Impaired spatial navigation and age-dependent hippocampal synaptic dysfunction are associated with chronic inflammatory response in db/db mice

Affiliations

01 December 2022

-

doi: 10.1111/ejn.15835


Abstract

Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD), which has been proposed to be driven by an abnormal neuroinflammatory response affecting cognitive function. However, the impact of T2DM on hippocampal function and synaptic integrity during aging has not been investigated. Here, we investigated the effects of aging in T2DM on AD-like pathology using the leptin receptor-deficient db/db mouse model of T2DM. Our results indicate that adult T2DM mice exhibited impaired spatial acquisition in the Morris water maze (MWM). Morphological analysis showed an age-dependent neuronal loss in the dentate gyrus. We found that astrocyte density was significantly decreased in all regions of the hippocampus in T2DM mice. Our analysis showed that microglial activation was increased in the CA3 and the dentate gyrus of the hippocampus in an age-dependent manner in T2DM mice. However, the expression of presynaptic marker protein (synaptophysin) and the postsynaptic marker protein [postsynaptic density protein 95 (PSD95)] was unchanged in the hippocampus of adult T2DM mice. Interestingly, synaptophysin and PSD95 expression significantly decreased in the hippocampus of aged T2DM mice, suggesting an impaired hippocampal synaptic integrity. Cytokine profiling analysis displayed a robust pro-inflammatory cytokine profile in the hippocampus of aged T2DM mice compared with the younger cohort, outlining the role of aging in exacerbating the neuroinflammatory profile in the diabetic state. Our results suggest that T2DM impairs cognitive function by promoting neuronal loss in the dentate gyrus and triggering an age-dependent deterioration in hippocampal synaptic integrity, associated with an aberrant neuroinflammatory response.

Keywords: Alzheimer's disease; cytokines; diabetes mellitus; hippocampus; memory; neuroinflammation.


Similar articles

Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice.

Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW.Neuroscience. 2009 Sep 29;163(1):55-72. doi: 10.1016/j.neuroscience.2009.05.071. Epub 2009 Jun 14.PMID: 19500657 Free PMC article.

Lemon essential oil ameliorates age-associated cognitive dysfunction via modulating hippocampal synaptic density and inhibiting acetylcholinesterase.

Liu B, Kou J, Li F, Huo D, Xu J, Zhou X, Meng D, Ghulam M, Artyom B, Gao X, Ma N, Han D.Aging (Albany NY). 2020 May 11;12(9):8622-8639. doi: 10.18632/aging.103179. Epub 2020 May 11.PMID: 32392535 Free PMC article.

Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet.

Matsuda T, Hisatsune T.J Alzheimers Dis. 2017;56(1):1-23. doi: 10.3233/JAD-160761.PMID: 27911310

Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease.

Lazarov O, Minshall RD, Bonini MG.Int Rev Neurobiol. 2020;155:235-269. doi: 10.1016/bs.irn.2020.03.020.PMID: 32854856 Free PMC article. Review.

Spatial Navigation (Water Maze) Tasks.

Terry AV Jr.In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 13.PMID: 21204326 Free Books & Documents. Review.


