Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

William H Goodson 3rd 1Leroy Lowe 2David O Carpenter 3Michael Gilbertson 4Abdul Manaf Ali 5Adela Lopez de Cerain Salsamendi 6Ahmed Lasfar 7Amancio Carnero 8Amaya Azqueta 6Amedeo Amedei 9Amelia K Charles 10Andrew R Collins 11Andrew Ward 12Anna C Salzberg 13Annamaria Colacci 14Ann-Karin Olsen 15Arthur Berg 13Barry J Barclay 16Binhua P Zhou 17Carmen Blanco-Aparicio 18Carolyn J Baglole 19Chenfang Dong 17Chiara Mondello 20Chia-Wen Hsu 21Christian C Naus 22Clement Yedjou 23Colleen S Curran 24Dale W Laird 25Daniel C Koch 26Danielle J Carlin 27Dean W Felsher 28Debasish Roy 29Dustin G Brown 30Edward Ratovitski 31Elizabeth P Ryan 30Emanuela Corsini 32Emilio Rojas 33Eun-Yi Moon 34Ezio Laconi 35Fabio Marongiu 35Fahd Al-Mulla 36Ferdinando Chiaradonna 37Firouz Darroudi 38Francis L Martin 39Frederik J Van Schooten 40Gary S Goldberg 41Gerard Wagemaker 42Gladys N Nangami 43Gloria M Calaf 44Graeme Williams 45Gregory T Wolf 46Gudrun Koppen 47Gunnar Brunborg 15H Kim Lyerly 48Harini Krishnan 41Hasiah Ab Hamid 49Hemad Yasaei 50Hideko Sone 51Hiroshi Kondoh 52Hosni K Salem 53Hsue-Yin Hsu 54Hyun Ho Park 55Igor Koturbash 56Isabelle R Miousse 56A Ivana Scovassi 20James E Klaunig 57Jan Vondráček 58Jayadev Raju 59Jesse Roman 60John Pierce Wise Sr 61Jonathan R Whitfield 62Jordan Woodrick 63Joseph A Christopher 64Josiah Ochieng 43Juan Fernando Martinez-Leal 65Judith Weisz 66Julia Kravchenko 48Jun Sun 67Kalan R Prudhomme 68Kannan Badri Narayanan 55Karine A Cohen-Solal 69Kim Moorwood 12Laetitia Gonzalez 70Laura Soucek 71Le Jian 72Leandro S D'Abronzo 73Liang-Tzung Lin 74Lin Li 75Linda Gulliver 76Lisa J McCawley 77Lorenzo Memeo 78Louis Vermeulen 79Luc Leyns 70Luoping Zhang 80Mahara Valverde 33Mahin Khatami 81Maria Fiammetta Romano 82Marion Chapellier 83Marc A Williams 84Mark Wade 85Masoud H Manjili 86Matilde E Lleonart 87Menghang Xia 21Michael J Gonzalez 88Michalis V Karamouzis 89Micheline Kirsch-Volders 70Monica Vaccari 14Nancy B Kuemmerle 90Neetu Singh 91Nichola Cruickshanks 92Nicole Kleinstreuer 93Nik van Larebeke 94Nuzhat Ahmed 95Olugbemiga Ogunkua 43P K Krishnakumar 96Pankaj Vadgama 97Paola A Marignani 98Paramita M Ghosh 73Patricia Ostrosky-Wegman 33Patricia A Thompson 99Paul Dent 92Petr Heneberg 100Philippa Darbre 101Po Sing Leung 75Pratima Nangia-Makker 102Qiang Shawn Cheng 103R Brooks Robey 104Rabeah Al-Temaimi 105Rabindra Roy 63Rafaela Andrade-Vieira 98Ranjeet K Sinha 106Rekha Mehta 59Renza Vento 107Riccardo Di Fiore 108Richard Ponce-Cusi 109Rita Dornetshuber-Fleiss 110Rita Nahta 111Robert C Castellino 112Roberta Palorini 37Roslida Abd Hamid 49Sabine A S Langie 47Sakina E Eltom 43Samira A Brooks 113Sandra Ryeom 114Sandra S Wise 61Sarah N Bay 115Shelley A Harris 116Silvana Papagerakis 46Simona Romano 82Sofia Pavanello 117Staffan Eriksson 118Stefano Forte 78Stephanie C Casey 26Sudjit Luanpitpong 119Tae-Jin Lee 120Takemi Otsuki 121Tao Chen 122Thierry Massfelder 123Thomas Sanderson 124Tiziana Guarnieri 125Tove Hultman 126Valérian Dormoy 127Valerie Odero-Marah 128Venkata Sabbisetti 129Veronique Maguer-Satta 84W Kimryn Rathmell 113Wilhelm Engström 126William K Decker 130William H Bisson 68Yon Rojanasakul 131Yunus Luqmani 132Zhenbang Chen 43Zhiwei Hu 133

Affiliations

06 January 2015

-

doi: 10.1093/carcin/bgv039


Abstract

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Figures


Similar articles

Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis.

Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S184-202. doi: 10.1093/carcin/bgv036.PMID: 26106137 Free PMC article. Review.

Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci A, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S89-110. doi: 10.1093/carcin/bgv032.PMID: 26106145 Free PMC article. Review.

Causes of genome instability: the effect of low dose chemical exposures in modern society.

Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown DG, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan EP, Ostrosky-Wegman P, Salem HK, Scovassi AI, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S61-88. doi: 10.1093/carcin/bgv031.PMID: 26106144 Free PMC article. Review.

The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling.

Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S38-60. doi: 10.1093/carcin/bgv030.PMID: 26106143 Free PMC article. Review.

Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, Kubik L, Palorini R, Al-Mulla F, Al-Temaimi R, Colacci A, Mondello C, Raju J, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Williams GP, Lowe L, Meyer J, Martin FL, Bisson WH, Chiaradonna F, Ryan EP.Carcinogenesis. 2015 Jun;36 Suppl 1(Suppl 1):S203-31. doi: 10.1093/carcin/bgv037.PMID: 26106140 Free PMC article. Review.


Cited by

Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach.

Limbu S, Dakshanamurthy S.Toxics. 2023 Jul 12;11(7):605. doi: 10.3390/toxics11070605.PMID: 37505571 Free PMC article.

A Collaborative Approach to Address Racism in a Community-Academic Partnership.

Lebow-Skelley E, Scott Tomlinson M, Charles S, Fuller C, Ames B, Pearson MA.Prev Chronic Dis. 2023 Jun 8;20:E47. doi: 10.5888/pcd20.220365.PMID: 37290007 Free PMC article.

A complex systems model of breast cancer etiology: The Paradigm II Model.

Hiatt RA, Worden L, Rehkopf D, Engmann N, Troester M, Witte JS, Balke K, Jackson C, Barlow J, Fenton SE, Gehlert S, Hammond RA, Kaplan G, Kornak J, Nishioka K, McKone T, Smith MT, Trasande L, Porco TC.PLoS One. 2023 May 19;18(5):e0282878. doi: 10.1371/journal.pone.0282878. eCollection 2023.PMID: 37205649 Free PMC article.

Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers.

Burdon J, Budnik LT, Baur X, Hageman G, Howard CV, Roig J, Coxon L, Furlong CE, Gee D, Loraine T, Terry AV Jr, Midavaine J, Petersen H, Bron D, Soskolne CL, Michaelis S.Environ Health. 2023 May 16;22(1):43. doi: 10.1186/s12940-023-00987-8.PMID: 37194087 Free PMC article.

A mixture of 13 pesticides, contaminants, and food additives below individual NOAELs produces histopathological and organ weight changes in rats.

Dinca V, Docea AO, Drocas AI, Nikolouzakis TK, Stivaktakis PD, Nikitovic D, Golokhvast KS, Hernandez AF, Calina D, Tsatsakis A.Arch Toxicol. 2023 May;97(5):1285-1298. doi: 10.1007/s00204-023-03455-x. Epub 2023 Mar 9.PMID: 36892595 Free PMC article.


