Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

Anubha Mahajan 1Jennifer Wessel 2Sara M Willems 3Wei Zhao 4Neil R Robertson 5 6Audrey Y Chu 7 8Wei Gan 5Hidetoshi Kitajima 5Daniel Taliun 9N William Rayner 5 6 10Xiuqing Guo 11Yingchang Lu 12Man Li 13 14Richard A Jensen 15Yao Hu 16Shaofeng Huo 16Kurt K Lohman 17Weihua Zhang 18 19James P Cook 20Bram Peter Prins 10Jason Flannick 21 22Niels Grarup 23Vassily Vladimirovich Trubetskoy 9Jasmina Kravic 24Young Jin Kim 25Denis V Rybin 26Hanieh Yaghootkar 27Martina Müller-Nurasyid 28 29 30Karina Meidtner 31 32Ruifang Li-Gao 33Tibor V Varga 34Jonathan Marten 35Jin Li 36Albert Vernon Smith 37 38Ping An 39Symen Ligthart 40Stefan Gustafsson 41Giovanni Malerba 42Ayse Demirkan 40 43Juan Fernandez Tajes 5Valgerdur Steinthorsdottir 44Matthias Wuttke 45Cécile Lecoeur 46Michael Preuss 12Lawrence F Bielak 47Marielisa Graff 48Heather M Highland 49Anne E Justice 48Dajiang J Liu 50Eirini Marouli 51Gina Marie Peloso 21 26Helen R Warren 51 52ExomeBP ConsortiumMAGIC ConsortiumGIANT ConsortiumSaima Afaq 18Shoaib Afzal 53 54 55Emma Ahlqvist 24Peter Almgren 56Najaf Amin 40Lia B Bang 57Alain G Bertoni 58Cristina Bombieri 42Jette Bork-Jensen 23Ivan Brandslund 59 60Jennifer A Brody 15Noël P Burtt 21Mickaël Canouil 46Yii-Der Ida Chen 11Yoon Shin Cho 61Cramer Christensen 62Sophie V Eastwood 63Kai-Uwe Eckardt 64Krista Fischer 65Giovanni Gambaro 66Vilmantas Giedraitis 67Megan L Grove 68Hugoline G de Haan 33Sophie Hackinger 10Yang Hai 11Sohee Han 25Anne Tybjærg-Hansen 54 55 69Marie-France Hivert 70 71 72Bo Isomaa 73 74Susanne Jäger 31 32Marit E Jørgensen 75 76Torben Jørgensen 55 77 78Annemari Käräjämäki 79 80Bong-Jo Kim 25Sung Soo Kim 25Heikki A Koistinen 81 82 83 84Peter Kovacs 85Jennifer Kriebel 32 86Florian Kronenberg 87Kristi Läll 65 88Leslie A Lange 89Jung-Jin Lee 4Benjamin Lehne 18Huaixing Li 16Keng-Hung Lin 90Allan Linneberg 77 91 92Ching-Ti Liu 26Jun Liu 40Marie Loh 18 93 94Reedik Mägi 65Vasiliki Mamakou 95Roberta McKean-Cowdin 96Girish Nadkarni 97Matt Neville 6 98Sune F Nielsen 53 54 55Ioanna Ntalla 51Patricia A Peyser 47Wolfgang Rathmann 32 99Kenneth Rice 100Stephen S Rich 101Line Rode 53 54Olov Rolandsson 102Sebastian Schönherr 87Elizabeth Selvin 13Kerrin S Small 103Alena Stančáková 104Praveen Surendran 105Kent D Taylor 11Tanya M Teslovich 9Barbara Thorand 32 106Gudmar Thorleifsson 44Adrienne Tin 107Anke Tönjes 108Anette