There is a general consensus that synaptic vesicular release by a full collapse process is the primary machinery of synaptic transmission. However, competing view suggests that synaptic vesicular release operates via a kiss-and-run mechanism. By monitoring the release dynamics of a synaptic vesicular marker, FM1-43 from individual synapses in hippocampal neurons, we found evidence that the release of synaptic vesicle was delayed by several seconds after the start of field stimulation. This phenomenon was associated with modified opening kinetics of fusion pores. Detailed analysis revealed that some synapses were completely inactive for a few seconds after stimulation, despite immediate calcium influx. This delay in vesicular release was modulated by various stimulation protocols and different frequencies, indicating an activity-dependent regulation mechanism for neurotransmitter exocytosis. Staurosporine, a drug known to induce "kiss-and-run" exocytosis, increased the proportion of delayed synapses as well as the delay duration, while fluoxetine acted contrarily. Besides being a serotonin reuptake inhibitor, it directly enhanced vesicle mobilization and reduced synaptic fatigue. Exocytosis was never delayed, when it was monitored with pH-sensitive probes, synaptopHlourin and αSyt-CypHerE5 antibody, indicating an instantaneous formation of a fusion pore that allowed rapid equilibration of vesicular lumenal pH but prevented FM1-43 release because of its slow dissociation from the inner vesicular membrane. Our observations suggest that synapses operate via a sequential "kiss-and-run" and "full-collapse" exocytosis mechanism. The initially narrow vesicular pore allows the equilibration of intravesicular pH which then progresses toward full fusion, causing FM1-43 release.
Fernández-Peruchena C, Navas S, Montes MA, Alvarez de Toledo G.Brain Res Brain Res Rev. 2005 Sep;49(2):406-15. doi: 10.1016/j.brainresrev.2004.12.037.PMID: 16111567 Review.
Adie E. J., Kalinka S., Smith L., Francis M. J., Marenghi A., Cooper M. E., et al. (2002). A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells. Biotechniques 33 1156–1157. - PubMed
Albillos A., Dernick G., Horstmann H., Almers W., Alvarez de Toledo G., Lindau M. (1997). The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389 509–512. 10.1038/39081 - DOI - PubMed
Balseiro-Gomez S., Flores J. A., Acosta J., Ramirez-Ponce M. P., Ales E. (2016). Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation. J. Cell Sci. 129 3989–4000. - PubMed
Becherer U., Guatimosim C., Betz W. (2001). Effects of staurosporine on exocytosis and endocytosis at frog motor nerve terminals. J. Neurosci. 21 782–787. 10.1523/jneurosci.21-03-00782.2001 - DOI - PMC - PubMed
Betz W. J., Bewick G. S. (1992). Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255 200–203. 10.1126/science.1553547 - DOI - PubMed
Betz W. J., Mao F., Bewick G. S. (1992). Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12 363–375. 10.1523/jneurosci.12-02-00363.1992 - DOI - PMC - PubMed
Blank P. S., Vogel S. S., Malley J. D., Zimmerberg J. (2001). A kinetic analysis of calcium-triggered exocytosis. J. Gen. Physiol. 118 145–156. 10.1085/jgp.118.2.145 - DOI - PMC - PubMed
Castillo P. E. (2012). Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Persp. Biol. 4:a005728. 10.1101/cshperspect.a005728 - DOI - PMC - PubMed
Ceccarelli B., Hurlbut W. P. (1980). Vesicle hypothesis of the release of quanta of acetylcholine. Physiol. Rev. 60 396–441. 10.1152/physrev.1980.60.2.396 - DOI - PubMed
Chang C. W., Chiang C. W., Jackson M. B. (2017). Fusion pores and their control of neurotransmitter and hormone release. J. Gen. Physiol. 149 301–322. 10.1085/jgp.201611724 - DOI - PMC - PubMed
Cohen J. E. (1988). Estimating the effects of successful malarial control programmes on mortality. Popul. Bull. UN 6–26. - PubMed
Elhamdani A., Azizi F., Artalejo C. R. (2006). Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J. Neurosci. 26 3030–3036. 10.1523/jneurosci.5275-05.2006 - DOI - PMC - PubMed
Emes R. D., Grant S. G. (2012). Evolution of synapse complexity and diversity. Annu. Rev. Neurosci. 35 111–131. 10.1146/annurev-neuro-062111-150433 - DOI - PubMed
Fernandes D., Carvalho A. L. (2016). Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochem. 139 973–996. 10.1111/jnc.13687 - DOI - PubMed
Fisher R. J., Pevsner J., Burgoyne R. D. (2001). Control of fusion pore dynamics during exocytosis by Munc18. Science 291 875–878. 10.1126/science.291.5505.875 - DOI - PubMed
Gan Q., Watanabe S. (2018). Synaptic vesicle endocytosis in different model systems. Front. Cell Neurosci. 12:171. 10.3389/fncel.2018.00171 - DOI - PMC - PubMed
Granseth B., Odermatt B., Royle S. J., Lagnado L. (2009). Comment on "The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 325:1499. 10.1126/science.1175790 - DOI - PubMed
Gu Z., Lamb P. W., Yakel J. L. (2012). Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J. Neurosci. 32 12337–12348. 10.1523/JNEUROSCI.2129-12.2012 - DOI - PMC - PubMed
Harata N. C., Choi S., Pyle J. L., Aravanis A. M., Tsien R. W. (2006). Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49 243–256. 10.1016/j.neuron.2005.12.018 - DOI - PubMed
He L., Wu X. S., Mohan R., Wu L. G. (2006). Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444 102–105. 10.1038/nature05250 - DOI - PubMed
Henkel A. W. (2015). Analysis of kinetically distinguished synaptic subtypes in hippocampal neurons. Biophys. J. 108 101a–101a.