KMEL References


References

  1.  
    1. (2014) World cancer report 2014. In Wild C.P. and Stewart B.W (eds). World Health Organization.
  2.  
    1. Malhotra J. (2014) Molecular and genetic epidemiology of cancer in low- and medium-income countries. Ann. Glob. Health, 80, 418–425. - PubMed
  3.  
    1. McGuinn L.A., et al. (2012) Cancer and environment: definitions and misconceptions. Environ. Res., 112, 230–234. - PMC - PubMed
  4.  
    1. Sankpal U.T., et al. (2012) Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumour Biol., 33, 1265–1274. - PubMed
  5.  
    1. Trosko J.E., et al. (2005) The emperor wears no clothes in the field of carcinogen risk assessment: ignored concepts in cancer risk assessment. Mutagenesis, 20, 81–92. - PubMed
  6.  
    1. Christiani D.C. (2011) Combating environmental causes of cancer. N. Engl. J. Med., 364, 791–793. - PubMed
  7.  
    1. Clapp R. (2011) Chemicals policy in the 2008-2009 President's Cancer Panel Report. New Solut., 21, 447–455. - PubMed
  8.  
    1. Reuben S.H. (2008–2009) Reducing environmental cancer risk: what we can do now. In Panel T.P.s.C. (ed.), Bethesda, Maryland.
  9.  
    1. Parkin D.M., et al. (2011) The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer, 105(Suppl 2), S77–S81. - PMC - PubMed
  10.  
    1. (2009) Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization, Geneva.
  11.  
    1. Straif K. (2008) The burden of occupational cancer. Occup. Environ. Med., 65, 787–788. - PubMed
  12.  
    1. Vandenberg L.N., et al. (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev., 33, 378–455. - PMC - PubMed
  13.  
    1. (2009) OECD Guidelines for the Testing of Chemicals, Section 4 Health Effects, Test No. 451: Carcinogenicity Studies. OECD.
  14.  
    1. Wignall J.A., et al. (2014) Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ. Health Perspect., 122, 499–505. - PMC - PubMed
  15.  
    1. Myers J.P., et al. (2009) A clash of old and new scientific concepts in toxicity, with important implications for public health. Environ. Health Perspect., 117, 1652–1655. - PMC - PubMed
  16.  
    1. Vandenberg L.N., et al. (2013) Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod. Toxicol., 38, 1–15. - PMC - PubMed
  17.  
    1. Bergman A., et al. (2013) Science and policy on endocrine disrupters must not be mixed: a reply to a “common sense” intervention by toxicology journal editors. Environ. Health, 12, 69. - PMC - PubMed
  18.  
    1. Ames B.N. (1979) Identifying environmental chemicals causing mutations and cancer. Science, 204, 587–593. - PubMed
  19.  
    1. Armitage P., et al. (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer, 8, 1–12. - PMC - PubMed
  20.  
    1. Truhaut R. (1990) [Recent progress in the evaluation of the dangers of chemical carcinogens]. J. Pharm. Belg., 45, 131–140. - PubMed
  21.  
    1. Hanahan D., et al. (2000) The hallmarks of cancer. Cell, 100, 57–70. - PubMed
  22.  
    1. Preston R.J. (2005) Extrapolations are the Achilles heel of risk assessment. Mutat. Res., 589, 153–157. - PubMed
  23.  
    1. Hanahan D., et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674. - PubMed
  24.  
    1. Colotta F., et al. (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30, 1073–1081. - PubMed
  25.  
    1. Warburg O. (ed.) (1930) The Metabolism of Tumours: Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlen. Constable & Company Limited, London.
  26.  
    1. Aisenberg A.C. (1961) The Glycolysis and Respiration of Tumors. Academic Press, New York, NY.
  27.  
    1. Ankley G.T., et al. (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem., 29, 730–741. - PubMed
  28.  
    1. Groh K.J., et al. (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere, 120, 764–777. - PubMed
  29.  
    1. Kleinstreuer N.C., et al. (2013) In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis. Toxicol. Sci., 131, 40–55. - PubMed
  30.  
    1. Yates L.R., et al. (2012) Evolution of the cancer genome. Nat. Rev. Genet., 13, 795–806. - PMC - PubMed
  31.  
    1. (2001) National Toxicology Program’s report of the endocrine disruptors low dose peer review. National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC.
  32.  
    1. Melnick R., et al. (2002) Summary of the National Toxicology Program's report of the endocrine disruptors low-dose peer review. Environ. Health Perspect., 110, 427–431. - PMC - PubMed
  33.  
    1. Welshons W.V., et al. (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147(Suppl 6), S56–S69. - PubMed
  34.  
    1. Vandenberg L.N., et al. (2007) Human exposure to bisphenol A (BPA). Reprod. Toxicol., 24, 139–177. - PubMed
  35.  
    1. Brucker-Davis F., et al. (2001) Significant effects of mild endogenous hormonal changes in humans: considerations for low-dose testing. Environ. Health Perspect., 109( Suppl 1 ), 21–26. - PMC - PubMed
  36.  
    1. EPA, U.S. The U.S. Environmental Protection Agency ToxCast Phase I/II data http://www.epa.gov/ncct/toxcast/data.html.
  37.  
    1. Taylor T.R., et al. (2011) Ziram activates mitogen-activated protein kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol. Mech. Methods, 21, 577–584. - PMC - PubMed
  38.  
    1. McMahon T.A., et al. (2011) The fungicide chlorothalonil is nonlinearly associated with corticosterone levels, immunity, and mortality in amphibians. Environ. Health Perspect., 119, 1098–1103. - PMC - PubMed
  39.  
    1. Goldman J.M., et al. (2004) Methoxychlor-induced alterations in the histological expression of angiogenic factors in pituitary and uterus. J. Mol. Histol., 35, 363–375. - PubMed
  40.  
    1. Chapin R.E., et al. (1997) The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam. Appl. Toxicol., 40, 138–157. - PubMed
  41.  
    1. Qian Y., et al. (2010) Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J. Toxicol. Environ. Health A, 73, 819–836. - PMC - PubMed
  42.  
    1. Hu J.X., et al. (2013) Toxic effects of cypermethrin on the male reproductive system: with emphasis on the androgen receptor. J. Appl. Toxicol., 33, 576–585. - PubMed
  43.  
    1. Jin M., et al. (2010) Estrogenic activities of two synthetic pyrethroids and their metabolites. J. Environ. Sci. (China), 22, 290–296. - PubMed
  44.  
    1. Kakko I., et al. (2004) Oestradiol potentiates the effects of certain pyrethroid compounds in the MCF7 human breast carcinoma cell line. Altern. Lab. Anim., 32, 383–390. - PubMed
  45.  
    1. Feng Z., et al. (2006) Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl Acad. Sci. USA, 103, 15404–15409. - PMC - PubMed
  46.  
    1. Günther M., et al. (2008) Acrolein: unwanted side product or contribution to antiangiogenic properties of metronomic cyclophosphamide therapy? J. Cell. Mol. Med., 12(6B), 2704–2716. - PMC - PubMed
  47.  
    1. Luo C., et al. (2013) A cigarette component acrolein induces accelerated senescence in human diploid fibroblast IMR-90 cells. Biogerontology, 14, 503–511. - PubMed
  48.  
    1. Roy J., et al. (2010) Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53. Can. J. Physiol. Pharmacol., 88, 353–368. - PubMed
  49.  
    1. Tanel A., et al. (2014) Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells. Biochim. Biophys. Acta, 1843, 827–835. - PubMed
  50.  
    1. Tang M.S., et al. (2011) Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol. Nutr. Food Res., 55, 1291–1300. - PMC - PubMed
  51.  
    1. Cabeza-Arvelaiz Y., et al. (2012) Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One, 7, e44700. - PMC - PubMed
  52.  
    1. Deng Y.T., et al. (2010) Rotenone induces apoptosis in MCF-7 human breast cancer cell-mediated ROS through JNK and p38 signaling. Mol. Carcinog., 49, 141–151. - PubMed
  53.  
    1. Gonçalves A.P., et al. (2011) Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone. Biochim. Biophys. Acta, 1813, 492–499. - PMC - PubMed
  54.  
    1. Li Y., et al. (2013) Copper induces cellular senescence in human glioblastoma multiforme cells through downregulation of Bmi-1. Oncol. Rep., 29, 1805–1810. - PubMed
  55.  
    1. Ostrakhovitch E.A., et al. (2005) Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis, 10, 111–121. - PubMed
  56.  
    1. Parr-Sturgess C.A., et al. (2012) Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells. Mol. Cancer Res., 10, 1282–1293. - PubMed
  57.  
    1. Freitas M., et al. (2013) Nickel induces apoptosis in human neutrophils. Biometals, 26, 13–21. - PubMed
  58.  
    1. Wu C.H., et al. (2012) Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J. Biol. Chem., 287, 25292–25302. - PMC - PubMed
  59.  
    1. Aimola P., et al. (2012) Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS One, 7, e33647. - PMC - PubMed
  60.  
    1. Yuan D., et al. (2013) Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat. Res., 757, 125–131. - PubMed
  61.  
    1. Aluigi M.G., et al. (2010) Apoptosis as a specific biomarker of diazinon toxicity in NTera2-D1 cells. Chem. Biol. Interact., 187, 299–303. - PubMed
  62.  
    1. Giordano G., et al. (2007) Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol. Appl. Pharmacol., 219, 181–189. - PubMed
  63.  
    1. Gilsing A.M., et al. (2013) Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis, 34, 2757–2766. - PubMed
  64.  
    1. Pluth J.M., et al. (1996) Increased frequency of specific genomic deletions resulting from in vitro malathion exposure. Cancer Res., 56, 2393–2399. - PubMed
  65.  
    1. Chen Z.J., et al. (2014) Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions. Arch Toxicol. - PubMed
  66.  