Varbo 53 54 55 69Daniel R Witte 109 110Andrew R Wood 27Pranav Yajnik 9Jie Yao 11Loïc Yengo 46Robin Young 105 111Philippe Amouyel 112Heiner Boeing 113Eric Boerwinkle 68 114Erwin P Bottinger 12Rajiv Chowdhury 115Francis S Collins 116George Dedoussis 117Abbas Dehghan 40 118Panos Deloukas 51 119Marco M Ferrario 120Jean Ferrières 121 122Jose C Florez 70 123 124 125Philippe Frossard 126Vilmundur Gudnason 37 38Tamara B Harris 127Susan R Heckbert 15Joanna M M Howson 115Martin Ingelsson 67Sekar Kathiresan 21 123 125 128Frank Kee 129Johanna Kuusisto 104Claudia Langenberg 3Lenore J Launer 127Cecilia M Lindgren 5 21 130Satu Männistö 131Thomas Meitinger 132 133Olle Melander 56Karen L Mohlke 134Marie Moitry 135 136Andrew D Morris 137 138Alison D Murray 139Renée de Mutsert 33Marju Orho-Melander 140Katharine R Owen 6 98Markus Perola 131 141Annette Peters 30 32 106Michael A Province 39Asif Rasheed 126Paul M Ridker 8 125Fernando Rivadineira 40 142Frits R Rosendaal 33Anders H Rosengren 24Veikko Salomaa 131Wayne H-H Sheu 143 144 145Rob Sladek 146 147 148Blair H Smith 149Konstantin Strauch 28 150André G Uitterlinden 41 142Rohit Varma 151Cristen J Willer 152 153 154Matthias Blüher 85 108Adam S Butterworth 105 155John Campbell Chambers 18 19 156Daniel I Chasman 8 125John Danesh 105 155 157 158Cornelia van Duijn 40Josée Dupuis 7 26Oscar H Franco 40Paul W Franks 34 102 159Philippe Froguel 46 160Harald Grallert 32 86 161 162Leif Groop 24 141Bok-Ghee Han 25Torben Hansen 23 163Andrew T Hattersley 164Caroline Hayward 35Erik Ingelsson 36 41Sharon L R Kardia 47Fredrik Karpe 6 98Jaspal Singh Kooner 19 156 165Anna Köttgen 45Kari Kuulasmaa 132Markku Laakso 104Xu Lin 16Lars Lind 166Yongmei Liu 58Ruth J F Loos 12 167Jonathan Marchini 5 168Andres Metspalu 65Dennis Mook-Kanamori 33 169Børge G Nordestgaard 53 54 55Colin N A Palmer 170James S Pankow 171Oluf Pedersen 23Bruce M Psaty 15 172Rainer Rauramaa 173Naveed Sattar 174Matthias B Schulze 31 32Nicole Soranzo 10 155 175Timothy D Spector 103Kari Stefansson 38 44Michael Stumvoll 176Unnur Thorsteinsdottir 38 44Tiinamaija Tuomi 74 82 141 177Jaakko Tuomilehto 81 178 179 180Nicholas J Wareham 3James G Wilson 181Eleftheria Zeggini 10Robert A Scott 3Inês Barroso 10 182Timothy M Frayling 27Mark O Goodarzi 183James B Meigs 184Michael Boehnke 9Danish Saleheen 4 126Andrew P Morris 5 20 65Jerome I Rotter 185 186Mark I McCarthy 187 188 189