Henkel A. W., Alali H., Devassy A., Alawadi M. M., Redzic Z. B. (2014). Antagonistic interactions between dexamethasone and fluoxetine modulate morphodynamics and expression of cytokines in astrocytes. Neuroscience 280 318–327. 10.1016/j.neuroscience.2014.09.012 - DOI - PubMed
Henkel A. W., Betz W. J. (1995). Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci. 15 8246–8258. 10.1523/jneurosci.15-12-08246.1995 - DOI - PMC - PubMed
Henkel A. W., Kang G., Kornhuber J. (2001). A common molecular machinery for exocytosis and the ‘kiss-and-run’ mechanism in chromaffin cells is controlled by phosphorylation. J. Cell Sci. 114 4613–4620. - PubMed
Henkel A. W., Meiri H., Horstmann H., Lindau M., Almers W. (2000). Rhythmic opening and closing of vesicles during constitutive exo- and endocytosis in chromaffin cells. EMBO J. 19 84–93. 10.1093/emboj/19.1.84 - DOI - PMC - PubMed
Henkel A. W., Welzel O., Groemer T. W., Tripal P., Rotter A., Kornhuber J. (2010). Fluoxetine prevents stimulation-dependent fatigue of synaptic vesicle exocytosis in hippocampal neurons. J. Neuro. 114 697–705. 10.1111/j.1471-4159.2010.06795.x - DOI - PubMed
Heuser J. E., Reese T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57 315–344. 10.1083/jcb.57.2.315 - DOI - PMC - PubMed
Jonas P., Bischofberger J., Sandkuhler J. (1998). Corelease of two fast neurotransmitters at a central synapse. Science 281 419–424. 10.1126/science.281.5375.419 - DOI - PubMed
Jordan R., Lemke E. A., Klingauf J. (2005). Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy. Biophys. J. 89 2091–2102. 10.1529/biophysj.105.061663 - DOI - PMC - PubMed
Jung J., Loy K., Schilling E. M., Röther M., Brauner J. M., Huth T., et al. (2014). The antidepressant fluoxetine mobilizes vesicles to the recycling pool of rat hippocampal synapses during high activity. Mol. Neuro. 49 916–930. 10.1007/s12035-013-8569-5 - DOI - PubMed
Kim H. J., Kim T. H., Choi S. J., Hong Y. J., Yang J. S., Sung K. W., et al. (2013). Fluoxetine suppresses synaptically induced [Ca(2)(+)]i spikes and excitotoxicity in cultured rat hippocampal neurons. Brain Res. 1490 23–34. 10.1016/j.brainres.2012.10.062 - DOI - PubMed
Klingauf J., Kavalali E. T., Tsien R. W. (1998). Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394 581–585. 10.1038/29079 - DOI - PubMed
Kraszewski K., Daniell L., Mundigl O., De Camilli P. (1996). Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence. J. Neurosci. 16 5905–5913. 10.1523/jneurosci.16-19-05905.1996 - DOI - PMC - PubMed
Megias M., Emri Z., Freund T. F., Gulyas A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102 527–540. 10.1016/s0306-4522(00)00496-6 - DOI - PubMed
Mouihate A., Kalakh S., AlMutairi R., Alashqar A. (2019). Prenatal inflammation dampens neurogenesis and enhances serotonin transporter expression in the hippocampus of adult female rats. Med. Princ. Pract. 28 352–360. 10.1159/000499658 - DOI - PMC - PubMed
Neher E., Sakaba T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59 861–872. 10.1016/j.neuron.2008.08.019 - DOI - PubMed
Nusser Z. (2018). Creating diverse synapses from the same molecules. Curr. Opin. Neurobiol. 51 8–15. 10.1016/j.conb.2018.01.001 - DOI - PubMed
Petrov A. M., Zakyrjanova G. F., Yakovleva A. A., Zefirov A. L. (2015). Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion. Biochem. Biophys. Res. Commun. 456 145–150. 10.1016/j.bbrc.2014.11.049 - DOI - PubMed
Qin X., Tsien R. W., Park H. (2019). Real-time three-dimensional tracking of single synaptic vesicles reveals that synaptic vesicles undergoing kiss-and-run fusion remain close to their original fusion site before reuse. Biochem. Biophys. Res. Commun. 514 1004–1008. 10.1016/j.bbrc.2019.05.043 - DOI - PubMed