    1. Zhu H., et al. (2010) Environmental endocrine disruptors promote invasion and metastasis of SK-N-SH human neuroblastoma cells. Oncol. Rep., 23, 129–139. - PubMed
  67.  
    1. Pontillo C.A., et al. (2013) Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol. Appl. Pharmacol., 268, 331–342. - PubMed
  68.  
    1. O'Brien D.W., et al. (2004) A mechanism of airway injury in an epithelial model of mucociliary clearance. Respir. Res., 5, 10. - PMC - PubMed
  69.  
    1. Ornstein D.L., et al. (2007) Iron stimulates urokinase plasminogen activator expression and activates NF-kappa B in human prostate cancer cells. Nutr. Cancer, 58, 115–126. - PubMed
  70.  
    1. Mao L., et al. (2012) Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β. Mol. Endocrinol., 26, 1808–1820. - PMC - PubMed
  71.  
    1. Papagerakis S., et al. (2014) The circadian clock in oral health and diseases. J. Dent. Res., 93, 27–35. - PMC - PubMed
  72.  
    1. Bouskine A., et al. (2009) Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ. Health Perspect., 117, 1053–1058. - PMC - PubMed
  73.  
    1. Hernández L.G., et al. (2013) A mode-of-action approach for the identification of genotoxic carcinogens. PLoS One, 8, e64532. - PMC - PubMed
  74.  
    1. Wetherill Y.B., et al. (2002) The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Mol. Cancer Ther., 1, 515–524. - PubMed
  75.  
    1. Park S.H., et al. (2009) Cell growth of ovarian cancer cells is stimulated by xenoestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinases ERK-1 and p38. J. Reprod. Dev., 55, 23–29. - PubMed
  76.  
    1. Wilkinson C.F., et al. (1996) A mechanistic interpretation of the oncogenicity of chlorothalonil in rodents and an assessment of human relevance. Regul. Toxicol. Pharmacol., 24(1 Pt 1), 69–84. - PubMed
  77.  
    1. Vesselinovitch S.D., et al. (1983) Lindane bioassay studies and human cancer risk assessment. Toxicol. Pathol., 11, 12–22. - PubMed
  78.  
    1. Wang Q.L., et al. (2013) Risk assessment of mouse gastric tissue cancer induced by dichlorvos and dimethoate. Oncol. Lett., 5, 1385–1389. - PMC - PubMed
  79.  
    1. Lee H.R., et al. (2012) Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int. J. Mol. Med., 29, 883–890. - PubMed
  80.  
    1. Stagg N.J., et al. (2012) Assessment of possible carcinogenicity of oxyfluorfen to humans using mode of action analysis of rodent liver effects. Toxicol. Sci., 128, 334–345. - PubMed
  81.  
    1. Doull J., et al. (1999) A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Regul. Toxicol. Pharmacol., 29, 327–357. - PubMed
  82.  
    1. Mazzoleni G., et al. (1994) Influence of the herbicide Linuron on growth rate and gap-junctional intercellular communication of cultured endothelial cells. J. Environ. Pathol. Toxicol. Oncol., 13, 1–10. - PubMed
  83.  
    1. Yasaei H., et al. (2013) Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumour-suppressor genes drive induced senescence bypass in normal diploid mammalian cells. Oncogene, 32, 171–179. - PubMed
  84.  
    1. Singh K.P., et al. (2008) Allelic loss and mutations in a new ETRG-1 gene are early events in diethylstilbestrol-induced renal carcinogenesis in Syrian hamsters. Gene, 408, 18–26. - PubMed
  85.  
    1. Tsutsui T., et al. (1994) Reserpine-induced cell transformation without detectable genetic effects in Syrian hamster embryo cells in culture. Carcinogenesis, 15, 11–14. - PubMed
  86.  
    1. Martens U., et al. (1996) Low expression of the WAF1/CIP1 gene product, p21, in enzyme-altered foci induced in rat liver by diethylnitrosamine or phenobarbital. Cancer Lett., 104, 21–26. - PubMed
  87.  
    1. Geter D.R., et al. (2014) Dose-response modeling of early molecular and cellular key events in the CAR-mediated hepatocarcinogenesis pathway. Toxicol. Sci., 138, 425–445. - PubMed
  88.  
    1. Bader A., et al. (2011) Paracetamol treatment increases telomerase activity in rat embryonic liver cells. Pharmacol. Rep., 63, 1435–1441. - PubMed
  89.  
    1. Tsuruga Y., et al. (2008) Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell Transplant., 17, 1083–1094. - PubMed
  90.  
    1. Nguyen T.H., et al. (2005) Treatment of acetaminophen-induced acute liver failure in the mouse with conditionally immortalized human hepatocytes. J. Hepatol., 43, 1031–1037. - PubMed
  91.  
    1. Bode-Böger S.M., et al. (2005) Aspirin reduces endothelial cell senescence. Biochem. Biophys. Res. Commun., 334, 1226–1232. - PubMed
  92.  
    1. Heinloth A.N., et al. (2004) Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol. Sci., 80, 193–202. - PubMed
  93.  
    1. Jacob T., et al. (2009) The effect of cotinine on telomerase activity in human vascular smooth muscle cells. J. Cardiovasc. Surg. (Torino), 50, 345–349. - PubMed
  94.  
    1. Brüne B., et al. (2001) Transcription factors p53 and HIF-1alpha as targets of nitric oxide. Cell. Signal., 13, 525–533. - PubMed
  95.  
    1. Davis C.D., et al. (2000) Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J. Nutr., 130, 2903–2909. - PubMed
  96.  
    1. Arnér E.S., et al. (2006) The thioredoxin system in cancer. Semin. Cancer Biol., 16, 420–426. - PubMed
  97.  
    1. vom Saal F.S., et al. (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod. Toxicol., 24, 131–138. - PMC - PubMed
  98.  
    1. Qin X.Y., et al. (2012) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol. Ther., 13, 296–306. - PubMed
  99.  
    1. Peluso M.E., et al. (2014) Bisphenol-A exposures and behavioural aberrations: median and linear spline and meta-regression analyses of 12 toxicity studies in rodents. Toxicology, 325, 200–208. - PubMed
  100.  
    1. Fang C.C., et al. (2013) Cyprodinil as an activator of aryl hydrocarbon receptor. Toxicology, 304, 32–40. - PubMed
  101.  
    1. Bharadwaj R., et al. (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23, 2016–2027. - PubMed
  102.  
    1. Orton F., et al. (2011) Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environ. Health Perspect., 119, 794–800. - PMC - PubMed
  103.  
    1. Tanaka T., et al. (2013) Effects of maternal exposure to imazalil on behavioral development in F₁-generation mice. Birth Defects Res. B Dev. Reprod. Toxicol., 98, 334–342. - PubMed
  104.  
    1. Ahmad I., et al. (2008) The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes. Free Radic. Res., 42, 849–862. - PubMed
  105.  
    1. US Environmental Protection Agency (1988) US Integrated Risk Information System—Maneb (CASRN 12427-38-2). http://www.epa.gov/iris/subst/0249.htm .
  106.  
    1. Miller K.P., et al. (2006) Methoxychlor metabolites may cause ovarian toxicity through estrogen-regulated pathways. Toxicol. Sci., 93, 180–188. - PubMed
  107.  
    1. Du X., et al. (2014) Perinatal exposure to low-dose methoxychlor impairs testicular development in C57BL/6 mice. PLoS One, 9, e103016. - PMC - PubMed
  108.  
    1. Palanza P., et al. (2001) Effects of prenatal exposure to low doses of diethylstilbestrol, o,p'DDT, and methoxychlor on postnatal growth and neurobehavioral development in male and female mice. Horm. Behav., 40, 252–265. - PubMed
  109.  
    1. Du G., et al. (2013) Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo . Environ. Toxicol. Chem., 32, 353–360. - PubMed
  110.  
    1. Kim H.S., et al. (2011) Induction of apoptosis and CYP4A1 expression in Sprague-Dawley rats exposed to low doses of perfluorooctane sulfonate. J. Toxicol. Sci., 36, 201–210. - PubMed
  111.  
    1. Eveillard A., et al. (2009) Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem. Pharmacol., 77, 1735–1746. - PubMed
  112.  
    1. Nakai M., et al. (1999) Binding characteristics of dialkyl phthalates for the estrogen receptor. Biochem. Biophys. Res. Commun., 254, 311–314. - PubMed
  113.  
    1. Grande S.W., et al. (2006) A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicol. Sci., 91, 247–254. - PubMed
  114.  
    1. Kojima H., et al. (2011) Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology, 280, 77–87. - PubMed
  115.  
    1. (2006) Phosalone Reregistration Eligibility Decision (RED). The United States Environmental Protection Agency Office of Pesticide Programs.
  116.  
    1. Li X., et al. (2013) Structure-dependent activities of hydroxylated polybrominated diphenyl ethers on human estrogen receptor. Toxicology, 309, 15–22. - PubMed
  117.  
    1. Berger R.G., et al. (2014) Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats. Toxicology, 320, 56–66. - PubMed
  118.  
    1. Hofmeister M.V., et al. (2004) Effects of the pesticides prochloraz and methiocarb on human estrogen receptor alpha and beta mRNA levels analyzed by on-line RT-PCR. Toxicol. In Vitro, 18, 427–433. - PubMed
  119.  
    1. Jacobsen P.R., et al. (2012) Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod. Toxicol., 34, 237–250. - PubMed
  120.  
    1. Kamanga-Sollo E., et al. (2008) Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17beta- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells. Domest. Anim. Endocrinol., 35, 88–97. - PubMed
  121.  
    1. Yarrow J.F., et al. (2010) Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): a potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids, 75, 377–389. - PubMed
  122.  
    1. Yan H., et al. (2008) Exposure to bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. Environ. Health Perspect., 116, 514–519. - PMC - PubMed
  123.  
    1. Erden E.S., et al. (2014) Investigation of Bisphenol A as an endocrine disruptor, total thiol, malondialdehyde, and C-reactive protein levels in chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci., 18, 3477–3483. - PubMed
  124.  