Affiliations


Abstract

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.


References

  1.  
    1. Kooner JS, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43:984–9. - PMC - PubMed
  2.  
    1. Cho YS, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72. - PMC - PubMed
  3.  
    1. Morris AP, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90. - PMC - PubMed
  4.  
    1. Mahajan A, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. - PMC - PubMed
  5.  
    1. Ng MC, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10:e1004517. - PMC - PubMed
  6.  
    1. Locke AE, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. - PMC - PubMed
  7.  
    1. Shungin D, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96. - PMC - PubMed
  8.  
    1. Gusev A, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet. 2014;95:535–52. - PMC - PubMed
  9.  
    1. Walter K, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90. - PMC - PubMed
  10.  
    1. Gaulton KJ, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25. - PMC - PubMed
  11.  
    1. Horikoshi M, et al. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Hum Mol Genet. 2016;25:2070–2081. - PMC - PubMed
  12.  
    1. Fuchsberger C, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7. - PMC - PubMed
  13.  
    1. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. - PMC - PubMed
  14.  
    1. Cook JP, Morris AP. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility. Eur J Hum Genet. 2016;24:1175–80. - PMC - PubMed
  15.  
    1. Estrada K, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311:2305–14. - PMC - PubMed
  16.  
    1. Sveinbjornsson G, et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet. 2016;48:314–7. - PubMed
  17.  
    1. Liu DJ, et al. Meta-analysis of gene-level tests for rare variant association. Nat Genet. 2014;46:200–4. - PMC - PubMed
  18.  
    1. Purcell SM, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90. - PMC - PubMed
  19.  
    1. Steinthorsdottir V, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8. - PubMed
  20.  
    1. McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83. - PMC - PubMed
  21.  
    1. Maller JB, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012;44:1294–301. - PMC - PubMed
  22.  
    1. Flannick J, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63. - PMC - PubMed
  23.  
    1. Beer NL, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18:4081–8. - PMC - PubMed
  24.  
    1. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008;4:200–13. - PubMed
  25.  
    1. Romeo S, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5. - PMC - PubMed
  26.  
    1. Kozlitina J, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46:352–6. - PMC - PubMed
  27.  
    1. Kulzer JR, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94:186–97. - PMC - PubMed
  28.  
    1. Carrat GR, et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am J Hum Genet. 2017;100:238–256. - PMC - PubMed
  29.  
    1. Deeb SS, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284–7. - PubMed
  30.  
    1. Majithia AR, et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A. 2014;111:13127–32. - PMC - PubMed
  31.  
    1. Majithia AR, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–1575. - PMC - PubMed
  32.  
    1. Claussnitzer M, et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell. 2014;156:343–58. - PMC - PubMed
  33.  
    1. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91. - PMC - PubMed
  34.  
    1. Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5. - PMC - PubMed
  35.  
    1. Dimas AS, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158–71. - PMC - PubMed
  36.  
    1. Lotta LA, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49:17–26. - PMC - PubMed
  37.  
    1. Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet. 2007;39:813–5. - PubMed
  38.  
    1. Grove ML, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One. 2013;8:e68095. - PMC - PubMed
  39.  
    1. Price AL, et al. Long-range LD can confound genome scans in admixed populations. Am J Hum Genet. 2008;83:132–5. author reply 135–9. - PMC - PubMed
  40.  
    1. Weale ME. Quality control for genome-wide association studies. Methods Mol Biol. 2010;628:341–72. - PubMed
  41.  
    1. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004. - PubMed
  42.  
    1. Kang HM, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54. - PMC - PubMed
  43.  
    1. Eastwood SV, et al. Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank. PLoS One. 2016;11:e0162388. - PMC - PubMed
  44.  
    1. Auton A, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. - PMC - PubMed
  45.  
    1. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511. - PubMed
  46.  
    1. Hoffmann TJ, et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics. 2011;98:79–89. - PMC - PubMed
  47.  
    1. Hoffmann TJ, et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics. 2011;98:422–30. - PMC - PubMed
  48.  
    1. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. - PMC - PubMed
  49.  
    1. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955–9. - PMC - PubMed
  50.  
    1. Winkler TW, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212. - PMC - PubMed
  51.  
    1. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1. - PMC - PubMed
  52.  
    1. Cook JP, Mahajan A, Morris AP. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur J Hum Genet. 2017;25:240–245. - PMC - PubMed
  53.  
    1. Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2007;2:e841. - PMC - PubMed
  54.  
    1. Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44:369–75. s1–3. - PMC - PubMed
  55.  
    1. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007;81:208–27. - PMC - PubMed