Rhinitis associated with asthma is distinct from rhinitis alone: The ARIA-MeDALL hypothesis

J Bousquet 1 2 3 4E Melén 5 6T Haahtela 7G H Koppelman 8A Togias 9R Valenta 10C A Akdis 11W Czarlewski 12 13M Rothenberg 14A Valiulis 15 16M Wickman 17M Akdis 11D Aguilar 18A Bedbrook 13 19C Bindslev-Jensen 20 21S Bosnic-Anticevich 22 23 24L P Boulet 25C E Brightling 26L Brussino 27 28E Burte 4 29M Bustamante 30 31 32G W Canonica 33 34L Cecchi 35J C Celedon 36C Chaves Loureiro 37E Costa 38A A Cruz 39M Erhola 40B Gemicioglu 41W J Fokkens 42J Garcia-Aymerich 30 31S Guerra 43J Heinrich 44J C Ivancevich 45T Keil 46 47 48L Klimek 49 50P Kuna 51M Kupczyk 51V Kvedariene 52 53D E Larenas-Linnemann 54N Lemonnier 55K C Lodrup Carlsen 56R Louis 57 58M Makela 7M Makris 59M Maurer 1 2I Momas 60 61M Morais-Almeida 62J Mullol 63 64R N Naclerio 65K Nadeau 66R Nadif 4 29M Niedoszytko 67Y Okamoto 68 69M Ollert 20 21 70N G Papadopoulos 71G Passalacqua 72V Patella 73 74 75R Pawankar 76N Pham-Thi 77 78 79O Pfaar 80F S Regateiro 81 82 83J Ring 84 85P W Rouadi 86 87B Samolinski 88J Sastre 89M Savouré 4 29 90N Scichilone 91M H Shamji 92 93A Sheikh 94V Siroux 95B Sousa-Pinto 96 97M Standl 98 99J Sunyer 30 31 32 100L Taborda-Barata 101 102S Toppila-Salmi 7M J Torres 103I Tsiligianni 104 105E Valovirta 106O Vandenplas 107 108M T Ventura 109 110S Weiss 111A Yorgancioglu 112L Zhang 113A H Abdul Latiff 114W Aberer 115I Agache 116M Al-Ahmad 117I Alobid 118 119I J Ansotegui 120S H Arshad 121 122E Asayag 123C Barbara 124A Baharudin 125L Battur 126K S Bennoor 127E C Berghea 128K C Bergmann 1 2D Bernstein 129M Bewick 130H Blain 131M Bonini 132 133 134F Braido 135 136R Buhl 137R S Bumbacea 138A Bush 139M Calderon 140M Calvo-Gil 141P Camargos 142L Caraballo 143V Cardona 144 145W Carr 146P Carreiro-Martins 147 148T Casale 149A M Cepeda Sarabia 150 151R Chandrasekharan 152D Charpin 153Y Z Chen 154I Cherrez-Ojeda 155 156T Chivato 157E Chkhartishvili 158G Christoff 159D K Chu 160C Cingi 161J Correia de Sousa 162C Corrigan 163A Custovic 164G D'Amato 165S Del Giacco 166F De Blay 167 168P Devillier 169A Didier 170M do Ceu Teixeira 171 172D Dokic 173H Douagui 174M Doulaptsi 175S Durham 176M Dykewicz 177T Eiwegger 178Z A El-Sayed 179R Emuzyte 180A Fiocchi 181N Fyhrquist 182R M Gomez 183M Gotua 184M A Guzman 185J Hagemann 49S Hamamah 186S Halken 187D M G Halpin 188M Hofmann 1 189E Hossny 179M Hrubiško 190C Irani 191Z Ispayeva 192E Jares 193T Jartti 194E Jassem 195K Julge 196J Just 197M Jutel 198 199I Kaidashev 200O Kalayci 201A F Kalyoncu 202P Kardas 203B Kirenga 204H Kraxner 205I Kull 5 6M Kulus 206S La Grutta 207S Lau 208L Le Tuyet Thi 209M Levin 210B Lipworth 211O Lourenço 212B Mahboub 213E Martinez-Infante 214P Matricardi 215N Miculinic 216N Migueres 167F Mihaltan 217Y Mohammad 218 219M Moniuszko 220S Montefort 221H Neffen 222K Nekam 223E Nunes 224D Nyembue Tshipukane 225R O'Hehir 226I Ogulur 11K Ohta 227K Okubo 228S Ouedraogo 229H Olze 230 189I Pali-Schöll 231O Palomares 232K Palosuo 233C Panaitescu 234P Panzner 235H S Park 236C Pitsios 237D Plavec 238 239T A Popov 240F Puggioni 241S Quirce 242M Recto 243M S Repka-Ramirez 244C Robalo Cordeiro 37N Roche 245 246M Rodriguez-Gonzalez 247J Romantowski 67N Rosario Filho 248M Rottem 249H Sagara 250F S Serpa 251Z Sayah 252S Scheire 253P Schmid-Grendelmeier 254J C Sisul 255D Sole 256M Soto-Martinez 257M Sova 258A Sperl 50O Spranger 259R Stelmach 260C Suppli Ulrik 261 262M Thomas 263T To 264A Todo-Bom 265P V Tomazic 266M Urrutia-Pereira 267M Valentin-Rostan 268E Van Ganse 269M van Hage 270 271T Vasankari 272 273P Vichyanond 274G Viegi 275D Wallace 276D Y Wang 277S Williams 278M Worm 279P Yiallouros 237O Yusuf 280F Zaitoun 281M Zernotti 282M Zidarn 283 284J Zuberbier 230 189J A Fonseca 96 97T Zuberbier 1 2J M Anto 30 31 32

Affiliations

17 February 2023

-

doi: 10.1111/all.15679


Abstract

Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of "one-airway-one-disease," coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the "Epithelial Barrier Hypothesis." This review determined that the "one-airway-one-disease" concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme "allergic" (asthma) phenotype combining asthma, rhinitis, and conjunctivitis. Rhinitis alone and rhinitis and asthma multimorbidity represent two distinct diseases with the following differences: (i) genomic and transcriptomic background (Toll-Like Receptors and IL-17 for rhinitis alone as a local disease; IL-33 and IL-5 for allergic and non-allergic multimorbidity as a systemic disease), (ii) allergen sensitization patterns (mono- or pauci-sensitization versus polysensitization), (iii) severity of symptoms, and (iv) treatment response. In conclusion, rhinitis alone (local disease) and rhinitis with asthma multimorbidity (systemic disease) should be considered as two distinct diseases, possibly modulated by the microbiome, and may be a model for understanding the epidemics of chronic and autoimmune diseases.

Keywords: IL-33; Toll-like receptors; asthma; multimorbidity; rhinitis.


References

  1.  
    1. Anto JM, Bousquet J, Akdis M, et al. Mechanisms of the development of allergy (MeDALL): introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139(2):388-399.
  2.  
    1. Bousquet J, Anto J, Auffray C, et al. MeDALL (mechanisms of the development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66(5):596-604.
  3.  
    1. McHugh T, Levin M, Snidvongs K, Banglawala SM, Sommer DD. Comorbidities associated with eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Clin Otolaryngol. 2020;45(4):574-583.
  4.  
    1. Niespodziana K, Borochova K, Pazderova P, et al. Towards personalization of asthma treatment according to trigger factors. J Allergy Clin Immunol. 2020;145:1529-1534.
  5.  
    1. Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med. 2019;13(11):1057-1068.
  6.  