    1. Kharrazian D. (2014) The potential roles of bisphenol A (BPA) pathogenesis in autoimmunity. Autoimmune Dis., 2014, 743616. - PMC - PubMed
  125.  
    1. Liu Y., et al. (2014) Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem. Biophys. Res. Commun., 451, 592–598. - PubMed
  126.  
    1. Rogers J.A., et al. (2013) Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol. Immunol., 53, 421–430. - PubMed
  127.  
    1. Deutschle T., et al. (2008) A controlled challenge study on di(2-ethylhexyl) phthalate (DEHP) in house dust and the immune response in human nasal mucosa of allergic subjects. Environ. Health Perspect., 116, 1487–1493. - PMC - PubMed
  128.  
    1. Peltier M.R., et al. (2012) Polybrominated diphenyl ethers enhance the production of proinflammatory cytokines by the placenta. Placenta, 33, 745–749. - PMC - PubMed
  129.  
    1. Park H.R., et al. (2014) Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro . Toxicol. Appl. Pharmacol., 274, 283–292. - PMC - PubMed
  130.  
    1. Park H.R., et al. (2014) Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line. Toxicol. Appl. Pharmacol., 281, 67–77. - PMC - PubMed
  131.  
    1. Koike E., et al. (2014) Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro . Toxicol. In Vitro, 28, 327–333. - PubMed
  132.  
    1. Zhao S., et al. (2013) Sub-acute exposure to the herbicide atrazine suppresses cell immune functions in adolescent mice. Biosci. Trends, 7, 193–201. - PubMed
  133.  
    1. Rowe A.M., et al. (2006) Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol. Appl. Pharmacol., 214, 69–77. - PMC - PubMed
  134.  
    1. Skinner M.K., et al. (2007) Epigenetic transgenerational actions of vinclozolin on the development of disease and cancer. Crit. Rev. Oncog., 13, 75–82. - PMC - PubMed
  135.  
    1. Anway M.D., et al. (2008) Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate, 68, 517–529. - PMC - PubMed
  136.  
    1. Cowin P.A., et al. (2008) Early-onset endocrine disruptor-induced prostatitis in the rat. Environ. Health Perspect., 116, 923–929. - PMC - PubMed
  137.  
    1. Zhou H.R., et al. (2003) Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci., 72, 130–142. - PubMed
  138.  
    1. Shin S.G., et al. (2005) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. J. Toxicol. Environ. Health A, 68, 2119–2131. - PubMed
  139.  
    1. Gollamudi S., et al. (2012) Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease. PLoS One, 7, e36191. - PMC - PubMed
  140.  
    1. Morgan J.B., et al. (2010) The marine sponge metabolite mycothiazole: a novel prototype mitochondrial complex I inhibitor. Bioorg. Med. Chem., 18, 5988–5994. - PMC - PubMed
  141.  
    1. (1997) BASF Corporation Pyridaben (Sanmite) Pesticide Tolerance Petition 3/97, US EPA [PF-721; FRL-5592 -7], http//pmep.cce.cornell. edu/profiles/insect-mite/mevinphos-propargite/py... (accessed 7 May 2015)
  142.  
    1. Barros S.P., et al. (2010) Triclosan inhibition of acute and chronic inflammatory gene pathways. J. Clin. Periodontol., 37, 412–418. - PubMed
  143.  
    1. Wallet M.A., et al. (2013) Triclosan alters antimicrobial and inflammatory responses of epithelial cells. Oral Dis., 19, 296–302. - PMC - PubMed
  144.  
    1. Bhargava H.N., et al. (1996) Triclosan: applications and safety. Am. J. Infect. Control, 24, 209–218. - PubMed
  145.  
    1. Winitthana T., et al. (2014) Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS One, 9, e110851. - PMC - PubMed
  146.  
    1. Stoker T.E., et al. (2010) Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol. Sci., 117, 45–53. - PubMed
  147.  
    1. Shioda T., et al. (2006) Importance of dosage standardization for interpreting transcriptomal signature profiles: evidence from studies of xenoestrogens. Proc. Natl Acad. Sci. USA, 103, 12033–12038. - PMC - PubMed
  148.  
    1. Welshons W.V., et al. (1999) Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol. Ind. Health, 15, 12–25. - PubMed
  149.  
    1. Alyea R.A., et al. (2009) Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17beta-estradiol. Environ. Health Perspect., 117, 778–783. - PMC - PubMed
  150.  
    1. Wozniak A.L., et al. (2005) Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ. Health Perspect., 113, 431–439. - PMC - PubMed
  151.  
    1. Jeng Y.J., et al. (2011) Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ. Health Perspect., 119, 104–112. - PMC - PubMed
  152.  
    1. Cabaton N.J., et al. (2011) Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice. Environ. Health Perspect., 119, 547–552. - PMC - PubMed
  153.  
    1. Jones B.A., et al. (2011) Pre- and postnatal bisphenol A treatment results in persistent deficits in the sexual behavior of male rats, but not female rats, in adulthood. Horm. Behav., 59, 246–251. - PubMed
  154.  
    1. Lemos M.F., et al. (2010) Protein differential expression induced by endocrine disrupting compounds in a terrestrial isopod. Chemosphere, 79, 570–576. - PubMed
  155.  
    1. Markey C.M., et al. (2001) The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ. Health Perspect., 109, 55–60. - PMC - PubMed
  156.  
    1. Filipov N.M., et al. (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B–dependent mechanism. Toxicol. Sci., 84, 139–148. - PubMed
  157.  
    1. Knudsen T.B., et al. (2011) Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res. Part C, 93, 312–323. - PubMed
  158.  
    1. Qin R., et al. (2011) Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation. Toxicol. Lett., 202, 1–7. - PubMed
  159.  
    1. Manfo F.P., et al. (2011) Effects of maneb on testosterone release in male rats. Drug Chem. Toxicol., 34, 120–128. - PubMed
  160.  
    1. Matsushita T., et al. (1976) Experimental study on contact dermatitis caused by dithiocarbamates maneb, mancozeb, zineb, and their related compounds. Int. Arch. Occup. Environ. Health, 37, 169–178. - PubMed
  161.  
    1. Barlow, B. et al. (2005) Modulation of antioxidant defense systems by the environmental pesticide Maneb in dopaminergic cells. Neurotoxicol., 26, 63–75 . - PubMed
  162.  
    1. Kazantseva Y.A., et al. (2013) Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers. Toxicol. Appl. Pharmacol., 271, 137–143. - PubMed
  163.  
    1. Lin Z.X., et al. (1986) Inhibition of gap junctional intercellular communication in human teratocarcinoma cells by organochlorine pesticides. Toxicol. Appl. Pharmacol., 83, 10–19. - PubMed
  164.  
    1. Ruch R.J., et al. (1987) Inhibition of intercellular communication between mouse hepatocytes by tumor promoters. Toxicol. Appl. Pharmacol., 87, 111–120. - PubMed
  165.  
    1. Ventura C., et al. (2012) Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol. Lett., 213, 184–193. - PubMed
  166.  
    1. Mense S.M., et al. (2006) The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes. Toxicol. Sci., 93, 125–135. - PubMed
  167.  
    1. Santucci M.A., et al. (2003) Cell-cycle deregulation in BALB/c 3T3 cells transformed by 1,2-dibromoethane and folpet pesticides. Environ. Mol. Mutagen., 41, 315–321. - PubMed
  168.  
    1. Albanito L., et al. (2008) G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazine in ovarian cancer cells. Environ. Health Perspect., 116, 1648–1655. - PMC - PubMed
  169.  
    1. Tsuda H., et al. (2005) High susceptibility of human c-Ha-ras proto-oncogene transgenic rats to carcinogenesis: a cancer-prone animal model. Cancer Sci., 96, 309–316. - PubMed
  170.  
    1. Wetzel L.T., et al. (1994) Chronic effects of atrazine on estrus and mammary tumor formation in female Sprague-Dawley and Fischer 344 rats. J. Toxicol. Environ. Health, 43, 169–182. - PubMed
  171.  
    1. Andersson H., et al. (2012) Proangiogenic effects of environmentally relevant levels of bisphenol A in human primary endothelial cells. Arch. Toxicol., 86, 465–474. - PubMed
  172.  
    1. Dairkee S.H., et al. (2013) Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells. Carcinogenesis, 34, 703–712. - PMC - PubMed
  173.  
    1. Betancourt A.M., et al. (2012) Altered carcinogenesis and proteome in mammary glands of rats after prepubertal exposures to the hormonally active chemicals bisphenol A and genistein. J. Nutr, 142, 1382S–1388S. - PMC - PubMed
  174.  
    1. Andrysík Z., et al. (2013) Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch. Toxicol., 87, 491–503. - PubMed
  175.  
    1. Haber L.T., et al. (2000) Hazard identification and dose response of inhaled nickel-soluble salts. Regul. Toxicol. Pharmacol., 31, 210–230. - PubMed
  176.  
    1. LN V., et al. (2013) Low dose effects of bisphenol A: an integrated review of in vitro, laboratory animal and human studies. Endocrine Disruptors, 1, e1.1–e1.20.
  177.  
    1. Tryphonas H., et al. (2004) Oral (gavage), in utero and post-natal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part II: effects on the immune system. Food Chem. Toxicol., 42, 221–235. - PubMed
  178.  
    1. Watanabe J., et al. (2013) Low dose of methylmercury (MeHg) exposure induces caspase mediated-apoptosis in cultured neural progenitor cells. J. Toxicol. Sci., 38, 931–935. - PubMed
  179.  
    1. Petroni D., et al. (2012) Low-dose methylmercury-induced oxidative stress, cytotoxicity, and tau-hyperphosphorylation in human neuroblastoma (SH-SY5Y) cells. Environ. Toxicol., 27, 549–555. - PubMed
  180.  
    1. McCormack A.L., et al. (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J. Neurochem., 93, 1030–1037. - PubMed
  181.  
    1. Hartwig A., et al. (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ. Health Perspect., 110( Suppl 5 ), 797–799. - PMC - PubMed
  182.  
    1. Asmuss M., et al. (2000) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis, 21, 2097–2104. - PubMed