KMEL References


References

  1.  
    1. Aizenman, Y., & de Vellis, J. (1987). Synergistic action of thyroid hormone, insulin and hydrocortisone on astrocyte differentiation. Brain Research, 414, 301-308. https://doi.org/10.1016/0006-8993(87)90010-2
  2.  
    1. Al-Onaizi, M., Al-Khalifah, A., Qasem, D., & ElAli, A. (2020). Role of microglia in modulating adult neurogenesis in health and neurodegeneration. International Journal of Molecular Sciences, 21, 6875. https://doi.org/10.3390/ijms21186875
  3.  
    1. Al-Onaizi, M. A., Parfitt, G. M., Kolisnyk, B., Law, C. S., Guzman, M. S., Barros, D. M., Leung, L. S., Prado, M. A., & Prado, V. F. (2017). Regulation of cognitive processing by hippocampal cholinergic tone. Cerebral Cortex, 27, 1615-1628. https://doi.org/10.1093/cercor/bhv349
  4.  
    1. Alpers, C. E., & Hudkins, K. L. (2011). Mouse models of diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 20, 278-284. https://doi.org/10.1097/MNH.0b013e3283451901
  5.  
    1. Arnold, S. E., Lucki, I., Brookshire, B. R., Carlson, G. C., Browne, C. A., Kazi, H., Bang, S., Choi, B. R., Chen, Y., McMullen, M. F., & Kim, S. F. (2014). High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiology of Disease, 67, 79-87. https://doi.org/10.1016/j.nbd.2014.03.011
  6.  
    1. Baydas, G., Nedzvetskii, V. S., Tuzcu, M., Yasar, A., & Kirichenko, S. V. (2003). Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: Effects of vitamin E. European Journal of Pharmacology, 462, 67-71. https://doi.org/10.1016/S0014-2999(03)01294-9
  7.  
    1. Bell, R. D., & Zlokovic, B. V. (2009). Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathologica, 118, 103-113. https://doi.org/10.1007/s00401-009-0522-3
  8.  
    1. Biessels, G. J., & Reagan, L. P. (2015). Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews. Neuroscience, 16, 660-671. https://doi.org/10.1038/nrn4019
  9.  
    1. Bonds, J. A., Shetti, A., Stephen, T. K. L., Bonini, M. G., Minshall, R. D., & Lazarov, O. (2020). Deficits in hippocampal neurogenesis in obesity-dependent and -independent type-2 diabetes mellitus mouse models. Scientific Reports, 10, 16368. https://doi.org/10.1038/s41598-020-73401-9
  10.  
    1. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  11.  
    1. Brands, A. M., Kessels, R. P., de Haan, E. H., Kappelle, L. J., & Biessels, G. J. (2004). Cerebral dysfunction in type 1 diabetes: Effects of insulin, vascular risk factors and blood-glucose levels. European Journal of Pharmacology, 490, 159-168. https://doi.org/10.1016/j.ejphar.2004.02.053
  12.  
    1. Brennan, A. M., & Mantzoros, C. S. (2006). Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nature Clinical Practice. Endocrinology & Metabolism, 2, 318-327. https://doi.org/10.1038/ncpendmet0196
  13.  
    1. Brodie, C., Goldreich, N., Haiman, T., & Kazimirsky, G. (1998). Functional IL-4 receptors on mouse astrocytes: IL-4 inhibits astrocyte activation and induces NGF secretion. Journal of Neuroimmunology, 81, 20-30. https://doi.org/10.1016/S0165-5728(97)00154-9
  14.  
    1. Brody, D. L., & Holtzman, D. M. (2006). Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Experimental Neurology, 197, 330-340. https://doi.org/10.1016/j.expneurol.2005.10.020
  15.  
    1. Burke, S. J., Batdorf, H. M., Burk, D. H., Noland, R. C., Eder, A. E., Boulos, M. S., Karlstad, M. D., & Collier, J. J. (2017). db/db mice exhibit features of human type 2 diabetes that are not present in weight-matched C57BL/6J mice fed a Western diet. Journal Diabetes Research, 2017, 8503754-17. https://doi.org/10.1155/2017/8503754
  16.  
    1. Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer's disease. Nature Neuroscience, 20, 1236-1246. https://doi.org/10.1038/nn.4608
  17.  
    1. Casse, F., Richetin, K., & Toni, N. (2018). Astrocytes' contribution to adult neurogenesis in physiology and Alzheimer's disease. Frontiers in Cellular Neuroscience, 12, 432. https://doi.org/10.3389/fncel.2018.00432
  18.  
    1. Chatterjee, S., & Mudher, A. (2018). Alzheimer's disease and type 2 diabetes: A critical assessment of the shared pathological traits. Frontiers in Neuroscience, 12, 383. https://doi.org/10.3389/fnins.2018.00383
  19.  
    1. Chatzigeorgiou, A., Harokopos, V., Mylona-Karagianni, C., Tsouvalas, E., Aidinis, V., & Kamper, E. F. (2010). The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Annals of Medicine, 42, 426-438. https://doi.org/10.3109/07853890.2010.495951