    1. Hofmann MA, Fluhr JW, Ruwwe-Glosenkamp C, Stevanovic K, Bergmann KC, Zuberbier T. Role of IL-17 in atopy-a systematic review. Clin Transl Allergy. 2021;11(6):e12047.
  7.  
    1. Renert-Yuval Y, Thyssen JP, Bissonnette R, et al. Biomarkers in atopic dermatitis-a review on behalf of the international eczema council. J Allergy Clin Immunol. 2021;147(4):1174-1190.
  8.  
    1. Bousquet J, Chanez P, Campbell AM, et al. Inflammatory processes in asthma. Int Arch Allergy Appl Immunol. 1991;94(1-4):227-232.
  9.  
    1. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739-751.
  10.  
    1. Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(5 Suppl):S147-S334.
  11.  
    1. Custovic A, Custovic D, Kljaic Bukvic B, Fontanella S, Haider S. Atopic phenotypes and their implication in the atopic march. Expert Rev Clin Immunol. 2020;16(9):873-881.
  12.  
    1. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911-920.
  13.  
    1. Cohen S, Berkman N, Picard E, et al. Co-morbidities and cognitive status in a cohort of teenagers with asthma. Pediatr Pulmonol. 2016;51(9):901-907.
  14.  
    1. Tonacci A, Pioggia G, Gangemi S. Autism spectrum disorders and atopic dermatitis: a new perspective from country-based prevalence data. Clin Mol Allergy. 2021;19(1):27.
  15.  
    1. Trubetskoy V, Pardinas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502-508.
  16.  
    1. Simons FE. Allergic rhinobronchitis: the asthma-allergic rhinitis link. J Allergy Clin Immunol. 1999;104(3 Pt 1):534-540.
  17.  
    1. Leynaert B, Neukirch C, Kony S, et al. Association between asthma and rhinitis according to atopic sensitization in a population-based study. J Allergy Clin Immunol. 2004;113(1):86-93.
  18.  
    1. Harrison C, Fortin M, van den Akker M, et al. Comorbidity versus multimorbidity: why it matters. J Comorb. 2021;11:2633556521993993.
  19.  
    1. Bousquet J, Anto JM, Wickman M, et al. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy. 2015;70(9):1062-1078.
  20.  
    1. Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic Rhinosinusitis with nasal polyps and asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133-1141.
  21.  
    1. Bousquet J, Coulomb Y, Arrendal H, Robinet-Levy M, Michel FB. Total serum IgE concentrations in adolescents and adults using the phadebas IgE PRIST technique. Allergy. 1982;37(6):397-406.
  22.  
    1. Bousquet J, Becker WM, Hejjaoui A, et al. Differences in clinical and immunologic reactivity of patients allergic to grass pollens and to multiple-pollen species. II. Efficacy of a double-blind, placebo-controlled, specific immunotherapy with standardized extracts. J Allergy Clin Immunol. 1991;88(1):43-53.
  23.  
    1. Bousquet J, Hejjaoui A, Becker WM, et al. Clinical and immunologic reactivity of patients allergic to grass pollens and to multiple pollen species. I. Clinical and immunologic characteristics. J Allergy Clin Immunol. 1991;87(3):737-746.
  24.  
    1. Pene J, Rivier A, Lagier B, Becker WM, Michel FB, Bousquet J. Differences in IL-4 release by PBMC are related with heterogeneity of atopy. Immunology. 1994;81(1):58-64.
  25.  
    1. Reid MJ, Schwietz LA, Whisman BA, Moss RB. Mountain cedar pollinosis: can it occur in non-atopics? N Engl Reg Allergy Proc. 1988;9(3):225-232.
  26.  
    1. Bousquet J, Knani J, Hejjaoui A, et al. Heterogeneity of atopy. I. Clinical and immunologic characteristics of patients allergic to cypress pollen. Allergy. 1993;48(3):183-188.
  27.  
    1. Guerra S, Allegra L, Blasi F, Cottini M. Age at symptom onset and distribution by sex and symptoms in patients sensitized to different allergens. Allergy. 1998;53(9):863-869.
  28.  
    1. Rosen FL. Hay fever and asthma following maximum exposure to ragweed. JAMA. 1946;132(14):854.
  29.  
    1. Frankland AW, Gorrill RH. Summer hay-fever and asthma treated with antihistaminic drugs. Br Med J. 1953;1(4813):761-764.
  30.  
    1. Leynaert B, Bousquet J, Neukirch C, Liard R, Neukirch F. Perennial rhinitis: an independent risk factor for asthma in nonatopic subjects: results from the European Community respiratory health survey. J Allergy Clin Immunol. 1999;104:301-304.
  31.  
    1. Anto JM, Sunyer J, Basagana X, et al. Risk factors of new-onset asthma in adults: a population-based international cohort study. Allergy. 2010;65(8):1021-1030.
  32.  
    1. Chanez P, Vignola AM, Vic P, et al. Comparison between nasal and bronchial inflammation in asthmatic and control subjects. Am J Respir Crit Care Med. 1999;159(2):588-595.
  33.  
    1. Gaga M, Lambrou P, Papageorgiou N, et al. Eosinophils are a feature of upper and lower airway pathology in non-atopic asthma, irrespective of the presence of rhinitis. Clin Exp Allergy. 2000;30(5):663-669.
  34.  
    1. Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy. 2003;33(5):579-587.
  35.  
    1. Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000;161(6):2051-2057.
  36.  
    1. Braunstahl GJ, Overbeek SE, Fokkens WJ, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med. 2001;164(5):858-865.
  37.  
    1. Togias A, Gergen PJ, Hu JW, et al. Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol. 2019;143(3):1003-1011. e1010.
  38.  
    1. Cruz AA, Popov T, Pawankar R, et al. Common characteristics of upper and lower airways in rhinitis and asthma: ARIA update, in collaboration with GA(2)LEN. Allergy. 2007;62(Suppl 84):1-41.
  39.  
    1. Pinart M, Benet M, Annesi-Maesano I, et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med. 2014;2(2):131-140.
  40.  
    1. Garcia-Aymerich J, Benet M, Saeys Y, et al. Phenotyping asthma, rhinitis and eczema in MeDALL population-based birth cohorts: an allergic comorbidity cluster. Allergy. 2015;70(8):973-984.
  41.  
    1. Bousquet J, Anto JM, Just J, Keil T, Siroux V, Wickman M. The multimorbid polysensitized phenotype is associated with the severity of allergic diseases. J Allergy Clin Immunol. 2017;139:1407-1408.
  42.  
    1. Fontanella S, Frainay C, Murray CS, Simpson A, Custovic A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: a cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018;15(11):e1002691.
  43.  
    1. Zoratti EM, Krouse RZ, Babineau DC, et al. Asthma phenotypes in inner-city children. J Allergy Clin Immunol. 2016;138(4):1016-1029.
  44.  
    1. Liu AH, Babineau DC, Krouse RZ, et al. Pathways through which asthma risk factors contribute to asthma severity in inner-city children. J Allergy Clin Immunol. 2016;138(4):1042-1050.
  45.  
    1. Pongracic JA, Krouse RZ, Babineau DC, et al. Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. J Allergy Clin Immunol. 2016;138(4):1030-1041.
  46.  
    1. Barber D, Diaz-Perales A, Escribese MM, et al. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy. 2021;76(12):3642-3658.
  47.  
    1. Blazowski L, Majak P, Kurzawa R, Kuna P, Jerzynska J. Food allergy endotype with high risk of severe anaphylaxis in children-Monosensitization to cashew 2S albumin Ana o 3. Allergy. 2019;74(10):1945-1955.