  183.  
    1. McNeill D.R., et al. (2004) Inhibition of Ape1 nuclease activity by lead, iron, and cadmium. Environ. Health Perspect., 112, 799–804. - PMC - PubMed
  184.  
    1. Pottier G., et al. (2013) Lead exposure induces telomere instability in human cells. PLoS One, 8, e67501. - PMC - PubMed
  185.  
    1. Zhang X., et al. (2013) Environmental and occupational exposure to chemicals and telomere length in human studies. Occup. Environ. Med., 70, 743–749. - PubMed
  186.  
    1. Exon J.H. (2006) A review of the toxicology of acrylamide. J. Toxicol. Environ. Health B. Crit. Rev., 9, 397–412. - PubMed
  187.  
    1. Sickles D.W., et al. (2007) Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicol. Appl. Pharmacol., 222, 111–121. - PubMed
  188.  
    1. Wang X., et al. (2013) Epigenotoxicity of environmental pollutants evaluated by a combination of DNA methylation inhibition and capillary electrophoresis-laser-induced fluorescence immunoassay. Anal. Bioanal. Chem., 405, 2435–2442. - PubMed
  189.  
    1. Arita A., et al. (2012) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ. Health Perspect., 120, 198–203. - PMC - PubMed
  190.  
    1. Cantone L., et al. (2011) Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ. Health Perspect., 119, 964–969. - PMC - PubMed
  191.  
    1. Chervona Y., et al. (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics, 4, 619–627. - PMC - PubMed
  192.  
    1. Avissar-Whiting M., et al. (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol., 29, 401–406. - PMC - PubMed
  193.  
    1. Roedel E.Q., et al. (2012) Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Toxicol. Appl. Pharmacol., 259, 74–86. - PubMed
  194.  
    1. Freyre-Fonseca V., et al. (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol. Lett., 202, 111–119. - PubMed
  195.  
    1. Elhajouji A., et al. (2011) Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis, 26, 199–204. - PubMed
  196.  
    1. Ermler S., et al. (2013) Seven benzimidazole pesticides combined at sub-threshold levels induce micronuclei in vitro . Mutagenesis, 28, 417–426. - PMC - PubMed
  197.  
    1. Sargent L.M., et al. (2012) Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res., 745, 28–37. - PMC - PubMed
  198.  
    1. Muller J., et al. (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis, 29, 427–433. - PubMed
  199.  
    1. Thomas D. (2010) Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet., 11, 259–272. - PMC - PubMed
  200.  
    1. Santella R.M., et al. (2005) DNA adducts, DNA repair genotype/phenotype and cancer risk. Mutat. Res., 592, 29–35. - PubMed
  201.  
    1. (2011) Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. International Atomic Energy Agency, Vienna.
  202.  
    1. De Lange T. (2005) Telomere-related genome instability in cancer. Cold Spring Harb. Symp. Quant. Biol., 70, 197–204. - PubMed
  203.  
    1. Frias C., et al. (2012) Telomere dysfunction and genome instability. Front. Biosci. (Landmark Ed), 17, 2181–2196. - PubMed
  204.  
    1. Hollstein M., et al. (1991) p53 mutations in human cancers. Science, 253, 49–53. - PubMed
  205.  
    1. Jang J.W., et al. (2006) Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis. Mol. Cell. Biol., 26, 8109–8121. - PMC - PubMed
  206.  
    1. Muñoz D.M., et al. (2013) Loss of p53 cooperates with K-ras activation to induce glioma formation in a region-independent manner. Glia, 61, 1862–1872. - PubMed
  207.  
    1. Pierotti, M.A. et al. Mechanisms of oncogene activation. Kufe DW, Pollock RE, Weichselbaum RR, and et al. Holland-Frei Cancer Medicine. 6th. 2003. Hamilton (ON), BC Decker .
  208.  
    1. Mazzei F., et al. (2013) Role of MUTYH in human cancer. Mutat. Res., 743–744, 33–43. - PubMed
  209.  
    1. Sancar A. (1995) Excision repair in mammalian cells. J. Biol. Chem., 270, 15915–15918. - PubMed
  210.  
    1. Vineis P., et al. (2009) A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J. Natl Cancer Inst., 101, 24–36. - PubMed
  211.  
    1. Bohacek J., et al. (2013) Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology, 38, 220–236. - PMC - PubMed
  212.  
    1. Esteller M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 8, 286–298. - PubMed
  213.  
    1. Caffarelli E., et al. (2011) Epigenetic regulation in cancer development. Front. Biosci. (Landmark Ed), 16, 2682–2694. - PubMed
  214.  
    1. Croce C.M. (2009) Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 10, 704–714. - PMC - PubMed
  215.  
    1. Wang Y., et al. (2013) MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle, 12, 32–42. - PMC - PubMed
  216.  
    1. Devalle S., et al. (2012) Implications of aneuploidy for stem cell biology and brain therapeutics. Front. Cell. Neurosci., 6, 36. - PMC - PubMed
  217.  
    1. Linschooten J.O., et al. (2013) Paternal lifestyle as a potential source of germline mutations transmitted to offspring. FASEB J., 27, 2873–2879. - PMC - PubMed
  218.  
    1. Leyns L., et al. (2012) Genomic integrity of mouse embryonic stem cells. In Embryogenesis. Intech. pp. 333–358.
  219.  
    1. Blessing H., et al. (2004) Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Biochem., 271, 3190–3199. - PubMed
  220.  
    1. Zhang X., et al. (2013) Environmental and occupational exposure to chemicals and telomere length in human studies. Postgrad. Med. J., 89, 722–728. - PubMed
  221.  
    1. Lombaert N., et al. (2013) Hard-metal (WC-Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC. Arch. Toxicol., 87, 259–268. - PubMed
  222.  
    1. Jugan M.L., et al. (2012) Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology, 6, 501–513. - PubMed
  223.  
    1. Song M.F., et al. (2012) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J. Clin. Biochem. Nutr., 50, 211–216. - PMC - PubMed
  224.  
    1. Doshi T., et al. (2011) Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology, 289, 74–82. - PubMed
  225.  
    1. Kundakovic M., et al. (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc. Natl Acad. Sci. USA, 110, 9956–9961. - PMC - PubMed
  226.  
    1. Pupo M., et al. (2012) Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ. Health Perspect., 120, 1177–1182. - PMC - PubMed
  227.  
    1. Ribeiro-Varandas E., et al. (2013) Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells. Mutat. Res., 751, 27–33. - PubMed
  228.  
    1. Marshall H. (2002) Fact sheet: carbendazim. Pesticides News, 57, 20–21.
  229.  
    1. Zhao Y., et al. (2010) Characterization and determination of chloro- and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water. Anal. Chem., 82, 4599–4605. - PubMed
  230.  
    1. Piao M.J., et al. (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett., 201, 92–100. - PubMed
  231.  
    1. Gong C., et al. (2012) Methylation of PARP-1 promoter involved in the regulation of nano-SiO2-induced decrease of PARP-1 mRNA expression. Toxicol. Lett., 209, 264–269. - PubMed
  232.  
    1. Choi A.O., et al. (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med. (Berl), 86, 291–302. - PubMed
  233.  
    1. Balansky R., et al. (2013) Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice. Mutat. Res., 751–752, 42–48. - PubMed
  234.  
    1. Liu Y., et al. (2013) Understanding the toxicity of carbon nanotubes. Acc. Chem. Res., 46, 702–713. - PubMed
  235.  
    1. Chisholm H. (1910–1911) 11th Edition of Encyclopedia Britannica. Cambridge University Press, Cambridge, UK.
  236.  
    1. Stoker T.E., et al. (1999) Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate. Biol. Reprod., 61, 1636–1643. - PubMed
  237.  
    1. Ho S.M., et al. (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res., 66, 5624–5632. - PMC - PubMed
  238.  
    1. Riu A., et al. (2011) Characterization of novel ligands of ERalpha, Erbeta, and PPARgamma: the case of halogenated bisphenol A and their conjugated metabolites. Toxicol. Sci, 122, 372–82. - PubMed
  239.  
    1. Riu A., et al. (2011) Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Environ. Health Perspect., 119, 1227–1232. - PMC - PubMed
  240.  
    1. Thueson L.E., et al. (2015) In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells. Toxicol. Sci., 143, 418–429. - PMC - PubMed
  241.  
    1. Hooghe R.J., et al. (2000) Effects of selected herbicides on cytokine production in vitro . Life Sci., 66, 2519–2525. - PubMed
  242.  
    1. Filipov N.M., et al. (2005) Immunotoxic effects of short-term atrazine exposure in young male C57BL/6 mice. Toxicol. Sci., 86, 324–332. - PubMed
  243.  
    1. Karrow N.A., et al. (2005) Oral exposure to atrazine modulates cell-mediated immune function and decreases host resistance to the B16F10 tumor model in female B6C3F1 mice. Toxicology, 209, 15–28. - PubMed
  244.  
    1. Basini G., et al. (2012) Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells. Ecotoxicol. Environ. Saf., 85, 59–63. - PubMed
  245.  
    1. Chen J.Y., et al. (2013) Immunotoxicity of atrazine in Balb/c mice. J. Environ. Sci. Health B., 48, 637–645. - PubMed
  246.  
    1. Chen J., et al. (2015) Effects of atrazine on the proliferation and cytotoxicity of murine lymphocytes with the use of carboxyfluorescein succinimidyl ester-based flow cytometric approaches. Food Chem. Toxicol., 76, 61–69. - PubMed
  247.  
    1. Danelli L., et al. (2015) Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment. Cancer Immunol. Res., 3, 85–95. - PubMed
  248.  
    1. Grimm E.A., et al. (2013) Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin. Cancer Res., 19, 5557–5563. - PMC - PubMed
  249.  