  20.  
    1. Chen, J., Liang, L., Zhan, L., Zhou, Y., Zheng, L., Sun, X., Gong, J., Sui, H., Jiang, R., Zhang, F., & Zhang, L. (2014). ZiBuPiYin recipe protects db/db mice from diabetes-associated cognitive decline through improving multiple pathological changes. PLoS ONE, 9, e91680. https://doi.org/10.1371/journal.pone.0091680
  21.  
    1. Coleman, E., Judd, R., Hoe, L., Dennis, J., & Posner, P. (2004). Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia, 48, 166-178. https://doi.org/10.1002/glia.20068
  22.  
    1. Coleman, E. S., Dennis, J. C., Braden, T. D., Judd, R. L., & Posner, P. (2010). Insulin treatment prevents diabetes-induced alterations in astrocyte glutamate uptake and GFAP content in rats at 4 and 8 weeks of diabetes duration. Brain Research, 1306, 131-141. https://doi.org/10.1016/j.brainres.2009.10.005
  23.  
    1. Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019-2022. https://doi.org/10.1073/pnas.0336073100
  24.  
    1. Cope, E. C., LaMarca, E. A., Monari, P. K., Olson, L. B., Martinez, S., Zych, A. D., Katchur, N. J., & Gould, E. (2018). Microglia play an active role in obesity-associated cognitive decline. The Journal of Neuroscience, 38, 8889-8904. https://doi.org/10.1523/JNEUROSCI.0789-18.2018
  25.  
    1. Craft, S., Claxton, A., Baker, L. D., Hanson, A. J., Cholerton, B., Trittschuh, E. H., Dahl, D., Caulder, E., Neth, B., Montine, T. J., Jung, Y., Maldjian, J., Whitlow, C., & Friedman, S. (2017). Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: A pilot clinical trial. Journal of Alzheimer's Disease, 57, 1325-1334. https://doi.org/10.3233/JAD-161256
  26.  
    1. Cukierman, T., Gerstein, H. C., & Williamson, J. D. (2005). Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia, 48, 2460-2469. https://doi.org/10.1007/s00125-005-0023-4
  27.  
    1. Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752-758. https://doi.org/10.1038/nn1472
  28.  
    1. De Felice, F. G. (2013). Alzheimer's disease and insulin resistance: Translating basic science into clinical applications. The Journal of Clinical Investigation, 123, 531-539. https://doi.org/10.1172/JCI64595
  29.  
    1. De Felice, F. G., & Ferreira, S. T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes, 63, 2262-2272. https://doi.org/10.2337/db13-1954
  30.  
    1. de la Monte, S. M., Re, E., Longato, L., & Tong, M. (2012). Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer's disease. Journal of Alzheimer's Disease, 30(Suppl 2), S217-S229. https://doi.org/10.3233/JAD-2012-111728
  31.  
    1. Derecki, N. C., Cardani, A. N., Yang, C. H., Quinnies, K. M., Crihfield, A., Lynch, K. R., & Kipnis, J. (2010a). Regulation of learning and memory by meningeal immunity: A key role for IL-4. Journal of Experimental Medicine, 207, 1067-1080. https://doi.org/10.1084/jem.20091419
  32.  
    1. Derecki, N. C., Cardani, A. N., Yang, C. H., Quinnies, K. M., Crihfield, A., Lynch, K. R., & Kipnis, J. (2010b). Regulation of learning and memory by meningeal immunity: A key role for IL-4. The Journal of Experimental Medicine, 207, 1067-1080. https://doi.org/10.1084/jem.20091419
  33.  
    1. Dinel, A. L., Andre, C., Aubert, A., Ferreira, G., Laye, S., & Castanon, N. (2011). Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE, 6, e24325. https://doi.org/10.1371/journal.pone.0024325
  34.  
    1. Dominguez, R. O., Pagano, M. A., Marschoff, E. R., Gonzalez, S. E., Repetto, M. G., & Serra, J. A. (2014). Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: Associations and a hypothesis. Neurología, 29, 567-572. https://doi.org/10.1016/j.nrl.2013.05.006
  35.  
    1. Duarte, A. I., Moreira, P. I., & Oliveira, C. R. (2012). Insulin in central nervous system: More than just a peripheral hormone. Journal of Aging Research, 2012, 384017. https://doi.org/10.1155/2012/384017
  36.  
    1. Duarte, J. M., Agostinho, P. M., Carvalho, R. A., & Cunha, R. A. (2012). Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS ONE, 7, e21899. https://doi.org/10.1371/journal.pone.0021899
  37.  
    1. Dutheil, S., Ota, K. T., Wohleb, E. S., Rasmussen, K., & Duman, R. S. (2016). High-fat diet induced anxiety and anhedonia: Impact on brain homeostasis and inflammation. Neuropsychopharmacology, 41, 1874-1887. https://doi.org/10.1038/npp.2015.357
