceres, C., de Celix, A. D., Argente, J., & Chowen, J. A. (2006). Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology, 147, 5314-5324.
-
- Lechuga-Sancho, A. M., Arroba, A. I., Frago, L. M., Paneda, C., Garcia-Caceres, C., Rubin, D., de Celix, A., Argente, J., & Chowen, J. A. (2006). Activation of the intrinsic cell death pathway, increased apoptosis and modulation of astrocytes in the cerebellum of diabetic rats. Neurobiology of Disease, 23, 290-299. https://doi.org/10.1016/j.nbd.2006.03.001
-
- Li, J., Deng, J., Sheng, W., & Zuo, Z. (2012). Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice. Pharmacology, Biochemistry, and Behavior, 101, 564-574. https://doi.org/10.1016/j.pbb.2012.03.002
-
- Li, X., Song, D., & Leng, S. X. (2015). Link between type 2 diabetes and Alzheimer's disease: From epidemiology to mechanism and treatment. Clinical Interventions in Aging, 10, 549-560. https://doi.org/10.2147/CIA.S74042
-
- Lie, D. C., Colamarino, S. A., Song, H. J., Désiré, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R., & Gage, F. H. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437, 1370-1375. https://doi.org/10.1038/nature04108
-
- Liu, M., Pleasure, S. J., Collins, A. E., Noebels, J. L., Naya, F. J., Tsai, M. J., & Lowenstein, D. H. (2000). Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 97, 865-870. https://doi.org/10.1073/pnas.97.2.865
-
- Lizarbe, B., Soares, A. F., Larsson, S., & Duarte, J. M. N. (2018). Neurochemical modifications in the Hippocampus, cortex and hypothalamus of mice exposed to long-term high-fat diet. Frontiers in Neuroscience, 12(7063), 985.
-
- Lyons, A., McQuillan, K., Deighan, B. F., O'Reilly, J. A., Downer, E. J., Murphy, A. C., Watson, M., Piazza, A., O'Connell, F., Griffin, R., Mills, K. H. G., & Lynch, M. A. (2009). Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behavior and Immunity, 23, 1020-1027. https://doi.org/10.1016/j.bbi.2009.05.060
-
- McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., & Messing, A. (1996). Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proceedings of the National Academy of Sciences of the United States of America, 93, 6361-6366. https://doi.org/10.1073/pnas.93.13.6361
-
- McCrimmon, R. J., Ryan, C. M., & Frier, B. M. (2012). Diabetes and cognitive dysfunction. Lancet, 379, 2291-2299. https://doi.org/10.1016/S0140-6736(12)60360-2
-
- Mehla, J., Chauhan, B. C., & Chauhan, N. B. (2014). Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. Journal of Alzheimer's Disease, 39, 145-162. https://doi.org/10.3233/JAD-131238
-
- Mendez-Gonzalez, M. P., Rivera-Aponte, D. E., Benedikt, J., Maldonado-Martinez, G., Tejeda-Bayron, F., Skatchkov, S. N., & Eaton, M. J. (2020). Downregulation of astrocytic Kir4.1 potassium channels is associated with hippocampal neuronal Hyperexcitability in type 2 diabetic mice. Brain Sciences, 10, 72. https://doi.org/10.3390/brainsci10020072
-
- Molnar, G., Farago, N., Kocsis, A. K., Rozsa, M., Lovas, S., Boldog, E., Baldi, R., Csajbok, E., Gardi, J., Puskas, L. G., & Tamas, G. (2014). GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. The Journal of Neuroscience, 34, 1133-1137. https://doi.org/10.1523/JNEUROSCI.4082-13.2014
-
- Nagayach, A., Patro, N., & Patro, I. (2014). Astrocytic and microglial response in experimentally induced diabetic rat brain. Metabolic Brain Disease, 29, 747-761. https://doi.org/10.1007/s11011-014-9562-z
-
- Naya, F. J., Stellrecht, C. M., & Tsai, M. J. (1995). Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes & Development, 9, 1009-1019. https://doi.org/10.1101/gad.9.8.1009
-
- Newman, E. A. (2003). New roles for astrocytes: Regulation of synaptic transmission. Trends in Neurosciences, 26, 536-542. https://doi.org/10.1016/S0166-2236(03)00237-6
-
- Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314-1318. https://doi.org/10.1126/science.1110647
-
- O'Connor, J. C., Satpathy, A., Hartman, M. E., Horvath, E. M., Kelley, K. W., Dantzer, R., Johnson, R. W., & Freund, G. G. (2005). IL-1beta-mediated innate immunity is amplified in the db/db mouse model of type 2 diabetes. Journal of Immunology, 174, 4991-4997. https://doi.org/10.4049/jimmunol.174.8.4991
-
- Olsen, G. M., Scheel-Kruger, J., Moller, A., & Jensen, L. H. (1994). Relation of spatial learning of rats in the Morris water maze task to the number of viable CA1 neurons following four-vessel occlusion. Behavioral Neuroscience, 108, 681-690.