  48.  
    1. Asarnoj A, Hamsten C, Lupinek C, et al. Prediction of peanut allergy in adolescence by early childhood storage protein-specific IgE signatures: the BAMSE population-based birth cohort. J Allergy Clin Immunol. 2017;140:587-590.
  49.  
    1. Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2(1):e185630.
  50.  
    1. Sicherer SH, Warren CM, Dant C, Gupta RS, Nadeau KC. Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract. 2020;8(6):1854-1864.
  51.  
    1. Jimenez-Saiz R, Chu DK, Mandur TS, et al. Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol. 2017;140(6):1604-1615. e1605.
  52.  
    1. Davidson WF, Leung DYM, Beck LA, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on "atopic dermatitis and the atopic march: mechanisms and interventions". J Allergy Clin Immunol. 2019;143(3):894-913.
  53.  
    1. Punekar YS, Sheikh A. Establishing the sequential progression of multiple allergic diagnoses in a UK birth cohort using the general practice research database. Clin Exp Allergy. 2009;39(12):1889-1895.
  54.  
    1. Yang L, Fu J, Zhou Y. Research Progress in atopic march. Front Immunol. 2020;11:1907.
  55.  
    1. Nakamura T, Haider S, Fontanella S, Murray CS, Simpson A, Custovic A. Modelling trajectories of parentally reported and physician-confirmed atopic dermatitis in a birth cohort study. Br J Dermatol. 2022;186(2):274-284.
  56.  
    1. Dharma C, Lefebvre DL, Tran MM, et al. Patterns of allergic sensitization and atopic dermatitis from 1 to 3 years: effects on allergic diseases. Clin Exp Allergy. 2018;48(1):48-59.
  57.  
    1. Akdis CA. Does the epithelial barrier hypothesis explain the rise in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739-751.
  58.  
    1. Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Time trends in the incidence of Parkinson disease. JAMA Neurol. 2016;73(8):981-989.
  59.  
    1. Frye RE. Introduction to part 1. Semin Pediatr Neurol. 2020;34:100802.
  60.  
    1. Chiarotti F, Venerosi A. Epidemiology of autism Spectrum disorders: a review of worldwide prevalence estimates since 2014. Brain Sci. 2020;10(5):274.
  61.  
    1. Hidaka BH. Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord. 2012;140(3):205-214.
  62.  
    1. Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605.
  63.  
    1. Yang R, Tan M, Xu J, Zhao X. Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models. Int J Mol Med. 2019;44(2):535-548.
  64.  
    1. Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol. 2019;144(5):1242-1253. e1247.
  65.  
    1. Wawrzyniak P, Krawczyk K, Acharya S, et al. Inhibition of CpG methylation improves the barrier integrity of bronchial epithelial cells in asthma. Allergy. 2021;76(6):1864-1868.
  66.  
    1. Celebi-Sozener Z, Ozdel-Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2021;77:1418-1449.
  67.  
    1. Anto A, Sousa-Pinto B, Czarlewski W, et al. Automatic market research of mobile health apps for the self-management of allergic rhinitis. Clkin Exp Allergy. 2022;52:1195-1207.
  68.  
    1. Bousquet J, Anto JM, Bachert C, et al. ARIA digital anamorphosis: digital transformation of health and care in airway diseases from research to practice. Allergy. 2021;76(1):168-190.
  69.  
    1. Bousquet J, Devillier P, Anto JM, et al. Daily allergic multimorbidity in rhinitis using mobile technology: a novel concept of the MASK study. Allergy. 2018;73(8):1622-1631.
  70.  
    1. Burte E, Bousquet J, Siroux V, Just J, Jacquemin B, Nadif R. The sensitization pattern differs according to rhinitis and asthma multimorbidity in adults: the EGEA study. Clin Exp Allergy. 2017;47:520-529.
  71.  
    1. Siroux V, Ballardini N, Soler M, et al. The asthma-rhinitis multimorbidity is associated with IgE polysensitization in adolescents and adults. Allergy. 2018;73(7):1447-1458.
  72.  
    1. Kauffmann F, Dizier MH, Annesi-Maesano I, et al. EGEA (epidemiological study on the genetics and environment of asthma, bronchial hyperresponsiveness and atopy)-descriptive characteristics. Clin Exp Allergy. 1999;29(Suppl 4):17-21.
  73.  
    1. Filiou A, Holmdahl I, Asarnoj A, et al. Development of sensitization to multiple allergen molecules from preschool to school age is related to asthma. Int Arch Allergy Immunol. 2022;183(6):628-639.
  74.  
    1. Blondal V, Malinovschi A, Sundbom F, et al. Multimorbidity in asthma, association with allergy, inflammatory markers and symptom burden, results from the Swedish GA(2) LEN study. Clin Exp Allergy. 2021;51(2):262-272.
  75.  
    1. Schoos AM, Jelding-Dannemand E, Stokholm J, Bonnelykke K, Bisgaard H, Chawes BL. Single and multiple time-point allergic sensitization during childhood and risk of asthma by age 13. Pediatr Allergy Immunol. 2019;30(7):716-723.
  76.  
    1. Raciborski F, Bousquet J, Bousqet J, et al. Dissociating polysensitization and multimorbidity in children and adults from a polish general population cohort. Clin Transl Allergy. 2019;9:4.
  77.  
    1. Schmidt F, Hose AJ, Mueller-Rompa S, et al. Development of atopic sensitization in Finnish and Estonian children: a latent class analysis in a multicenter cohort. J Allergy Clin Immunol. 2019;143(5):1904-1913. e1909.
  78.  
    1. Hose AJ, Depner M, Illi S, et al. Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts. J Allergy Clin Immunol. 2017;139(6):1935-1945. e1912.
  79.  
    1. Toppila-Salmi S, Chanoine S, Karjalainen J, Pekkanen J, Bousquet J, Siroux V. Risk of adult-onset asthma increases with the number of allergic multimorbidities and decreases with age. Allergy. 2019;74(12):2406-2416.
  80.  
    1. Bengtsson C, Lindberg E, Jonsson L, et al. Chronic Rhinosinusitis impairs sleep quality: results of the GA2LEN study. Sleep. 2017;40(1). doi:10.1093/sleep/zsw021
  81.  
    1. Sears MR, Burrows B, Flannery EM, Herbison GP, Holdaway MD. Atopy in childhood. I. Gender and allergen related risks for development of hay fever and asthma. Clin Exp Allergy. 1993;23(11):941-948.
  82.  
    1. Aranda CS, Cocco RR, Pierotti FF, et al. Allergic sensitization pattern of patients in Brazil. J Pediatr. 2021;97(4):387-395.
  83.  
    1. Zhang W, Xie B, Liu M, Wang Y. Associations between sensitisation to allergens and allergic diseases: a hospital-based case-control study in China. BMJ Open. 2022;12(2):e050047.
  84.  
    1. Gao Z, Fu WY, Sun Y, et al. Artemisia pollen allergy in China: component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy. 2019;74(2):284-293.
  85.  
    1. Nwaru BI, Suzuki S, Ekerljung L, et al. Furry animal allergen component sensitization and clinical outcomes in adult asthma and rhinitis. J Allergy Clin Immunol Pract. 2019;7(4):1230-1238.
  86.  
    1. Suzuki S, Nwaru BI, Ekerljung L, et al. Characterization of sensitization to furry animal allergen components in an adult population. Clin Exp Allergy. 2019;49(4):495-505.
  87.  
    1. Hemmer W, Sestak-Greinecker G, Braunsteiner T, Wantke F, Wohrl S. Molecular sensitization patterns in animal allergy: relationship with clinical relevance and pet ownership. Allergy. 2021;76(12):3687-3696.