  38.  
    1. Erion, J. R., Wosiski-Kuhn, M., Dey, A., Hao, S., Davis, C. L., Pollock, N. K., & Stranahan, A. M. (2014). Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. The Journal of Neuroscience, 34, 2618-2631. https://doi.org/10.1523/JNEUROSCI.4200-13.2014
  39.  
    1. Ernst, A., Sharma, A. N., Elased, K. M., Guest, P. C., Rahmoune, H., & Bahn, S. (2013). Diabetic db/db mice exhibit central nervous system and peripheral molecular alterations as seen in neurological disorders. Translational Psychiatry, 3, e263. https://doi.org/10.1038/tp.2013.42
  40.  
    1. Fernandez, A. M., & Torres-Aleman, I. (2012). The many faces of insulin-like peptide signalling in the brain. Nature Reviews. Neuroscience, 13, 225-239. https://doi.org/10.1038/nrn3209
  41.  
    1. Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the new York Academy of Sciences, 908, 244-254.
  42.  
    1. Frankola, K. A., Greig, N. H., Luo, W., & Tweedie, D. (2011). Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & Neurological Disorders Drug Targets, 10, 391-403. https://doi.org/10.2174/187152711794653751
  43.  
    1. Gadani, S. P., Cronk, J. C., Norris, G. T., & Kipnis, J. (2012). IL-4 in the brain: A cytokine to remember. Journal of Immunology, 189, 4213-4219. https://doi.org/10.4049/jimmunol.1202246
  44.  
    1. Galloway, D. A., Phillips, A. E. M., Owen, D. R. J., & Moore, C. S. (2019). Phagocytosis in the brain: Homeostasis and disease. Frontiers in Immunology, 10, 790. https://doi.org/10.3389/fimmu.2019.00790
  45.  
    1. Gao, Z., Ure, K., Ables, J. L., Lagace, D. C., Nave, K. A., Goebbels, S., Eisch, A. J., & Hsieh, J. (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. Nature Neuroscience, 12, 1090-1092. https://doi.org/10.1038/nn.2385
  46.  
    1. Garthe, A., Behr, J., & Kempermann, G. (2009). Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE, 4, e5464. https://doi.org/10.1371/journal.pone.0005464
  47.  
    1. Garthe, A., & Kempermann, G. (2013). An old test for new neurons: Refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Frontiers in Neuroscience, 7, 63. https://doi.org/10.3389/fnins.2013.00063
  48.  
    1. Gil-Bea, F. J., Solas, M., Solomon, A., Mugueta, C., Winblad, B., Kivipelto, M., Ramirez, M. J., & Cedazo-Minguez, A. (2010). Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease. Journal of Alzheimer's Disease, 22, 405-413. https://doi.org/10.3233/JAD-2010-100795
  49.  
    1. Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., Tsui, W., Richardson, S., Javier, E., & Convit, A. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711-719. https://doi.org/10.1007/s00125-007-0602-7
  50.  
    1. Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122, 16-26. https://doi.org/10.1037/0735-7044.122.1.16
  51.  
    1. Gordon, G. R., Baimoukhametova, D. V., Hewitt, S. A., Rajapaksha, W. R., Fisher, T. E., & Bains, J. S. (2005). Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature Neuroscience, 8, 1078-1086. https://doi.org/10.1038/nn1498
  52.  
    1. Hallschmid, M., Benedict, C., Born, J., & Kern, W. (2007). Targeting metabolic and cognitive pathways of the CNS by intranasal insulin administration. Expert Opinion on Drug Delivery, 4, 319-322. https://doi.org/10.1517/17425247.4.4.319
  53.  
    1. Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nature Reviews. Immunology, 14, 463-477. https://doi.org/10.1038/nri3705
  54.  
    1. Hu, W. T., Howell, J. C., Ozturk, T., Gangishetti, U., Kollhoff, A. L., Hatcher-Martin, J. M., Anderson, A. M., & Tyor, W. R. (2019). CSF cytokines in aging, multiple sclerosis, and dementia. Frontiers in Immunology, 10, 480. https://doi.org/10.3389/fimmu.2019.00480
  55.  
    1. Hwang, I. K., Choi, J. H., Nam, S. M., Park, O. K., Yoo, D. Y., Kim, W., Yi, S. S., Won, M. H., Seong, J. K., & Yoon, Y. S. (2014). Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurological Research, 36, 824-832. https://doi.org/10.1179/1743132814Y.0000000330
  56.  
    1. Kamal, A., Biessels, G. J., Duis, S. E., & Gispen, W. H. (2000). Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing. Diabetologia, 43, 500-506. https://doi.org/10.1007/s001250051335
  57.  
    1. Kamal, M. A., Priyamvada, S., Anbazhagan, A. N., Jabir, N. R., Tabrez, S., & Greig, N. H. (2014). Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS & Neurological Disorders Drug Targets, 13, 338-346. https://doi.org/10.2174/18715273113126660137