-
- Pekny, M., & Pekna, M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. The Journal of Pathology, 204, 428-437. https://doi.org/10.1002/path.1645
-
- Perlman, A. S., Chevalier, J. M., Wilkinson, P., Liu, H., Parker, T., Levine, D. M., Sloan, B. J., Gong, A., Sherman, R., & Farrell, F. X. (2015). Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Annals of Clinical and Laboratory Science, 45, 256-263.
-
- Plum, L., Schubert, M., & Bruning, J. C. (2005). The role of insulin receptor signaling in the brain. Trends in Endocrinology and Metabolism, 16, 59-65. https://doi.org/10.1016/j.tem.2005.01.008
-
- Ramos-Rodriguez, J. J., Ortiz, O., Jimenez-Palomares, M., Kay, K. R., Berrocoso, E., Murillo-Carretero, M. I., Perdomo, G., Spires-Jones, T., Cozar-Castellano, I., Lechuga-Sancho, A. M., & Garcia-Alloza, M. (2013). Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology, 38, 2462-2475. https://doi.org/10.1016/j.psyneuen.2013.05.010
-
- Reger, M. A., Watson, G. S., Green, P. S., Baker, L. D., Cholerton, B., Fishel, M. A., Plymate, S. R., Cherrier, M. M., Schellenberg, G. D., Frey, W. H. II, & Craft, S. (2008). Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. Journal of Alzheimer's Disease, 13, 323-331. https://doi.org/10.3233/JAD-2008-13309
-
- Reiner, A., & Deng, Y. P. (2018). Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neuroscience & Therapeutics, 24, 250-280. https://doi.org/10.1111/cns.12844
-
- Ren, W. M., Weng, Z. B., Li, X., & Zhan, L. B. (2021). Neuroprotective effects of ZiBuPiYin recipe on db/db mice via PI3K-Akt signaling pathway by activating Grb2. Neural Plasticity, 2021, 8825698-10. https://doi.org/10.1155/2021/8825698
-
- Rivera, E. J., Goldin, A., Fulmer, N., Tavares, R., Wands, J. R., & de la Monte, S. M. (2005). Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: Link to brain reductions in acetylcholine. Journal of Alzheimer's Disease, 8, 247-268. https://doi.org/10.3233/JAD-2005-8304
-
- Sandeep, T. C., Yau, J. L., MacLullich, A. M., Noble, J., Deary, I. J., Walker, B. R., & Seckl, J. R. (2004). 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proceedings of the National Academy of Sciences of the United States of America, 101, 6734-6739. https://doi.org/10.1073/pnas.0306996101
-
- Sandmand, M., Bruunsgaard, H., Kemp, K., Andersen-Ranberg, K., Pedersen, A. N., Skinhoj, P., & Pedersen, B. K. (2002). Is ageing associated with a shift in the balance between type 1 and type 2 cytokines in humans? Clinical and Experimental Immunology, 127, 107-114. https://doi.org/10.1046/j.1365-2249.2002.01736.x
-
- Sankar, S. B., Infante-Garcia, C., Weinstock, L. D., Ramos-Rodriguez, J. J., Hierro-Bujalance, C., Fernandez-Ponce, C., Wood, L. B., & Garcia-Alloza, M. (2020). Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer's mouse model. Journal of Neuroinflammation, 17, 38. https://doi.org/10.1186/s12974-020-1707-x
-
- Saravia, F. E., Revsin, Y., Gonzalez Deniselle, M. C., Gonzalez, S. L., Roig, P., Lima, A., Homo-Delarche, F., & De Nicola, A. F. (2002). Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Research, 957, 345-353. https://doi.org/10.1016/S0006-8993(02)03675-2
-