    1. Costa A., et al. (2014) The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol., 25, 23–32. - PubMed
  250.  
    1. Lei Y., et al. (2015) Redox regulation of inflammation: old elements, a new story. Med. Res. Rev., 35, 306–340. - PubMed
  251.  
    1. Wu Y., et al. (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett., 345, 164–173. - PMC - PubMed
  252.  
    1. Zhang H.Y., et al. (2014) Perinatal exposure to 4-nonylphenol affects adipogenesis in first and second generation rats offspring. Toxicol. Lett., 225, 325–332. - PubMed
  253.  
    1. Mitchison J. (1971) The Biology of the Cell Cycle. Cambridge University Press.
  254.  
    1. Keating M.T., et al. (1988) Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science, 239, 914–916. - PubMed
  255.  
    1. Skobe M., et al. (1998) Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA, 95, 1050–1055. - PMC - PubMed
  256.  
    1. Lemmon M.A. (2009) Ligand-induced ErbB receptor dimerization. Exp. Cell Res., 315, 638–648. - PMC - PubMed
  257.  
    1. Kerkhoff E., et al. (1998) Cell cycle targets of Ras/Raf signalling. Oncogene, 17, 1457–1462. - PubMed
  258.  
    1. Mezquita B., et al. (2014) Unlocking doors without keys: activation of Src by truncated C-terminal intracellular receptor tyrosine kinases lacking tyrosine kinase activity. Cells, 3, 92–111. - PMC - PubMed
  259.  
    1. Grünfeld H.T., et al. (2004) Effect of in vitro estrogenic pesticides on human oestrogen receptor alpha and beta mRNA levels. Toxicol. Lett., 151, 467–480. - PubMed
  260.  
    1. Symonds D.A., et al. (2005) Methoxychlor induces proliferation of the mouse ovarian surface epithelium. Toxicol. Sci., 83, 355–362. - PubMed
  261.  
    1. Murono E.P., et al. (2004) The effects of the reported active metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, on testosterone formation by cultured Leydig cells from young adult rats. Reprod. Toxicol., 19, 135–146. - PubMed
  262.  
    1. Gaido K.W., et al. (2000) Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol. Pharmacol., 58, 852–858. - PubMed
  263.  
    1. Paulose T., et al. (2011) Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites. Toxicol. Sci., 120, 447–459. - PMC - PubMed
  264.  
    1. Wilard S, et al. (2009) Growth factors differentially augment the effects of HPTE on estrogen response element-mediated gene transcription in a dose- and time-dependent manner among human breast cancer cell lines. Res. J. Med. Med. Sci. 4, 171–180.
  265.  
    1. Kojima H., et al. (2010) Endocrine-disrupting potential of pesticides via nuclear receptors and aryl hydrocarbon receptor. J. Health Sci., 56, 374–386.
  266.  
    1. Noriega N.C., et al. (2005) Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but not female rat offspring. Biol. Reprod., 72, 1324–1335. - PubMed
  267.  
    1. Cocco P. (2002) On the rumors about the silent spring. Review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects. Cad. Saude. Publica., 18, 379–402. - PubMed
  268.  
    1. Kleinstreuer N.C., et al. (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol. Appl. Pharmacol., 257, 111–121. - PubMed
  269.  
    1. Cummings A.M., et al. (1989) Antifertility effect of methoxychlor in female rats: dose- and time-dependent blockade of pregnancy. Toxicol. Appl. Pharmacol., 97, 454–462. - PubMed
  270.  
    1. Gray L.E., Jr, et al. (1989) A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam. Appl. Toxicol., 12, 92–108. - PubMed
  271.  
    1. Metcalf J.L., et al. (1996) Methoxychlor mimics the action of 17 beta-estradiol on induction of uterine epidermal growth factor receptors in immature female rats. Reprod. Toxicol., 10, 393–399. - PubMed
  272.  
    1. Kuiper G.G., et al. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139, 4252–4263. - PubMed
  273.  
    1. Andersen H.R., et al. (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro . Toxicol. Appl. Pharmacol., 179, 1–12. - PubMed
  274.  
    1. Vinggaard A.M., et al. (2006) Prochloraz: an imidazole fungicide with multiple mechanisms of action. Int. J. Androl., 29, 186–192. - PubMed
  275.  
    1. Liu C., et al. (2011) Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ. Sci. Technol., 45, 769–775. - PubMed
  276.  
    1. Zhang W., et al. (2013) Known and emerging factors modulating estrogenic effects of estrogen-disrupting chemicals. Environ. Rev., 21, 1–12.
  277.  
    1. Medjakovic S., et al. (2014) Effect of nonpersistent pesticides on estrogen receptor, androgen receptor, and aryl hydrocarbon receptor. Environ. Toxicol., 29, 1201–1216. - PubMed
  278.  
    1. Jenkins S., et al. (2009) Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environ. Health Perspect., 117, 910–915. - PMC - PubMed
  279.  
    1. Goodson W.H., III, et al. (2011) Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis, 32, 1724–1733. - PMC - PubMed
  280.  
    1. Meironyté D., et al. (1999) Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study, 1972–1997. J. Toxicol. Environ. Health A, 58, 329–341. - PubMed
  281.  
    1. Brown D.J., et al. (2004) Analysis of Ah receptor pathway activation by brominated flame retardants. Chemosphere, 55, 1509–1518. - PubMed
  282.  
    1. Hsieh T.H., et al. (2012) Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J., 26, 778–787. - PubMed
  283.  
    1. Janjua N.R., et al. (2007) Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environ. Sci. Technol., 41, 5564–5570. - PubMed
  284.  
    1. Liu W.L., et al. (2010) [Distribution characteristics of phthalic acid esters in soils and plants at e-waste recycling sites in Taizhou of Zhejiang, China]. Ying Yong Sheng Tai Xue Bao, 21, 489–494. - PubMed
  285.  
    1. Wormuth M., et al. (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal., 26, 803–824. - PubMed
  286.  
    1. Galbraith H. (2002) Hormones in international meat production: biological, sociological and consumer issues. Nutr. Res. Rev., 15, 293–314. - PubMed
  287.  
    1. Boettcher M., et al. (2011) Low-dose effects and biphasic effect profiles: is trenbolone a genotoxicant? Mutat. Res., 723, 152–157. - PubMed
  288.  
    1. Kongsuwan K., et al. (2012) The effect of combination treatment with trenbolone acetate and estradiol-17β on skeletal muscle expression and plasma concentrations of oxytocin in sheep. Domest. Anim. Endocrinol., 43, 67–73. - PubMed
  289.  
    1. Hotchkiss A.K., et al. (2007) An environmental androgen, 17beta-trenbolone, affects delayed-type hypersensitivity and reproductive tissues in male mice. J. Toxicol. Environ. Health A, 70, 138–140. - PubMed
  290.  
    1. Zhao J.X., et al. (2011) Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle. Domest. Anim. Endocrinol., 40, 222–229. - PMC - PubMed
  291.  
    1. Ansari K.M., et al. (2010) Skin tumor promotion by argemone oil/alkaloid in mice: evidence for enhanced cell proliferation, ornithine decarboxylase, cyclooxygenase-2 and activation of MAPK/NF-kappaB pathway. Food Chem. Toxicol., 48, 132–138. - PubMed
  292.  
    1. Mishra V., et al. (2012) Role of ErbB2 mediated AKT and MAPK pathway in gall bladder cell proliferation induced by argemone oil and butter yellow. Argemone oil and butter yellow induced gall bladder cell proliferation. Cell Biol. Toxicol., 28, 149–159. - PubMed
  293.  
    1. Parker M. (1991) Nuclear Hormone Receptors: Molecular Mechanisms, Cellular Functions, Clinical Abnormalities. Academic Press, London.
  294.  
    1. Gulliver L.S.M. (2013) Estradiol synthesis and metabolism and risk of ovarian cancer in older women taking prescribed or plant-derived estrogen supplementation. J. Steroids Horm. Sci., S12:003.
  295.  
    1. Leroy B., et al. (2014) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat., 35, 672–688. - PubMed
  296.  
    1. De Blasio A., et al. (2005) Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett., 579, 615–620. - PubMed
  297.  
    1. Nielsen G.P., et al. (1998) CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am. J. Pathol., 153, 159–163. - PMC - PubMed
  298.  
    1. Pietruszewska W., et al. (2008) Loss of heterozygosity for Rb locus and pRb immunostaining in laryngeal cancer: a clinicopathologic, molecular and immunohistochemical study. Folia Histochem. Cytobiol., 46, 479–485. - PubMed
  299.  
    1. Myong N.H. (2008) Cyclin D1 overexpression, p16 loss, and pRb inactivation play a key role in pulmonary carcinogenesis and have a prognostic implication for the long-term survival in non-small cell lung carcinoma patients. Cancer Res. Treat., 40, 45–52. - PMC - PubMed
  300.  
    1. Ikushima H., et al. (2010) TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer, 10, 415–424. - PubMed
  301.  
    1. Su V., et al. (2014) Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett., 588, 1212–1220. - PMC - PubMed
  302.  
    1. Li M.W., et al. (2010) Connexin 43 is critical to maintain the homeostasis of the blood-testis barrier via its effects on tight junction reassembly. Proc. Natl Acad. Sci. USA, 107, 17998–18003. - PMC - PubMed
  303.  
    1. Campos-Pereira F.D., et al. (2012) Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: a morphological, immunohistochemical, biochemical, and molecular study. Ecotoxicol. Environ. Saf., 78, 170–177. - PubMed
  304.  
    1. Stenner-Liewen F., et al. (2003) Apoptosis and cancer: basic mechanisms and therapeutic opportunities in the postgenomic era. Cancer Res., 63, 263–268.
  305.  
    1. Thompson C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456–1462. - PubMed
  306.  
    1. Shortt J., et al. (2012) Oncogenes in cell survival and cell death. Cold Spring Harb. Perspect. Biol., 4, a009829. - PMC - PubMed