  58.  
    1. Kim, B., & Feldman, E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Experimental & Molecular Medicine, 47, e149. https://doi.org/10.1038/emm.2015.3
  59.  
    1. Klein, W. L. (2006). Synaptic targeting by a beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer's disease. Alzheimers Dement, 2, 43-55. https://doi.org/10.1016/j.jalz.2005.11.003
  60.  
    1. Kleinridders, A., Ferris, H. A., Cai, W., & Kahn, C. R. (2014). Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 63, 2232-2243. https://doi.org/10.2337/db14-0568
  61.  
    1. Kolisnyk, B., al-Onaizi, M., Soreq, L., Barbash, S., Bekenstein, U., Haberman, N., Hanin, G., Kish, M. T., Souza da Silva, J., Fahnestock, M., Ule, J., Soreq, H., Prado, V. F., & Prado, M. A. M. (2017). Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer's-like pathology. Cerebral Cortex, 27, 3553-3567. https://doi.org/10.1093/cercor/bhw177
  62.  
    1. Korolenko, T. A., Dubrovina, N. I., Ovsyukova, M. V., Bgatova, N. P., Tenditnik, M. V., Pupyshev, A. B., Akopyan, A. A., Goncharova, N. V., Lin, C. L., Zavjalov, E. L., Tikhonova, M., & Amstislavskaya, T. (2021). Treatment with autophagy inducer Trehalose alleviates memory and behavioral impairments and Neuroinflammatory brain processes in db/db mice. Cell, 10, 2557. https://doi.org/10.3390/cells10102557
  63.  
    1. Kovacs, G. G. (2016). Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. International Journal of Molecular Sciences, 17, 189. https://doi.org/10.3390/ijms17020189
  64.  
    1. Kovacs, G. G. (2019). Molecular pathology of neurodegenerative diseases: Principles and practice. Journal of Clinical Pathology, 72, 725-735. https://doi.org/10.1136/jclinpath-2019-205952
  65.  
    1. Kuwabara, T., Hsieh, J., Muotri, A., Yeo, G., Warashina, M., Lie, D. C., Moore, L., Nakashima, K., Asashima, M., & Gage, F. H. (2009). Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nature Neuroscience, 12, 1097-1105. https://doi.org/10.1038/nn.2360
  66.  
    1. Lannert, H., & Hoyer, S. (1998). Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neuroscience, 112, 1199-1208. https://doi.org/10.1037/0735-7044.112.5.1199
  67.  
    1. LaPorte, S. L., Juo, Z. S., Vaclavikova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., & Garcia, K. C. (2008). Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell, 132, 259-272. https://doi.org/10.1016/j.cell.2007.12.030
  68.  
    1. Lazar, M. A. (2005). How obesity causes diabetes: Not a tall tale. Science, 307, 373-375. https://doi.org/10.1126/science.1104342
  69.  
    1. Lechuga-Sancho, A. M., Arroba, A. I., Frago, L. M., Garcia-Caceres, C., de Celix, A. D., Argente, J., & Chowen, J. A. (2006). Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology, 147, 5314-5324.
  70.  
    1. Lechuga-Sancho, A. M., Arroba, A. I., Frago, L. M., Paneda, C., Garcia-Caceres, C., Rubin, D., de Celix, A., Argente, J., & Chowen, J. A. (2006). Activation of the intrinsic cell death pathway, increased apoptosis and modulation of astrocytes in the cerebellum of diabetic rats. Neurobiology of Disease, 23, 290-299. https://doi.org/10.1016/j.nbd.2006.03.001
  71.  
    1. Li, J., Deng, J., Sheng, W., & Zuo, Z. (2012). Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice. Pharmacology, Biochemistry, and Behavior, 101, 564-574. https://doi.org/10.1016/j.pbb.2012.03.002
  72.  
    1. Li, X., Song, D., & Leng, S. X. (2015). Link between type 2 diabetes and Alzheimer's disease: From epidemiology to mechanism and treatment. Clinical Interventions in Aging, 10, 549-560. https://doi.org/10.2147/CIA.S74042
  73.  
    1. Lie, D. C., Colamarino, S. A., Song, H. J., Désiré, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R., & Gage, F. H. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437, 1370-1375. https://doi.org/10.1038/nature04108
  74.  
    1. Liu, M., Pleasure, S. J., Collins, A. E., Noebels, J. L., Naya, F. J., Tsai, M. J., & Lowenstein, D. H. (2000). Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 97, 865-870. https://doi.org/10.1073/pnas.97.2.865
  75.  
    1. Lizarbe, B., Soares, A. F., Larsson, S., & Duarte, J. M. N. (2018). Neurochemical modifications in the Hippocampus, cortex and hypothalamus of mice exposed to long-term high-fat diet. Frontiers in Neuroscience, 12(7063), 985.