- Schulz, J. B., & Falkenburger, B. H. (2004). Neuronal pathology in Parkinson's disease. Cell and Tissue Research, 318, 135-147. https://doi.org/10.1007/s00441-004-0954-y
-
- Shang, S., Yang, Y. M., Zhang, H., Tian, L., Jiang, J. S., Dong, Y. B., Zhang, K., Li, B., Zhao, W. D., Fang, W. G., & Chen, Y. H. (2016). Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice. Journal of Cerebral Blood Flow and Metabolism, 36, 1978-1991. https://doi.org/10.1177/0271678X16660983
-
- Shim, D. S., Schilter, H. C., Knott, M. L., Almeida, R. A., Short, R. P., Mackay, C. R., Dent, L. A., & Sewell, W. A. (2012). Protection against Nippostrongylus brasiliensis infection in mice is independent of GM-CSF. Immunology and Cell Biology, 90, 553-558. https://doi.org/10.1038/icb.2011.69
-
- Simon, P., Dupuis, R., & Costentin, J. (1994). Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behavioural Brain Research, 61, 59-64.
-
- Song, K., Li, Y.Y., Zhang, H.L., An, N., Wei, Y.F., Wang, L.Q., Tian, C., Yuan, M.C., Sun, Y.K., Xing, Y.W., et al. (2020). Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxidative Medicine and Cellular Longevity 2020.
-
- Spinelli, M., Fusco, S., & Grassi, C. (2019). Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline. Frontiers in Neuroscience, 13, 788. https://doi.org/10.3389/fnins.2019.00788
-
- Stranahan, A. M., Hao, S., Dey, A., Yu, X. L., & Baban, B. (2016). Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. Journal of Cerebral Blood Flow & Metabolism, 36, 2108-2121. https://doi.org/10.1177/0271678X16642233
-
- Stranahan, A. M., Lee, K., Martin, B., Maudsley, S., Golden, E., Cutler, R. G., & Mattson, M. P. (2009). Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus, 19, 951-961. https://doi.org/10.1002/hipo.20577
-
- Stranahan, A. M., Norman, E. D., Lee, K., Cutler, R. G., Telljohann, R. S., Egan, J. M., & Mattson, M. P. (2008). Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus, 18, 1085-1088. https://doi.org/10.1002/hipo.20470
-
- Suzumura, A., Sawada, M., Itoh, Y., & Marunouchi, T. (1994). Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class-ii major histocompatibility complex antigen expression. Journal of Neuroimmunology, 53, 209-218. https://doi.org/10.1016/0165-5728(94)90031-0
-
- Takeda, S., Sato, N., Uchio-Yamada, K., Sawada, K., Kunieda, T., Takeuchi, D., Kurinami, H., Shinohara, M., Rakugi, H., & Morishita, R. (2010). Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proceedings of the National Academy of Sciences of the United States of America, 107, 7036-7041. https://doi.org/10.1073/pnas.1000645107
-
- Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., Arvanitakis, Z., Schneider, J. A., Wolf, B. A., Bennett, D. A., Trojanowski, J. Q., & Arnold, S. E. (2012). Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of Clinical Investigation, 122, 1316-1338. https://doi.org/10.1172/JCI59903
-
- Taylor, R. (2012). Insulin resistance and type 2 diabetes. Diabetes, 61, 778-779. https://doi.org/10.2337/db12-0073
-
- Theriault, P., ElAli, A., & Rivest, S. (2015). The dynamics of monocytes and microglia in Alzheimer's disease. Alzheimers Research & Therapy, 7, 41. https://doi.org/10.1186/s13195-015-0125-2
-
- Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., & Barres, B. A. (2001). Control of synapse number by glia. Science, 291, 657-661. https://doi.org/10.1126/science.291.5504.657
-
- Umegaki, H. (2014). Type 2 diabetes as a risk factor for cognitive impairment: Current insights. Clinical Interventions in Aging, 9, 1011-1019. https://doi.org/10.2147/CIA.S48926
-
- Umegaki, H., Hayashi, T., Nomura, H., Yanagawa, M., Nonogaki, Z., Nakshima, H., & Kuzuya, M. (2013). Cognitive dysfunction: An emerging concept of a new diabetic complication in the elderly. Geriatrics & Gerontology International, 13, 28-34. https://doi.org/10.1111/j.1447-0594.2012.00922.x
-
- van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. https://doi.org/10.1038/4151030a
-
- Walz, W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochemistry International, 36, 291-300. https://doi.org/10.1016/S0197-0186(99)00137-0
-
- Wang, B. N., Wu, C. B., Chen, Z. M., Zheng, P. P., Liu, Y. Q., Xiong, J., Xu, J. Y., Li, P. F., Mamun, A. A., Ye, L. B., Zheng, Z. L., Wu, Y. Q., Xiao, J., & Wang, J. (2021). DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacologica Sinica, 42, 347-360. https://doi.org/10.1038/s41401-020-00583-3
-
- Wanrooy, B. J., Kumar, K. P., Wen, S. W., Qin, C. X., Ritchie, R. H., & Wong, C. H. Y. (2018). Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. Journal of Neuroinflammation, 15, 293. https://doi.org/10.1186/s12974-018-1329-8
-
- Watanabe, T., & Sakamoto, K. (2021). Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neuroscience Research, 170, 217-235. https://doi.org/10.1016/j.neures.2020.11.002
-
- West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet, 344, 769-772. https://doi.org/10.1016/S0140-6736(94)92338-8
-
- Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12, 1005-1015.
-
- Xu, Y., Cao, K., Guo, B., Xiang, J., Dong, Y. T., Qi, X. L., Yu, W. F., Xiao, Y., & Guan, Z. Z. (2020). Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging (Albany NY), 12, 14205-14218. https://doi.org/10.18632/aging.103435
-
- Yermakov, L. M., Griggs, R. B., Drouet, D. E., Sugimoto, C., Williams, M. T., Vorhees, C. V., & Susuki, K. (2019). Impairment of cognitive flexibility in type 2 diabetic db/db mice. Behavioural Brain Research, 371, 111978. https://doi.org/10.1016/j.bbr.2019.111978
-
- Yook, J. S., Rakwal, R., Shibato, J., Takahashi, K., Koizumi, H., Shima, T., Ikemoto, M. J., Oharomari, L. K., McEwen, B. S., & Soya, H. (2019). Leptin in hippocampus mediates benefits of mild exercise by an antioxidant on neurogenesis and memory. Proceedings of the National Academy of Sciences of the United States of America, 116, 10988-10993. https://doi.org/10.1073/pnas.1815197116
-
- Zheng, Y., Yang, Y., Dong, B., Zheng, H., Lin, X., Du, Y., Li, X., Zhao, L., & Gao, H. (2016). Metabonomic profiles delineate potential role of glutamate-glutamine cycle in db/db mice with diabetes-associated cognitive decline. Molecular Brain, 9, 40. https://doi.org/10.1186/s13041-016-0223-5
-
- Zuena, A. R., Casolini, P., Lattanzi, R., & Maftei, D. (2019). Chemokines in Alzheimer's disease: New insights into Prokineticins, Chemokine-like Proteins. Frontiers in Pharmacology, 10, 622. https://doi.org/10.3389/fphar.2019.00622