  307.  
    1. Alberts B., et al. (2002) Extracellular control of cell division, cell growth, and apoptosis. In Molecular Biology of the Cell. Garland Science, New York, NY.
  308.  
    1. Roos W.P., et al. (2006) DNA damage-induced cell death by apoptosis. Trends Mol. Med., 12, 440–450. - PubMed
  309.  
    1. Fridman J.S., et al. (2003) Control of apoptosis by p53. Oncogene, 22, 9030–9040. - PubMed
  310.  
    1. Adams J.M. (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev., 17, 2481–2495. - PubMed
  311.  
    1. Deveraux Q.L., et al. (1999) IAP family proteins–suppressors of apoptosis. Genes Dev., 13, 239–252. - PubMed
  312.  
    1. Yang Y.L., et al. (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res., 10, 169–177. - PubMed
  313.  
    1. Wu W., et al. (2013) Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim. Biophys. Sin. (Shanghai), 45, 18–26. - PubMed
  314.  
    1. Gonzalez M.J., et al. (2012) The bio-energetic theory of carcinogenesis. Med. Hypotheses, 79, 433–439. - PubMed
  315.  
    1. Ferreira L.M., et al. (2012) Metabolic reprogramming of the tumor. Oncogene, 31, 3999–4011. - PubMed
  316.  
    1. Yi C.H., et al. (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell, 146, 607–620. - PMC - PubMed
  317.  
    1. Wu G.S. (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett., 285, 1–5. - PubMed
  318.  
    1. Klaunig J.E., et al. (1990) Gap-junctional intercellular communication and murine hepatic carcinogenesis. Prog. Clin. Biol. Res., 331, 277–291. - PubMed
  319.  
    1. Carette D., et al. (2014) Connexin a check-point component of cell apoptosis in normal and physiopathological conditions. Biochimie, 101, 1–9. - PubMed
  320.  
    1. Leung-Toung R., et al. (2006) Thiol proteases: inhibitors and potential therapeutic targets. Curr. Med. Chem., 13, 547–581. - PubMed
  321.  
    1. Kim I.Y., et al. (2004) Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells. J. Toxicol. Environ. Health A, 67, 2025–2035. - PubMed
  322.  
    1. Corcelle E., et al. (2006) Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res., 66, 6861–6870. - PubMed
  323.  
    1. Kim J.Y., et al. (2014) Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. Environ. Toxicol. Pharmacol., 37, 1264–1274. - PubMed
  324.  
    1. Carnero A. (2013) Markers of cellular senescence. Methods Mol. Biol., 965, 63–81. - PubMed
  325.  
    1. Serrano M., et al. (2001) Putting the stress on senescence. Curr. Opin. Cell Biol., 13, 748–753. - PubMed
  326.  
    1. Shay J.W., et al. (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene, 23, 2919–2933. - PubMed
  327.  
    1. Ohtani N., et al. (2004) The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J. Med. Invest., 51, 146–153. - PubMed
  328.  
    1. Sherr C.J., et al. (2002) The RB and p53 pathways in cancer. Cancer Cell, 2, 103–112. - PubMed
  329.  
    1. Vergel M., et al. (2010) Bypassing cellular senescence by genetic screening tools. Clin. Transl. Oncol., 12, 410–417. - PubMed
  330.  
    1. Zanella F., et al. (2010) Understanding FOXO, new views on old transcription factors. Curr. Cancer Drug Targets, 10, 135–146. - PubMed
  331.  
    1. Ruiz L., et al. (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS One, 3, e3230. - PMC - PubMed
  332.  
    1. Newbold R.F., et al. (1982) Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature, 299, 633–635. - PubMed
  333.  
    1. Russo I., et al. (1998) A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization. Oncogene, 17, 3417–3426. - PubMed
  334.  
    1. Newbold R.F., et al. (1980) Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification. Nature, 283, 596–599. - PubMed
  335.  
    1. Lehman T.A., et al. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis, 14, 833–839. - PubMed
  336.  
    1. Lafarge-Frayssinet C., et al. (1989) Over expression of proto-oncogenes: ki-ras, fos and myc in rat liver cells treated in vitro by two liver tumor promoters: phenobarbital and biliverdin. Cancer Lett., 44, 191–198. - PubMed
  337.  
    1. Arita A., et al. (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics, 1, 222–228. - PMC - PubMed
  338.  
    1. Trott D.A., et al. (1995) Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens. Carcinogenesis, 16, 193–204. - PubMed
  339.  
    1. Rivedal E., et al. (2000) Morphological transformation and effect on gap junction intercellular communication in Syrian hamster embryo cells as screening tests for carcinogens devoid of mutagenic activity. Toxicol. In Vitro, 14, 185–192. - PubMed
  340.  
    1. Zhou X., et al. (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol. Appl. Pharmacol., 236, 78–84. - PMC - PubMed
  341.  
    1. Creton S., et al. (2010) Acute toxicity testing of chemicals-Opportunities to avoid redundant testing and use alternative approaches. Crit. Rev. Toxicol., 40, 50–83. - PubMed
  342.  
    1. Dickens F., et al. (1933) The metabolism of normal and tumour tissue: The effects of lactate, pyruvate and deprivation of substrate. Biochem. J., 27, 1134–1140. - PMC - PubMed
  343.  
    1. MEDES G., et al. (1953) Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro . Cancer Res., 13, 27–29. - PubMed
  344.  
    1. Menendez J.A., et al. (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 7, 763–777. - PubMed
  345.  
    1. Deberardinis R.J., et al. (2008) Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev., 18, 54–61. - PMC - PubMed
  346.  
    1. Vander Heiden M.G., et al. (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol., 76, 325–334. - PubMed
  347.  
    1. Currie E., et al. (2013) Cellular fatty acid metabolism and cancer. Cell Metab., 18, 153–161. - PMC - PubMed
  348.  
    1. Kamphorst J.J., et al. (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA, 110, 8882–8887. - PMC - PubMed
  349.  
    1. Lazebnik Y. (2010) What are the hallmarks of cancer? Nat. Rev. Cancer, 10, 232–233. - PubMed
  350.  
    1. Berridge M.V., et al. (2010) Metabolic flexibility and cell hierarchy in metastatic cancer. Mitochondrion, 10, 584–588. - PubMed
  351.  
    1. Floor S.L., et al. (2012) Hallmarks of cancer: of all cancer cells, all the time? Trends Mol. Med., 18, 509–515. - PubMed
  352.  
    1. Newsholme E.A., et al. (1973) Regulation in Metabolism. Wiley, London, New York.
  353.  
    1. Shim H., et al. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA, 94, 6658–6663. - PMC - PubMed
  354.  
    1. Fantin V.R., et al. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434. - PubMed
  355.  
    1. Stanton R.C. (2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 64, 362–369. - PMC - PubMed
  356.  
    1. Raimundo N., et al. (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med., 17, 641–649. - PMC - PubMed
  357.  
    1. Mullen A.R., et al. (2012) Genetically-defined metabolic reprogramming in cancer. Trends Endocrinol. Metab., 23, 552–559. - PMC - PubMed
  358.  
    1. Wallace D.C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet., 39, 359–407. - PMC - PubMed
  359.  
    1. Santidrian A.F., et al. (2013) Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest., 123, 1068–1081. - PMC - PubMed
  360.  
    1. Lapuente-Brun E., et al. (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science, 340, 1567–1570. - PubMed
  361.  
    1. Zaidi N., et al. (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res, 52, 585–589. - PMC - PubMed
  362.  
    1. Weidberg H., et al. (2009) Lipophagy: selective catabolism designed for lipids. Dev. Cell, 16, 628–630. - PubMed
  363.  
    1. Liu K., et al. (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ., 20, 3–11. - PMC - PubMed
  364.  
    1. Newsholme E.A., et al. (1991) Application of metabolic-control logic to fuel utilization and its significance in tumor cells. Adv. Enzyme Regul., 31, 225–246. - PubMed
  365.  
    1. Kalhan S.C., et al. (2012) Resurgence of serine: an often neglected but indispensable amino Acid. J. Biol. Chem., 287, 19786–19791. - PMC - PubMed
  366.  
    1. Locasale J.W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer, 13, 572–583. - PMC - PubMed
  367.  
    1. Cho H.M., et al. (2000) Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene. Gene, 245, 193–201. - PubMed
  368.  
    1. Owen O.E., et al. (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem., 277, 30409–30412. - PubMed
  369.  
    1. Meyerhof O. (1951) Mechanisms of glycolysis and fermentation. Can. J. Med. Sci., 29, 63–77. - PubMed
  370.  
    1. Lowry O.H., et al. (1964) The relationships between substrates and enzymes of glycolysis in brain. J. Biol. Chem., 239, 31–42. - PubMed
  371.  
    1. Warburg O., et al. (1958) [Partial anaerobiosis and radiation-sensitivity of cancer cells]. Arch. Biochem. Biophys., 78, 573–586. - PubMed
  372.  
    1. Robey R.B. (2011) On dogma and the metabolic gestalt of tumor cells, Science, E-Letters. https://www.sciencemag.org/content/330/ 6009/1338/reply (7 May 2015, date last accessed).
  373.  
    1. Copley S.D. (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol., 7, 265–272. - PubMed
  374.  
    1. Luo W., et al. (2012) Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab., 23, 560–566. - PMC - PubMed
  375.  
    1. Gao X., et al. (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell, 45, 598–609. - PMC - PubMed
  376.  
    1. Robey R.B., et al. (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 25, 4683–4696. - PubMed
  377.  
    1. Hu J., et al. (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol., 31, 522–529. - PMC - PubMed
  378.  