  76.  
    1. Lyons, A., McQuillan, K., Deighan, B. F., O'Reilly, J. A., Downer, E. J., Murphy, A. C., Watson, M., Piazza, A., O'Connell, F., Griffin, R., Mills, K. H. G., & Lynch, M. A. (2009). Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behavior and Immunity, 23, 1020-1027. https://doi.org/10.1016/j.bbi.2009.05.060
  77.  
    1. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., & Messing, A. (1996). Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proceedings of the National Academy of Sciences of the United States of America, 93, 6361-6366. https://doi.org/10.1073/pnas.93.13.6361
  78.  
    1. McCrimmon, R. J., Ryan, C. M., & Frier, B. M. (2012). Diabetes and cognitive dysfunction. Lancet, 379, 2291-2299. https://doi.org/10.1016/S0140-6736(12)60360-2
  79.  
    1. Mehla, J., Chauhan, B. C., & Chauhan, N. B. (2014). Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. Journal of Alzheimer's Disease, 39, 145-162. https://doi.org/10.3233/JAD-131238
  80.  
    1. Mendez-Gonzalez, M. P., Rivera-Aponte, D. E., Benedikt, J., Maldonado-Martinez, G., Tejeda-Bayron, F., Skatchkov, S. N., & Eaton, M. J. (2020). Downregulation of astrocytic Kir4.1 potassium channels is associated with hippocampal neuronal Hyperexcitability in type 2 diabetic mice. Brain Sciences, 10, 72. https://doi.org/10.3390/brainsci10020072
  81.  
    1. Molnar, G., Farago, N., Kocsis, A. K., Rozsa, M., Lovas, S., Boldog, E., Baldi, R., Csajbok, E., Gardi, J., Puskas, L. G., & Tamas, G. (2014). GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. The Journal of Neuroscience, 34, 1133-1137. https://doi.org/10.1523/JNEUROSCI.4082-13.2014
  82.  
    1. Nagayach, A., Patro, N., & Patro, I. (2014). Astrocytic and microglial response in experimentally induced diabetic rat brain. Metabolic Brain Disease, 29, 747-761. https://doi.org/10.1007/s11011-014-9562-z
  83.  
    1. Naya, F. J., Stellrecht, C. M., & Tsai, M. J. (1995). Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes & Development, 9, 1009-1019. https://doi.org/10.1101/gad.9.8.1009
  84.  
    1. Newman, E. A. (2003). New roles for astrocytes: Regulation of synaptic transmission. Trends in Neurosciences, 26, 536-542. https://doi.org/10.1016/S0166-2236(03)00237-6
  85.  
    1. Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314-1318. https://doi.org/10.1126/science.1110647
  86.  
    1. O'Connor, J. C., Satpathy, A., Hartman, M. E., Horvath, E. M., Kelley, K. W., Dantzer, R., Johnson, R. W., & Freund, G. G. (2005). IL-1beta-mediated innate immunity is amplified in the db/db mouse model of type 2 diabetes. Journal of Immunology, 174, 4991-4997. https://doi.org/10.4049/jimmunol.174.8.4991
  87.  
    1. Olsen, G. M., Scheel-Kruger, J., Moller, A., & Jensen, L. H. (1994). Relation of spatial learning of rats in the Morris water maze task to the number of viable CA1 neurons following four-vessel occlusion. Behavioral Neuroscience, 108, 681-690.
  88.  
    1. Pekny, M., & Pekna, M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. The Journal of Pathology, 204, 428-437. https://doi.org/10.1002/path.1645
  89.  
    1. Perlman, A. S., Chevalier, J. M., Wilkinson, P., Liu, H., Parker, T., Levine, D. M., Sloan, B. J., Gong, A., Sherman, R., & Farrell, F. X. (2015). Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Annals of Clinical and Laboratory Science, 45, 256-263.
  90.  
    1. Plum, L., Schubert, M., & Bruning, J. C. (2005). The role of insulin receptor signaling in the brain. Trends in Endocrinology and Metabolism, 16, 59-65. https://doi.org/10.1016/j.tem.2005.01.008
  91.  
    1. Ramos-Rodriguez, J. J., Ortiz, O., Jimenez-Palomares, M., Kay, K. R., Berrocoso, E., Murillo-Carretero, M. I., Perdomo, G., Spires-Jones, T., Cozar-Castellano, I., Lechuga-Sancho, A. M., & Garcia-Alloza, M. (2013). Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology, 38, 2462-2475. https://doi.org/10.1016/j.psyneuen.2013.05.010
  92.  
    1. Reger, M. A., Watson, G. S., Green, P. S., Baker, L. D., Cholerton, B., Fishel, M. A., Plymate, S. R., Cherrier, M. M., Schellenberg, G. D., Frey, W. H. II, & Craft, S. (2008). Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. Journal of Alzheimer's Disease, 13, 323-331. https://doi.org/10.3233/JAD-2008-13309
  93.  