  88.  
    1. Cibella F, Ferrante G, Cuttitta G, et al. The burden of rhinitis and rhinoconjunctivitis in adolescents. Allergy Asthma Immunol Res. 2015;7(1):44-50.
  89.  
    1. Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J. Association between asthma, rhinitis, and conjunctivitis multimorbidities with molecular IgE sensitization in adults. Allergy. 2019;74(4):824-827.
  90.  
    1. Amaral R, Bousquet J, Pereira AM, et al. Disentangling the heterogeneity of allergic respiratory diseases by latent class analysis reveals novel phenotypes. Allergy. 2019;74(4):698-708.
  91.  
    1. Mikkelsen S, Dinh KM, Boldsen JK, et al. Combinations of self-reported rhinitis, conjunctivitis, and asthma predicts IgE sensitization in more than 25,000 Danes. Clin Transl Allergy. 2021;11(1):e12013.
  92.  
    1. Toppila-Salmi S, Lemmetyinen R, Chanoine S, et al. Risk factors for severe adult-onset asthma: a multi-factor approach. BMC Pulm Med. 2021;21(1):214.
  93.  
    1. Hill DA, Grundmeier RW, Ramos M, Spergel JM. Eosinophilic esophagitis is a late manifestation of the allergic march. J Allergy Clin Immunol Pract. 2018;6(5):1528-1533.
  94.  
    1. O'Shea KM, Rochman M, Shoda T, Zimmermann N, Caldwell J, Rothenberg ME. Eosinophilic esophagitis with extremely high esophageal eosinophil counts. J Allergy Clin Immunol. 2021;147(1):409-412. e405.
  95.  
    1. Corren J. The rhinitis-asthma link revisited. Ann Allergy Asthma Immunol. 2005;94(3):311-312.
  96.  
    1. Hanes LS, Issa E, Proud D, Togias A. Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy. 2006;36(1):26-31.
  97.  
    1. Assanasen P, Baroody FM, Naureckas E, Naclerio RM. Hot, humid air increases cellular influx during the late-phase response to nasal challenge with antigen. Clin Exp Allergy. 2001;31(12):1913-1922.
  98.  
    1. Lau S, Matricardi PM, Wahn U, Lee YA, Keil T. Allergy and atopy from infancy to adulthood: messages from the German birth cohort MAS. Ann Allergy Asthma Immunol. 2019;122(1):25-32.
  99.  
    1. Gough H, Grabenhenrich L, Reich A, et al. Allergic multimorbidity of asthma, rhinitis, and eczema over 20 years in the German birth cohort MAS. Pediatr Allergy Immunol. 2015;26:431-437.
  100.  
    1. Kang H, Yu J, Yoo Y, Kim DK, Koh YY. Coincidence of atopy profile in terms of monosensitization and polysensitization in children and their parents. Allergy. 2005;60(8):1029-1033.
  101.  
    1. Keller T, Hohmann C, Standl M, et al. The sex-shift in single disease and multimorbid asthma and rhinitis during puberty - a study by MeDALL. Allergy. 2018;73(3):602-614.
  102.  
    1. Frohlich M, Pinart M, Keller T, et al. Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin Transl Allergy. 2017;7:44.
  103.  
    1. Rosario CS, Cardozo CA, Neto HJC, Filho NAR. Do gender and puberty influence allergic diseases? Allergol Immunopathol. 2021;49(2):122-125.
  104.  
    1. Tohidinik HR, Mallah N, Takkouche B. History of allergic rhinitis and risk of asthma; a systematic review and meta-analysis. World Allergy Organ J. 2019;12(10):100069.
  105.  
    1. Gabet S, Just J, Couderc R, Bousquet J, Seta N, Momas I. Early polysensitisation is associated to allergic multimorbidity in PARIS birth cohort infants. Pediatr Allergy Immunol. 2016;27:831-837.
  106.  
    1. Rochat MK, Illi S, Ege MJ, et al. Allergic rhinitis as a predictor for wheezing onset in school-aged children. J Allergy Clin Immunol. 2010;126(6):1170-1175.
  107.  
    1. Shaaban R, Zureik M, Soussan D, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet. 2008;372(9643):1049-1057.
  108.  
    1. Asarnoj A, Hamsten C, Waden K, et al. Sensitization to cat and dog allergen molecules in childhood and prediction of symptoms of cat and dog allergy in adolescence: a BAMSE/MeDALL study. J Allergy Clin Immunol. 2016;137(3):813-821. e817.
  109.  
    1. Ballardini N, Bergstrom A, Wahlgren CF, et al. IgE antibodies in relation to prevalence and multimorbidity of eczema, asthma, and rhinitis from birth to adolescence. Allergy. 2016;71(3):342-349.
  110.  
    1. Wickman M, Lupinek C, Andersson N, et al. Detection of IgE reactivity to a handful of allergen molecules in early childhood predicts respiratory allergy in adolescence. EBioMedicine. 2017;26:91-99.
  111.  
    1. Siroux V, Boudier A, Bousquet J, et al. Trajectories of IgE sensitization to allergen molecules from childhood to adulthood and respiratory health in the EGEA cohort. Allergy. 2022;77(2):609-618.
  112.  
    1. Aguilar D, Pinart M, Koppelman GH, et al. Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS One. 2017;12(6):e0179125.
  113.  
    1. Aguilar D, Lemonnier N, Koppelman GH, et al. Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS One. 2019;14(11):e0224448.
  114.  
    1. Dizier MH, Bouzigon E, Guilloud-Bataille M, et al. Genome screen in the French EGEA study: detection of linked regions shared or not shared by allergic rhinitis and asthma. Genes Immun. 2005;6(2):95-102.
  115.  
    1. Dizier MH, Bouzigon E, Guilloud-Bataille M, et al. Evidence for a locus in 1p31 region specifically linked to the Co-morbidity of asthma and allergic rhinitis in the EGEA study. Hum Hered. 2007;63(3-4):162-167.
  116.  
    1. Ferreira MA, Matheson MC, Tang CS, et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol. 2014;133(6):1564-1571.
  117.  
    1. Marenholz I, Esparza-Gordillo J, Ruschendorf F, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015;6:8804.
  118.  
    1. Lemonnier N, Melen E, Jiang Y, et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 2020;75:3248-3260.
  119.  
    1. Forno E, Sordillo J, Brehm J, et al. Genome-wide interaction study of dust mite allergen on lung function in children with asthma. J Allergy Clin Immunol. 2017;140(4):996-1003.
  120.  
    1. Forno E, Wang T, Yan Q, et al. A multiomics approach to identify genes associated with childhood asthma risk and morbidity. Am J Respir Cell Mol Biol. 2017;57(4):439-447.
  121.  
    1. Pinto SM, Subbannayya Y, Rex DAB, et al. A network map of IL-33 signaling pathway. J Cell Commun Signal. 2018;12(3):615-624.
  122.  
    1. Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep. 2014;6:97.
  123.  
    1. Laulajainen-Hongisto A, Lyly A, Hanif T, et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45.
  124.  
    1. Li J, Zhang Y, Zhang L. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol. 2015;15(1):33-40.
  125.  
    1. Wise SK, Lin SY, Toskala E, et al. International consensus Statement on allergy and rhinology: allergic rhinitis. Int Forum Allergy Rhinol. 2018;8(2):108-352.
  126.  
    1. Li X, Ampleford EJ, Howard TD, et al. The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J Allergy Clin Immunol. 2012;129(2):575-578.