Rao T. C., Passmore D. R., Peleman A. R., Das M., Chapman E. R., Anantharam A. (2014). Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules. Mol. Biol. Cell. 25 2416–2427. 10.1091/mbc.E14-02-0702 - DOI - PMC - PubMed
Ratnayaka A., Marra V., Bush D., Burden J. J., Branco T., Staras K. (2012). Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J. Physiol. 590 1585–1597. 10.1113/jphysiol.2011.226688 - DOI - PMC - PubMed
Richards D. A., Bai J., Chapman E. R. (2005). Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell. Biol. 168 929–939. 10.1083/jcb.200407148 - DOI - PMC - PubMed
Rudling J. E., Drever B. D., Reid B., Bewick G. S. (2018). Importance of full-collapse vesicle exocytosis for synaptic fatigue-resistance at rat fast and slow muscle neuromuscular junctions. Int. J. Mol. Sci. 19:E1936. 10.3390/ijms19071936 - DOI - PMC - PubMed
Sakaba T. (2008). Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 57 406–419. 10.1016/j.neuron.2007.11.029 - DOI - PubMed
Sankaranarayanan S., De Angelis D., Rothman J. E., Ryan T. A. (2000). The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79 2199–2208. 10.1016/s0006-3495(00)76468-x - DOI - PMC - PubMed
Sankaranarayanan S., Ryan T. A. (2000). Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell. Biol. 2 197–204. 10.1038/35008615 - DOI - PubMed
Scepek S., Coorssen J. R., Lindau M. (1998). Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J. 17 4340–4345. 10.1093/emboj/17.15.4340 - DOI - PMC - PubMed
Schikorski T., Stevens C. F. (2001). Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4 391–395. 10.1038/86042 - DOI - PubMed
Somogyi P., Katona L., Klausberger T., Lasztoczi B., Viney T. J. (2014). Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans. R. Soc. Lond. B Biol. Sci. 369:20120518. 10.1098/rstb.2012.0518 - DOI - PMC - PubMed
Threadgill R., Bobb K., Ghosh A. (1997). Regulation of dendritic growth and remodeling by Rho. Rac, and Cdc42. Neuron 19 625–634. 10.1016/s0896-6273(00)80376-1 - DOI - PubMed
Welzel O., Henkel A. W., Stroebel A. M., Jung J., Tischbirek C. H., Ebert K., et al. (2011). Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys. J. 100 593–601. 10.1016/j.bpj.2010.12.3706 - DOI - PMC - PubMed
Welzel O., Tischbirek C. H., Jung J., Kohler E. M., Svetlitchny A., Henkel A. W., et al. (2010). Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 5:e13514. 10.1371/journal.pone.0013514 - DOI - PMC - PubMed
Wu W., Xu J., Wu X. S., Wu L. G. (2005). Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25 11676–11683. 10.1523/jneurosci.2972-05.2005 - DOI - PMC - PubMed
Wu Z., Auclair S. M., Bello O., Vennekate W., Dudzinski N. R., Krishnakumar S. S., et al. (2016). Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains. Sci. Rep. 6 27287. 10.1038/srep27287 - DOI - PMC - PubMed
Xia X., Lessmann V., Martin T. F. (2009). Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J. Cell Sci. 122 75–82. 10.1242/jcs.034603 - DOI - PMC - PubMed
Yan W., Liu J. F., Han Y., Zhang W., Luo Y. X., Xue Y. X., et al. (2017). Protein kinase Mzeta in medial prefrontal cortex mediates depressive-like behavior and antidepressant response. Mol. Psychiatry 23 1878–1891. 10.1038/mp.2017.219 - DOI - PubMed
Yi J. H., Zhang J., Ko S. Y., Kwon H., Jeon S. J., Park S. J., et al. (2018). Fluoxetine inhibits natural decay of long-term memory via Akt/GSK-3beta signaling. Mol. Neurobiol. 55 7453–7462. 10.1007/s12035-018-0919-x - DOI - PubMed
Zhang Q., Li Y., Tsien R. W. (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323 1448–1453. 10.1126/science.1167373 - DOI - PMC - PubMed