    1. Reiner, A., & Deng, Y. P. (2018). Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neuroscience & Therapeutics, 24, 250-280. https://doi.org/10.1111/cns.12844
  94.  
    1. Ren, W. M., Weng, Z. B., Li, X., & Zhan, L. B. (2021). Neuroprotective effects of ZiBuPiYin recipe on db/db mice via PI3K-Akt signaling pathway by activating Grb2. Neural Plasticity, 2021, 8825698-10. https://doi.org/10.1155/2021/8825698
  95.  
    1. Rivera, E. J., Goldin, A., Fulmer, N., Tavares, R., Wands, J. R., & de la Monte, S. M. (2005). Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: Link to brain reductions in acetylcholine. Journal of Alzheimer's Disease, 8, 247-268. https://doi.org/10.3233/JAD-2005-8304
  96.  
    1. Sandeep, T. C., Yau, J. L., MacLullich, A. M., Noble, J., Deary, I. J., Walker, B. R., & Seckl, J. R. (2004). 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proceedings of the National Academy of Sciences of the United States of America, 101, 6734-6739. https://doi.org/10.1073/pnas.0306996101
  97.  
    1. Sandmand, M., Bruunsgaard, H., Kemp, K., Andersen-Ranberg, K., Pedersen, A. N., Skinhoj, P., & Pedersen, B. K. (2002). Is ageing associated with a shift in the balance between type 1 and type 2 cytokines in humans? Clinical and Experimental Immunology, 127, 107-114. https://doi.org/10.1046/j.1365-2249.2002.01736.x
  98.  
    1. Sankar, S. B., Infante-Garcia, C., Weinstock, L. D., Ramos-Rodriguez, J. J., Hierro-Bujalance, C., Fernandez-Ponce, C., Wood, L. B., & Garcia-Alloza, M. (2020). Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer's mouse model. Journal of Neuroinflammation, 17, 38. https://doi.org/10.1186/s12974-020-1707-x
  99.  
    1. Saravia, F. E., Revsin, Y., Gonzalez Deniselle, M. C., Gonzalez, S. L., Roig, P., Lima, A., Homo-Delarche, F., & De Nicola, A. F. (2002). Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Research, 957, 345-353. https://doi.org/10.1016/S0006-8993(02)03675-2
  100.  
    1. Schulz, J. B., & Falkenburger, B. H. (2004). Neuronal pathology in Parkinson's disease. Cell and Tissue Research, 318, 135-147. https://doi.org/10.1007/s00441-004-0954-y
  101.  
    1. Shang, S., Yang, Y. M., Zhang, H., Tian, L., Jiang, J. S., Dong, Y. B., Zhang, K., Li, B., Zhao, W. D., Fang, W. G., & Chen, Y. H. (2016). Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice. Journal of Cerebral Blood Flow and Metabolism, 36, 1978-1991. https://doi.org/10.1177/0271678X16660983
  102.  
    1. Shim, D. S., Schilter, H. C., Knott, M. L., Almeida, R. A., Short, R. P., Mackay, C. R., Dent, L. A., & Sewell, W. A. (2012). Protection against Nippostrongylus brasiliensis infection in mice is independent of GM-CSF. Immunology and Cell Biology, 90, 553-558. https://doi.org/10.1038/icb.2011.69
  103.  
    1. Simon, P., Dupuis, R., & Costentin, J. (1994). Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behavioural Brain Research, 61, 59-64.
  104.  
    1. Song, K., Li, Y.Y., Zhang, H.L., An, N., Wei, Y.F., Wang, L.Q., Tian, C., Yuan, M.C., Sun, Y.K., Xing, Y.W., et al. (2020). Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxidative Medicine and Cellular Longevity 2020.
  105.  
    1. Spinelli, M., Fusco, S., & Grassi, C. (2019). Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline. Frontiers in Neuroscience, 13, 788. https://doi.org/10.3389/fnins.2019.00788
  106.  
    1. Stranahan, A. M., Hao, S., Dey, A., Yu, X. L., & Baban, B. (2016). Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. Journal of Cerebral Blood Flow & Metabolism, 36, 2108-2121. https://doi.org/10.1177/0271678X16642233
  107.  
    1. Stranahan, A. M., Lee, K., Martin, B., Maudsley, S., Golden, E., Cutler, R. G., & Mattson, M. P. (2009). Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus, 19, 951-961. https://doi.org/10.1002/hipo.20577
  108.  
    1. Stranahan, A. M., Norman, E. D., Lee, K., Cutler, R. G., Telljohann, R. S., Egan, J. M., & Mattson, M. P. (2008). Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus, 18, 1085-1088. https://doi.org/10.1002/hipo.20470
  109.  
    1. Suzumura, A., Sawada, M., Itoh, Y., & Marunouchi, T. (1994). Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class-ii major histocompatibility complex antigen expression. Journal of Neuroimmunology, 53, 209-218. https://doi.org/10.1016/0165-5728(94)90031-0
  110.  