  127.  
    1. Amaral AF, Minelli C, Guerra S, et al. The locus C11orf30 increases susceptibility to poly-sensitization. Allergy. 2015;70(3):328-333.
  128.  
    1. Sleiman PM, Wang ML, Cianferoni A, et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 2014;5:5593.
  129.  
    1. Tamari M, Tanaka S, Hirota T. Genome-wide association studies of allergic diseases. Allergol Int. 2013;62(1):21-28.
  130.  
    1. Choi BY, Han M, Kwak JW, Kim TH. Genetics and epigenetics in allergic rhinitis. Genes (Basel). 2021;9:1.
  131.  
    1. Bunyavanich S, Melen E, Wilk JB, et al. Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma. Clin Mol Allergy. 2011;9:1.
  132.  
    1. Kottyan LC, Davis BP, Sherrill JD, et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat Genet. 2014;46(8):895-900.
  133.  
    1. Kottyan LC, Trimarchi MP, Lu X, et al. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol. 2021;147(1):255-266.
  134.  
    1. Martin LJ, He H, Collins MH, et al. Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. J Allergy Clin Immunol. 2018;141(5):1690-1698.
  135.  
    1. Stein MM, Thompson EE, Schoettler N, et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J Allergy Clin Immunol. 2018;142(3):749-764. e743.
  136.  
    1. Haider S, Granell R, Curtin J, et al. Modelling wheezing spells identifies phenotypes with different outcomes and genetic associates. Am J Respir Crit Care Med. 2022;205:883-893.
  137.  
    1. Hallmark B, Wegienka G, Havstad S, et al. Chromosome 17q12-21 variants are associated with multiple wheezing phenotypes in childhood. Am J Respir Crit Care Med. 2021;203(7):864-870.
  138.  
    1. Andiappan AK, Sio YY, Lee B, et al. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol. 2016;137(3):758-766.
  139.  
    1. Fuertes E, Soderhall C, Acevedo N, et al. Associations between the 17q21 region and allergic rhinitis in 5 birth cohorts. J Allergy Clin Immunol. 2015;135(2):573-576.
  140.  
    1. Karunas A, Fedorova Y, Gimalova GF, Etkina E, Khusnutdinova E. Association of Gasdermin B Gene GSDMB polymorphisms with risk of allergic diseases. Biochem Genet. 2021;59(6):1527-1543.
  141.  
    1. Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072-1080.
  142.  
    1. Poninska JK, Samolinski B, Tomaszewska A, et al. Haplotype dependent association of rs7927894 (11q13.5) with atopic dermatitis and chronic allergic rhinitis: a study in ECAP cohort. PLoS One. 2017;12(9):e0183922.
  143.  
    1. El-Husseini ZW, Gosens R, Dekker F, Koppelman GH. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med. 2020;8(10):1045-1056.
  144.  
    1. Kanazawa J, Masuko H, Yatagai Y, et al. Association analyses of eQTLs of the TYRO3 gene and allergic diseases in Japanese populations. Allergol Int. 2019;68(1):77-81.
  145.  
    1. Acevedo N, Vergara C, Mercado D, Jimenez S, Caraballo L. The A-444C polymorphism of leukotriene C4 synthase gene is associated with IgE antibodies to Dermatophagoides pteronyssinus in a Colombian population. J Allergy Clin Immunol. 2007;119(2):505-507.
  146.  
    1. Bonnelykke K, Matheson MC, Pers TH, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902-906.
  147.  
    1. Marsh DG, Chase GA, Freidhoff LR, Meyers DA, Bias WB. Association of HLA antigens and total serum immunoglobulin E level with allergic response and failure to respond to ragweed allergen Ra3. Proc Natl Acad Sci U S A. 1979;76(6):2903-2907.
  148.  
    1. Fischer GF, Pickl WF, Fae I, et al. Association between IgE response against bet v I, the major allergen of birch pollen, and HLA-DRB alleles. Hum Immunol. 1992;33(4):259-265.
  149.  
    1. Tautz C, Rihs HP, Thiele A, et al. Association of class II sequences encoding DR1 and DQ5 specificities with hypersensitivity to chironomid allergen chi t I. J Allergy Clin Immunol. 1994;93(5):918-925.
  150.  
    1. Soriano JB, Ercilla G, Sunyer J, et al. HLA class II genes in soybean epidemic asthma patients. Am J Respir Crit Care Med. 1997;156(5):1394-1398.
  151.  
    1. D'Amato M, Scotto d'Abusco A, Maggi E, et al. Association of responsiveness to the major pollen allergen of Parietaria officinalis with HLA-DRB1* alleles: a multicenter study. Hum Immunol. 1996;46(2):100-106.
  152.  
    1. Joshi SK, Suresh PR, Chauhan VS. Flexibility in MHC and TCR recognition: degenerate specificity at the T cell level in the recognition of promiscuous Th epitopes exhibiting no primary sequence homology. J Immunol. 2001;166(11):6693-6703.
  153.  
    1. Gheerbrant H, Guillien A, Vernet R, et al. Associations between specific IgE sensitization to 26 respiratory allergen molecules and HLA class II alleles in the EGEA cohort. Allergy. 2021;76:2575-2586.
  154.  
    1. Kanchan K, Clay S, Irizar H, Bunyavanich S, Mathias RA. Current insights into the genetics of food allergy. J Allergy Clin Immunol. 2021;147(1):15-28.
  155.  
    1. Xu CJ, Soderhall C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6(5):379-388.
  156.  
    1. Xu CJ, Gruzieva O, Qi C, et al. Shared DNA methylation signatures in childhood allergy: the MeDALL study. J Allergy Clin Immunol. 2021;147(3):1031-1040.
  157.  
    1. Ek WE, Ahsan M, Rask-Andersen M, et al. Epigenome-wide DNA methylation study of IgE concentration in relation to self-reported allergies. Epigenomics. 2017;9(4):407-418.
  158.  
    1. Zhang H, Kaushal A, Merid SK, et al. DNA methylation and allergic sensitizations: a genome-scale longitudinal study during adolescence. Allergy. 2019;74(6):1166-1175.
  159.  
    1. Qi C, Jiang Y, Yang IV, et al. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol. 2020;145(6):1655-1663.
  160.  
    1. Sarnowski C, Laprise C, Malerba G, et al. DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. J Allergy Clin Immunol. 2016;138(3):748-753.
  161.  
    1. Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pedaitr Allergy Immunol. 2022;33(5):e13780.
  162.  
    1. Savoure M, Bousquet J, Leynaert B, et al. Rhinitis phenotypes and multimorbidities in the general population Constances cohort. Eur Respir J. 2023;61(2):2200943.
  163.  
    1. Sousa-Pinto B, Schunemann HJ, Sa-Sousa A, et al. Comparison of rhinitis treatments using MASK-air(R) data and considering the minimal important difference. Allergy. 2022;77(10):3002-3014.
  164.  
    1. Bedard A, Basagana X, Anto JM, et al. Mobile technology offers novel insights into the control and treatment of allergic rhinitis: the MASK study. J Allergy Clin Immunol. 2019;144(1):135-143.
  165.  
    1. Sousa-Pinto B, Sa-Sousa A, Vieira RJ, et al. Behavioural patterns in allergic rhinitis medication in Europe: a study using MASK-air((R)) real-world data. Allergy. 2022;77:2699-2711.
  166.  
    1. Belgrave DC, Granell R, Simpson A, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11(10):e1001748.
  167.  
    1. Renert-Yuval Y, Del Duca E, Pavel AB, et al. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J Allergy Clin Immunol. 2021;148(1):148-163.