    1. Takeda, S., Sato, N., Uchio-Yamada, K., Sawada, K., Kunieda, T., Takeuchi, D., Kurinami, H., Shinohara, M., Rakugi, H., & Morishita, R. (2010). Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proceedings of the National Academy of Sciences of the United States of America, 107, 7036-7041. https://doi.org/10.1073/pnas.1000645107
  111.  
    1. Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., Arvanitakis, Z., Schneider, J. A., Wolf, B. A., Bennett, D. A., Trojanowski, J. Q., & Arnold, S. E. (2012). Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of Clinical Investigation, 122, 1316-1338. https://doi.org/10.1172/JCI59903
  112.  
    1. Taylor, R. (2012). Insulin resistance and type 2 diabetes. Diabetes, 61, 778-779. https://doi.org/10.2337/db12-0073
  113.  
    1. Theriault, P., ElAli, A., & Rivest, S. (2015). The dynamics of monocytes and microglia in Alzheimer's disease. Alzheimers Research & Therapy, 7, 41. https://doi.org/10.1186/s13195-015-0125-2
  114.  
    1. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., & Barres, B. A. (2001). Control of synapse number by glia. Science, 291, 657-661. https://doi.org/10.1126/science.291.5504.657
  115.  
    1. Umegaki, H. (2014). Type 2 diabetes as a risk factor for cognitive impairment: Current insights. Clinical Interventions in Aging, 9, 1011-1019. https://doi.org/10.2147/CIA.S48926
  116.  
    1. Umegaki, H., Hayashi, T., Nomura, H., Yanagawa, M., Nonogaki, Z., Nakshima, H., & Kuzuya, M. (2013). Cognitive dysfunction: An emerging concept of a new diabetic complication in the elderly. Geriatrics & Gerontology International, 13, 28-34. https://doi.org/10.1111/j.1447-0594.2012.00922.x
  117.  
    1. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. https://doi.org/10.1038/4151030a
  118.  
    1. Walz, W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochemistry International, 36, 291-300. https://doi.org/10.1016/S0197-0186(99)00137-0
  119.  
    1. Wang, B. N., Wu, C. B., Chen, Z. M., Zheng, P. P., Liu, Y. Q., Xiong, J., Xu, J. Y., Li, P. F., Mamun, A. A., Ye, L. B., Zheng, Z. L., Wu, Y. Q., Xiao, J., & Wang, J. (2021). DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacologica Sinica, 42, 347-360. https://doi.org/10.1038/s41401-020-00583-3
  120.  
    1. Wanrooy, B. J., Kumar, K. P., Wen, S. W., Qin, C. X., Ritchie, R. H., & Wong, C. H. Y. (2018). Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. Journal of Neuroinflammation, 15, 293. https://doi.org/10.1186/s12974-018-1329-8
  121.  
    1. Watanabe, T., & Sakamoto, K. (2021). Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neuroscience Research, 170, 217-235. https://doi.org/10.1016/j.neures.2020.11.002
  122.  
    1. West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet, 344, 769-772. https://doi.org/10.1016/S0140-6736(94)92338-8
  123.  
    1. Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12, 1005-1015.
  124.  
    1. Xu, Y., Cao, K., Guo, B., Xiang, J., Dong, Y. T., Qi, X. L., Yu, W. F., Xiao, Y., & Guan, Z. Z. (2020). Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging (Albany NY), 12, 14205-14218. https://doi.org/10.18632/aging.103435
  125.  
    1. Yermakov, L. M., Griggs, R. B., Drouet, D. E., Sugimoto, C., Williams, M. T., Vorhees, C. V., & Susuki, K. (2019). Impairment of cognitive flexibility in type 2 diabetic db/db mice. Behavioural Brain Research, 371, 111978. https://doi.org/10.1016/j.bbr.2019.111978
  126.  
    1. Yook, J. S., Rakwal, R., Shibato, J., Takahashi, K., Koizumi, H., Shima, T., Ikemoto, M. J., Oharomari, L. K., McEwen, B. S., & Soya, H. (2019). Leptin in hippocampus mediates benefits of mild exercise by an antioxidant on neurogenesis and memory. Proceedings of the National Academy of Sciences of the United States of America, 116, 10988-10993. https://doi.org/10.1073/pnas.1815197116
  127.  
    1. Zheng, Y., Yang, Y., Dong, B., Zheng, H., Lin, X., Du, Y., Li, X., Zhao, L., & Gao, H. (2016). Metabonomic profiles delineate potential role of glutamate-glutamine cycle in db/db mice with diabetes-associated cognitive decline. Molecular Brain, 9, 40. https://doi.org/10.1186/s13041-016-0223-5
  128.  
    1. Zuena, A. R., Casolini, P., Lattanzi, R., & Maftei, D. (2019). Chemokines in Alzheimer's disease: New insights into Prokineticins, Chemokine-like Proteins. Frontiers in Pharmacology, 10, 622. https://doi.org/10.3389/fphar.2019.00622