  168.  
    1. Bjorksten F, Suoniemi I, Koski V. Neonatal birch-pollen contact and subsequent allergy to birch pollen. Clin Allergy. 1980;10(5):585-591.
  169.  
    1. Graf N, Johansen P, Schindler C, et al. Analysis of the relationship between pollinosis and date of birth in Switzerland. Int Arch Allergy Immunol. 2007;143(4):269-275.
  170.  
    1. Kihlstrom A, Lilja G, Pershagen G, Hedlin G. Exposure to birch pollen in infancy and development of atopic disease in childhood. J Allergy Clin Immunol. 2002;110(1):78-84.
  171.  
    1. Aalberse RC, Nieuwenhuys EJ, Hey M, Stapel SO. 'Horoscope effect' not only for seasonal but also for non-seasonal allergens. Clin Exp Allergy. 1992;22(11):1003-1006.
  172.  
    1. Schafer T, Przybilla B, Ring J, Kunz B, Greif A, Uberla K. Manifestation of atopy is not related to patient's month of birth. Allergy. 1993;48(4):291-294.
  173.  
    1. Peterson B, Saxon A. Global increases in allergic respiratory disease: the possible role of diesel exhaust particles. Ann Allergy Asthma Immunol. 1996;77(4):263-268.
  174.  
    1. Ohtani T, Nakagawa S, Kurosawa M, Mizuashi M, Ozawa M, Aiba S. Cellular basis of the role of diesel exhaust particles in inducing Th2-dominant response. J Immunol. 2005;174(4):2412-2419.
  175.  
    1. Llop-Guevara A, Chu DK, Walker TD, et al. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS One. 2014;9(2):e88714.
  176.  
    1. Han M, Rajput C, Hershenson MB. Rhinovirus attributes that contribute to asthma development. Immunol Allergy Clin North Am. 2019;39(3):345-359.
  177.  
    1. Niespodziana K, Stenberg-Hammar K, Papadopoulos NG, et al. Microarray technology may reveal the contribution of allergen exposure and rhinovirus infections as possible triggers for acute wheezing attacks in preschool children. Viruses. 2021;13(5). doi:10.3390/v13050915
  178.  
    1. Rajput C, Han M, Ishikawa T, et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front Immunol. 2021;12:649520.
  179.  
    1. Jackson DJ, Makrinioti H, Rana BM, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373-1382.
  180.  
    1. Werder RB, Ullah MA, Rahman MM, et al. Targeting the P2Y13 receptor suppresses IL-33 and HMGB1 release and ameliorates experimental asthma. Am J Respir Crit Care Med. 2022;205(3):300-312.
  181.  
    1. Al-Garawi A, Fattouh R, Botelho F, et al. Influenza a facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol. 2011;4(6):682-694.
  182.  
    1. Sahu U, Biswas D, Prajapati VK, Singh AK, Samant M, Khare P. Interleukin-17-a multifaceted cytokine in viral infections. J Cell Physiol. 2021;236(12):8000-8019.
  183.  
    1. Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017;278(1):116-130.
  184.  
    1. De Benedetto A, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132(3 Pt 2):949-963.
  185.  
    1. Tham EH, Leung DY. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic march. Allergy Asthma Immunol Res. 2019;11(1):4-15.
  186.  
    1. Sahiner UM, Layhadi JA, Golebski K, et al. Innate lymphoid cells: the missing part of a puzzle in food allergy. Allergy. 2021;76(7):2002-2016.
  187.  
    1. Imai Y. Interleukin-33 in atopic dermatitis. J Dermatol Sci. 2019;96(1):2-7.
  188.  
    1. Roesner LM, Werfel T, Heratizadeh A. The adaptive immune system in atopic dermatitis and implications on therapy. Expert Rev Clin Immunol. 2016;12(7):787-796.
  189.  
    1. Sorensen M, Klingenberg C, Wickman M, et al. Staphylococcus aureus enterotoxin-sensitization is associated with allergic poly-sensitization and allergic multimorbidity in adolescents. Allergy. 2017;72:1548-1555.
  190.  
    1. Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol. 2021;147(4):1354-1368.
  191.  
    1. Smole U, Gour N, Phelan J, et al. Serum amyloid a is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020;21(7):756-765.
  192.  
    1. Abdel-Gadir A, Stephen-Victor E, Gerber GK, et al. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med. 2019;25(7):1164-1174.
  193.  
    1. Cephus JY, Stier MT, Fuseini H, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 2017;21(9):2487-2499.
  194.  
    1. Laffont S, Blanquart E, Guery JC. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol. 2017;8:1069.
  195.  
    1. Cephus JY, Gandhi VD, Shah R, et al. Estrogen receptor-alpha signaling increases allergen-induced IL-33 release and airway inflammation. Allergy. 2021;76(1):255-268.
  196.  
    1. Gandhi VD, Cephus JY, Norlander AE, et al. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest. 2022;132(4):e153397.
  197.  
    1. Munoz X, Barreiro E, Bustamante V, Lopez-Campos JL, Gonzalez-Barcala FJ, Cruz MJ. Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ. 2019;652:1129-1138.
  198.  
    1. Sposato B, Liccardi G, Russo M, et al. Cypress pollen: an unexpected major sensitizing agent in different regions of Italy. J Investig Allergol Clin Immunol. 2014;24(1):23-28.
  199.  
    1. Asero R. Birch and ragweed pollinosis north of Milan: a model to investigate the effects of exposure to "new" airborne allergens. Allergy. 2002;57(11):1063-1066.
  200.  
    1. Asero R. Ragweed allergy in northern Italy: are patterns of sensitization changing? Eur Ann Allergy Clin Immunol. 2012;44(4):157-159.
  201.  
    1. Caimmi D, Raschetti R, Pons P, et al. Epidemiology of cypress pollen allergy in Montpellier. J Investig Allergol Clin Immunol. 2012;22(4):280-285.
  202.  
    1. Anto JM, Sunyer J, Rodriguez-Roisin R, Suarez-Cervera M, Vazquez L. Community outbreaks of asthma associated with inhalation of soybean dust. Toxicoepidemiological committee. N Engl J Med. 1989;320(17):1097-1102.
  203.  
    1. Synek M, Anto JM, Beasley R, et al. Immunopathology of fatal soybean dust-induced asthma. Eur Respir J. 1996;9(1):54-57.
  204.  
    1. Poposki JA, Klingler AI, Stevens WW, et al. Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022;149(5):1666-1674.
  205.  
    1. Delemarre T, Bochner BS, Simon HU, Bachert C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J Allergy Clin Immunol. 2021;148(2):327-335.
  206.  
    1. Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal antibodies and airway diseases. Int J Mol Sci. 2020;21(24):9477.
  207.  
    1. Sintobin I, Siroux V, Holtappels G, et al. Sensitisation to staphylococcal enterotoxins and asthma severity: a longitudinal study in the EGEA cohort. Eur Respir J. 2019;54(3):1900198.
  208.  
    1. Bachert C, van Steen K, Zhang N, et al. Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma. J Allergy Clin Immunol. 2012;130(2):376-381.
  209.  
    1. Bachert C, Humbert M, Hanania NA, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J. 2020;55(4):1901592.
  210.  
    1. Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: the role of Staphylococcus aureus protease-like proteins. Allergy. 2019;74(11):2077-2086.
  211.  
    1. Teufelberger AR, Broker BM, Krysko DV, Bachert C, Krysko O. Staphylococcus aureus orchestrates type 2 airway diseases. Trends Mol Med. 2019;25(8):696-707.
  212.  
    1. Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149(5):1491-1503.
  213.  
    1. Huang K, Li F, Wang X, et al. Clinical and cytokine patterns of uncontrolled asthma with and without comorbid chronic rhinosinusitis: a cross-sectional study. Respir Res. 2022;23(1):119.
  214.  
    1. Eid R, Yan CH, Stevens W, Doherty TA, Borish L. Innate immune cell dysregulation drives inflammation and disease in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2021;148(2):309-318.
  215.  
    1. Knudgaard MH, Andreasen TH, Ravnborg N, et al. Rhinitis prevalence and association with atopic dermatitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2021;127(1):49-56.
  216.  
    1. Deacy AM, Gan SK, Derrick JP. Superantigen recognition and interactions: functions, mechanisms and applications. Front Immunol. 2021;12:731845.
  217.  
    1. Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med. 2018;198(4):452-463.
  218.  
    1. Tang HHF, Lang A, Teo SM, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J Allergy Clin Immunol. 2021;147(5):1683-1691.
  219.  
    1. Leyva-Castillo JM, Geha RS. Cutaneous type 2 innate lymphoid cells come in distinct flavors. JID Innov. 2021;1(3):100059.
  220.  
    1. Chu DK, Jimenez-Saiz R, Verschoor CP, et al. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J Exp Med. 2014;211(8):1657-1672.
  221.  
    1. Chu DK, Llop-Guevara A, Walker TD, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187-200.
  222.  
    1. Liew KY, Koh SK, Hooi SL, et al. Rhinovirus-induced cytokine alterations with potential implications in asthma exacerbations: a systematic review and meta-analysis. Front Immunol. 2022;13:782936.
  223.  
    1. Murdaca G, Paladin F, Tonacci A, et al. Involvement of Il-33 in the pathogenesis and prognosis of major respiratory viral infections: future perspectives for personalized therapy. Biomedicine. 2022;10(3):715.
  224.  
    1. Suzuki M, Cooksley C, Suzuki T, et al. TLR signals in epithelial cells in the nasal cavity and paranasal sinuses. Front Allergy. 2021;2:780425.
  225.  
    1. Henmyr V, Carlberg D, Manderstedt E, et al. Genetic variation of the toll-like receptors in a Swedish allergic rhinitis case population. BMC Med Genet. 2017;18(1):18.
  226.  
    1. Henmyr V, Lind-Hallden C, Carlberg D, et al. Characterization of genetic variation in TLR8 in relation to allergic rhinitis. Allergy. 2016;71(3):333-341.
  227.  
    1. Fuertes E, Brauer M, MacIntyre E, et al. Childhood allergic rhinitis, traffic-related air pollution, and variability in the GSTP1, TNF, TLR2, and TLR4 genes: results from the TAG study. J Allergy Clin Immunol. 2013;132(2):342-352. e342.
  228.  
    1. Arebro J, Ekstedt S, Hjalmarsson E, Winqvist O, Kumlien Georen S, Cardell LO. A possible role for neutrophils in allergic rhinitis revealed after cellular subclassification. Sci Rep. 2017;7:43568.
  229.  
    1. Malizia V, Ferrante G, Cilluffo G, et al. Endotyping seasonal allergic rhinitis in children: a cluster analysis. Front Med (Lausanne). 2021;8:806911.
  230.  
    1. Brightling CE, Nair P, Cousins DJ, Louis R, Singh D. Risankizumab in severe asthma - a phase 2a, placebo-controlled trial. N Engl J Med. 2021;385(18):1669-1679.
  231.  
    1. Stein MM, Hrusch CL, Gozdz J, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375(5):411-421.
  232.  
    1. Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701-709.
  233.  
    1. House JS, Wyss AB, Hoppin JA, et al. Early-life farm exposures and adult asthma and atopy in the agricultural lung health study. J Allergy Clin Immunol. 2017;140(1):249-256. e214.
  234.  
    1. von Hertzen LC, Laatikainen T, Pennanen S, Makela MJ, Haahtela T. Karelian allergy study G. is house dust mite monosensitization associated with clinical disease? Allergy. 2008;63(3):379-381.
  235.  
    1. Matsushita K, Yoshimoto T. B cell-intrinsic MyD88 signaling is essential for IgE responses in lungs exposed to pollen allergens. J Immunol. 2014;193(12):5791-5800.
  236.  
    1. Ruokolainen L, Fyhrquist N, Laatikainen T, et al. Immune-microbiota interaction in Finnish and Russian Karelia young people with high and low allergy prevalence. Clin Exp Allergy. 2020;50(10):1148-1158.
  237.  
    1. Ruokolainen L, Paalanen L, Karkman A, et al. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin Exp Allergy. 2017;47(5):665-674.
  238.  
    1. Wisgrill L, Fyhrquist N, Ndika J, et al. Bet v 1 triggers antiviral-type immune signalling in birch-pollen-allergic individuals. Clin Exp Allergy. 2022;52:929-941.
  239.  
    1. Ndika J, Karisola P, Lahti V, et al. Epigenetic differences in long non-coding RNA expression in Finnish and Russian Karelia teenagers with contrasting risk of allergy and asthma. Front Allergy. 2022;3:878862.
  240.  
    1. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10(2):103-110.
  241.  
    1. Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine. 2017;100:1-10.
  242.  
    1. Johnson AN, Harkema JR, Nelson AJ, et al. MyD88 regulates a prolonged adaptation response to environmental dust exposure-induced lung disease. Respir Res. 2020;21(1):97.
  243.  
    1. Pawar S, Feehley T, Nagler C. Commensal bacteria-induced MyD88 signaling regulates intestinal permeability to food allergen via anti-microbial peptide and mucin production (MUC9P.741). J Immunol. 2015;194:205.
  244.  
    1. Stephen-Victor E, Crestani E, Chatila TA. Dietary and microbial determinants in food allergy. Immunity. 2020;53(2):277-289.
  245.  
    1. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154-168.
  246.  
    1. Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis. 2017;23(7):854-865.
  247.  
    1. Majumder S, McGeachy MJ. IL-17 in the pathogenesis of disease: Good intentions gone awry. Annu Rev Immunol. 2021;39:537-556.
  248.  
    1. Palmieri V, Ebel JF, Ngo Thi Phuong N, et al. Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity. Mucosal Immunol. 2021;14(4):923-936.
  249.  
    1. Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25(14):R611-R613.
  250.  
    1. Bibbo S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742-4749.
  251.  
    1. Vangay P, Johnson AJ, Ward TL, et al. US immigration westernizes the human gut microbiome. Cell. 2018;175(4):962-972.
  252.  
    1. Zuo T, Kamm MA, Colombel JF, Ng SC. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018;15(7):440-452.
  253.  
    1. Wilson AS, Koller KR, Ramaboli MC, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020;65(3):723-740.
  254.  
    1. Bostock J. Case of a periodical affection of the eyes and the chest. Med Surg Trans London. 1819;xiv:161-166.
  255.  
    1. Roslund MI, Parajuli A, Hui N, et al. A placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol Environ Saf. 2022;242:113900.
  256.  
    1. Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal gammadelta T cells. Cell Rep. 2021;36(1):109332.
  257.  
    1. Li M, van Esch B, Henricks PAJ, Garssen J, Folkerts G. IL-33 is involved in the anti-inflammatory effects of butyrate and propionate on TNFalpha-activated endothelial cells. Int J Mol Sci. 2021;22(5):2447.
  258.  
    1. Capucilli P, Cianferoni A, Grundmeier RW, Spergel JM. Comparison of comorbid diagnoses in children with and without eosinophilic esophagitis in a large population. Ann Allergy Asthma Immunol. 2018;121(6):711-716.
  259.  
    1. Mannion JM, McLoughlin RM, Lalor SJ. The airway microbiome-IL-17 Axis: a critical regulator of chronic inflammatory disease. Clin Rev Allergy Immunol. 2022. doi:10.1007/s12016-022-08928-y
  260.  
    1. Ritzmann F, Beisswenger C. Preclinical studies and the function of IL-17 cytokines in COPD. Ann Anat. 2021;237:151729.
  261.  
    1. Chen J, Liu X, Zhong Y. Interleukin-17A: the key cytokine in neurodegenerative diseases. Front Aging Neurosci. 2020;12:566922.
  262.  
    1. Yuan C. IL-33 in autoimmunity; possible therapeutic target. Int Immunopharmacol. 2022;108:108887.
  263.  
    1. Zhao Q, Xiao X, Wu Y, et al. Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol. 2011;41(8):2314-2322.
  264.  
    1. Hofmann MA, Kiecker F, Zuberbier T. A systematic review of the role of interleukin-17 and the interleukin-20 family in inflammatory allergic skin diseases. Curr Opin Allergy Clin Immunol. 2016;16(5):451-457.
  265.  
    1. Paira DA, Silvera-Ruiz S, Tissera A, et al. Interferon gamma, IL-17, and IL-1beta impair sperm motility and viability and induce sperm apoptosis. Cytokine. 2022;152:155834.
  266.  
    1. Crosby DA, Glover LE, Brennan EP, et al. Dysregulation of the interleukin-17A pathway in endometrial tissue from women with unexplained infertility affects pregnancy outcome following assisted reproductive treatment. Hum Reprod. 2020;35(8):1875-1888.
  267.  
    1. Pandolfo G, Genovese G, Casciaro M, et al. IL-33 in Mental Disorders. Medicina (Kaunas). 2021;57(4):315.
  268.  
    1. Kato T, Yasuda K, Matsushita K, et al. Interleukin-1/−33 signaling pathways as therapeutic targets for endometriosis. Front Immunol. 2019;10:2021.
  269.  
    1. Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493-1503.
  270.  
    1. Wang X, Zhang N, Bo M, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344-1353.
  271.  
    1. Wang M, Zhang N, Zheng M, et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144(5):1254-1264.
  272.  
    1. Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory Endotypes and clinical presentations in chronic Rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7(8):2812-2820.
  273.  
    1. Wang M, Zhang Y, Han D, Zhang L. Association between polymorphisms in cytokine genes IL-17A and IL-17F and development of allergic rhinitis and comorbid asthma in Chinese subjects. Hum Immunol. 2012;73(6):647-653.
  274.  
    1. Chanoine S, Sanchez M, Pin I, et al. Multimorbidity medications and poor asthma prognosis. Eur Respir J. 2018;51(4):1702114.
  275.  
    1. Roman-Rodriguez M, Kaplan A. GOLD 2021 strategy report: implications for asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis. 2021;16:1709-1715.
  276.  
    1. Eberl G. Immunity by equilibrium. Nat Rev Immunol. 2016;16(8):524-532.
  277.  
    1. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353.
  278.  
    1. Vignola AM, Chanez P, Godard P, Bousquet J. Relationships between rhinitis and asthma. Allergy. 1998;53(9):833-839.
  279.  
    1. Bousquet J, Burney PG, Zuberbier T, et al. GA2LEN (global allergy and asthma European network) addresses the allergy and asthma 'epidemic'. Allergy. 2009;64(7):969-977.
  280.  
    1. Bousquet J, Anto JM, Bachert C, et al. Factors responsible for differences between asymptomatic subjects and patients presenting an IgE sensitization to allergens. A GALEN Project. Allergy. 2006;61(6):671-680.
  281.  
    1. Bousquet J, Bedbrook A, Czarlewski W, et al. Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma. Clin Transl Allergy. 2019;9:16.
  282.  
    1. Westman M, Lupinek C, Bousquet J, et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J Allergy Clin Immunol. 2015;135(5):1199-1206.
  283.  
    1. Havstad S, Johnson CC, Kim H, et al. Atopic phenotypes identified with latent class analyses at age 2 years. J Allergy Clin Immunol. 2014;134(3):722-727.
  284.  
    1. Westman M, Aberg K, Apostolovic D, et al. Sensitization to grass pollen allergen molecules in a birth cohort-natural Phl p 4 as an early indicator of grass pollen allergy. J Allergy Clin Immunol. 2020;145:1174-1181.
  285.  
    1. Bougas N, Just J, Beydon N, et al. Unsupervised trajectories of respiratory/allergic symptoms throughout childhood in the PARIS cohort. Pediatr Allergy Immunol. 2019;30(3):315-324.
  286.  
    1. Custovic A, Sonntag HJ, Buchan IE, Belgrave D, Simpson A, Prosperi MC. Evolution pathways of IgE responses to grass and mite allergens throughout childhood. J Allergy Clin Immunol. 2015;136(6):1645-1652.
  287.  
    1. Tang HH, Teo SM, Belgrave DC, et al. Trajectories of childhood immune development and respiratory health relevant to asthma and allergy. Elife. 2018;7. doi:10.7554/eLife.35856
  288.  
    1. Posa D, Perna S, Resch Y, et al. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. J Allergy Clin Immunol. 2017;139(2):541-549.
  289.  
    1. Garden FL, Simpson JM, Marks GB, Investigators C. Atopy phenotypes in the childhood asthma prevention study (CAPS) cohort and the relationship with allergic disease: clinical mechanisms in allergic disease. Clin Exp Allergy. 2013;43(6):633-641.
  290.  
    1. Havstad SL, Sitarik A, Kim H, et al. Increased risk of asthma at age 10 years for children sensitized to multiple allergens. Ann Allergy Asthma Immunol. 2021;127(4):441-445.
  291.  
    1. Lazic N, Roberts G, Custovic A, et al. Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy. 2013;68(6):764-770.
  292.  
    1. Rodriguez-Martinez CE, Sossa-Briceno MP, Castro-Rodriguez JA. Factors predicting persistence of early wheezing through childhood and adolescence: a systematic review of the literature. J Asthma Allergy. 2017;10:83-98.
  293.  
    1. Haahtela T, Laatikainen T, Alenius H, et al. Hunt for the origin of allergy - comparing the Finnish and Russian Karelia. Clin Exp Allergy. 2015;45(5):891-901.
  294.  
    1. Ke S, Weiss ST, Liu YY. Rejuvenating the human gut microbiome. Trends Mol Med. 2022;28(8):619-630.
  295.  
    1. McSorley HJ, Smyth DJ. IL-33: a central cytokine in helminth infections. Semin Immunol. 2021;53:101532.
  296.  
    1. Hung LY, Tanaka Y, Herbine K, et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol. 2020;5(53). doi:10.1126/sciimmunol.abc6259
  297.  
    1. Rajasekaran S, Anuradha R, Bethunaickan R. TLR specific immune responses against helminth infections. J Parasitol Res. 2017;2017:6865789.
  298.  
    1. Chung SH, Ye XQ, Iwakura Y. Interleukin-17 family members in health and disease. Int Immunol. 2021;33(12):723-729.
  299.  
    1. Wen TH, Tsai KW, Wu YJ, Liao MT, Lu KC, Hu WC. The framework for human host immune responses to four types of parasitic infections and relevant key JAK/STAT signaling. Int J Mol Sci. 2021;22(24). doi:10.3390/ijms222413310