    1. Kacser H., et al. (1973) The control of flux. Symp. Soc. Exp. Biol., 27, 65–104. - PubMed
  379.  
    1. Agarwal A.R., et al. (2013) Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. Am. J. Physiol. Lung Cell. Mol. Physiol., 305, L764–L773. - PubMed
  380.  
    1. Ishida S., et al. (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA, 110, 19507–19512. - PMC - PubMed
  381.  
    1. George J., et al. (2011) Cypermethrin exposure leads to regulation of proteins expression involved in neoplastic transformation in mouse skin. Proteomics, 11, 4411–4421. - PubMed
  382.  
    1. Tsitsimpikou C., et al. (2013) Histopathological lesions, oxidative stress and genotoxic effects in liver and kidneys following long term exposure of rabbits to diazinon and propoxur. Toxicology, 307, 109–114. - PubMed
  383.  
    1. Abdollahi M., et al. (2004) Pesticides and oxidative stress: a review. Med. Sci. Monit., 10, RA141–RA147. - PubMed
  384.  
    1. Folkman J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1, 27–31. - PubMed
  385.  
    1. Carmeliet P. (2005) Angiogenesis in life, disease and medicine. Nature, 438, 932–936. - PubMed
  386.  
    1. Folkman J. (1971) Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285, 1182–1186. - PubMed
  387.  
    1. Carmeliet P., et al. (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307. - PMC - PubMed
  388.  
    1. Ferrara N., et al. (2005) Angiogenesis as a therapeutic target. Nature, 438, 967–974. - PubMed
  389.  
    1. Folkman J. (2003) Fundamental concepts of the angiogenic process. Curr. Mol. Med., 3, 643–651. - PubMed
  390.  
    1. Folkman J. (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol. Ther., 2, S127–S133. - PubMed
  391.  
    1. Siemann D.W., et al. (2005) Differentiation and definition of vascular-targeted therapies. Clin. Cancer Res., 11(2 Pt 1), 416–420. - PubMed
  392.  
    1. Thorpe P.E. (2004) Vascular targeting agents as cancer therapeutics. Clin. Cancer Res., 10, 415–427. - PubMed
  393.  
    1. Patterson D.M., et al. (2007) Vascular damaging agents. Clin. Oncol. (R. Coll. Radiol.), 19, 443–456. - PubMed
  394.  
    1. Hu Z., et al. (1999) Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc. Natl Acad. Sci. USA, 96, 8161–8166. - PMC - PubMed
  395.  
    1. Hu Z., et al. (2000) Intratumoral injection of adenoviral vectors encoding tumor-targeted immunoconjugates for cancer immunotherapy. Proc. Natl Acad. Sci. USA, 97, 9221–9225. - PMC - PubMed
  396.  
    1. Hu Z., et al. (2001) Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc. Natl Acad. Sci. USA, 98, 12180–12185. - PMC - PubMed
  397.  
    1. Hu Z., et al. (2010) Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer. BMC Immunol., 11, 49. - PMC - PubMed
  398.  
    1. Konigsberg W.H., et al. (1988) Molecular cloning of the cDNA for human tissue factor. Cell, 52, 639–640. - PubMed
  399.  
    1. Contrino J., et al. (1996) In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat. Med., 2, 209–215. - PubMed
  400.  
    1. Hu Z. (2011) Factor VII-Targeted Photodynamic Therapy for Breast Cancer and Its Therapeutic Potential for Other Solid Cancers and Leukemia, Breast Cancer—Current and Alternative Therapeutic Modalities. In EsraGunduz and MehmetGunduz (eds), InTech, Rijeka, Croatia. http://www.intechopen.com/articles/show/title/factor-vii-targeted-photod... ISBN: 978-953-307-776-5.
  401.  
    1. Hu Z., et al. (2010) Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice. BMC Cancer, 10, 235. - PMC - PubMed
  402.  
    1. Duanmu J., et al. (2011) Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy. Br. J. Cancer, 104, 1401–1409. - PMC - PubMed
  403.  
    1. Hu Z., et al. (2011) Selective and effective killing of angiogenic vascular endothelial cells and cancer cells by targeting tissue factor using a factor VII-targeted photodynamic therapy for breast cancer. Breast Cancer Res. Treat., 126, 589–600. - PMC - PubMed
  404.  
    1. Jessen-Eller K.K.J., et al. (2002) A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls. Environ. Health Perspect., 110, 9. - PMC - PubMed
  405.  
    1. Taylor T.R., et al. (2011) Ziram activates mitogen-activated protein kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol. Mech. Methods, 21, 8. - PMC - PubMed
  406.  
    1. Berx G., et al. (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol., 1, a003129. - PMC - PubMed
  407.  
    1. Klymkowsky M.W., et al. (2009) Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am. J. Pathol., 174, 1588–1593. - PMC - PubMed
  408.  
    1. Micalizzi D.S., et al. (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia, 15, 117–134. - PMC - PubMed
  409.  
    1. Yang J., et al. (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell, 14, 818–829. - PubMed
  410.  
    1. Kawata M., et al. (2012) TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J. Biochem., 151, 205–216. - PubMed
  411.  
    1. Nagase H., et al. (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 69, 562–573. - PubMed
  412.  
    1. Chen H.C., et al. (1998) Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J. Biol. Chem., 273, 25777–25782. - PubMed
  413.  
    1. Al-Mehdi A.B., et al. (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med., 6, 100–102. - PubMed
  414.  
    1. Chang C.C., et al. (2013) Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res., 73, 4147–4157. - PubMed
  415.  
    1. McCormick J.M., et al. (2010) Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression. Aquat. Toxicol., 100, 255–262. - PMC - PubMed
  416.  
    1. Ding S.Z., et al. (2013) Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells. Toxicol. Appl. Pharmacol., 269, 61–71. - PMC - PubMed
  417.  
    1. Hsiang C.Y., et al. (2007) Acetaldehyde induces matrix metalloproteinase-9 gene expression via nuclear factor-kappaB and activator protein 1 signaling pathways in human hepatocellular carcinoma cells: association with the invasive potential. Toxicol. Lett., 171, 78–86. - PubMed
  418.  
    1. Seo J.H., et al. (2004) Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases, AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab. Invest., 84, 49–62. - PubMed
  419.  
    1. Olumi A.F., et al. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res., 59, 5002–5011. - PMC - PubMed
  420.  
    1. Le Bitoux M.A., et al. (2008) Tumor-host interactions: the role of inflammation. Histochem. Cell Biol., 130, 1079–1090. - PubMed
  421.  
    1. Maffini M.V., et al. (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am. J. Pathol., 167, 1405–1410. - PMC - PubMed
  422.  
    1. Weaver V.M., et al. (2004) Watch thy neighbor: cancer is a communal affair. J. Cell Sci., 117, 1287–1290. - PubMed
  423.  
    1. Maguer-Satta V. (2011) The stem cell niche: the black master of cancer. Cancer Stem Cells Theories and Practices, ISBN 978-953-307-225-8.
  424.  
    1. Laconi S., et al. (2001) A growth-constrained environment drives tumor progression invivo. Proc. Natl Acad. Sci. USA, 98, 7806–7811. - PMC - PubMed
  425.  
    1. Ding J., et al. (2009) TNF-alpha induction by nickel compounds is specific through ERKs/AP-1-dependent pathway in human bronchial epithelial cells. Curr. Cancer Drug Targets, 9, 81–90. - PubMed
  426.  
    1. Li J., et al. (2004) Nickel compounds act through phosphatidylinositol-3-kinase/Akt-dependent, p70(S6k)-independent pathway to induce hypoxia inducible factor transactivation and Cap43 expression in mouse epidermal Cl41 cells. Cancer Res., 64, 94–101. - PubMed
  427.  
    1. Ding J., et al. (2006) Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKbeta/p65-dependent and IKKalpha- and p50-independent pathway. J. Biol. Chem., 281, 39022–39032. - PubMed
  428.  
    1. Zhang J., et al. (2013) The alteration of miR-222 and its target genes in nickel-induced tumor. Biol. Trace Elem. Res., 152, 267–274. - PubMed
  429.  
    1. Allard P., et al. (2010) Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc. Natl Acad. Sci. USA, 107, 20405–20410. - PMC - PubMed
  430.  
    1. Hassan Z.K., et al. (2012) Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev., 2012, 194829. - PMC - PubMed
  431.  
    1. Takahashi A., et al. (2004) Bisphenol A from dental polycarbonate crown upregulates the expression of hTERT. J. Biomed. Mater. Res. B. Appl. Biomater., 71, 214–221. - PubMed
  432.  
    1. Hurt K., et al. (2013) Tributyltin and dibutyltin alter secretion of tumor necrosis factor alpha from human natural killer cells and a mixture of T cells and natural killer cells. J. Appl. Toxicol., 33, 503–510. - PMC - PubMed
  433.  
    1. Patel E., et al. (2013) Methylmercury impairs motor function in early development and induces oxidative stress in cerebellar granule cells. Toxicol. Lett., 222, 265–272. - PubMed
  434.  
    1. Sherwani S.I., et al. (2013) Eicosanoid signaling and vascular dysfunction: methylmercury-induced phospholipase D activation in vascular endothelial cells. Cell Biochem. Biophys., 67, 317–329. - PubMed
  435.  
    1. Black A.T., et al. (2008) Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat. Toxicol. Appl. Pharmacol., 231, 384–392. - PMC - PubMed
  436.  
    1. Chang X., et al. (2013) Paraquat inhibits cell viability via enhanced oxidative stress and apoptosis in human neural progenitor cells. Chem. Biol. Interact., 206, 248–255. - PubMed
  437.  
    1. Khatami M. (2014) Chronic inflammation: synergistic interactions of recruiting macrophages (TAMs) and eosinophils (Eos) with host mast cells (MCs) and tumorigenesis in CALTs. M-CSF, suitable biomarker for cancer diagnosis! Cancers (Basel), 6, 297–322. - PMC - PubMed
  438.  
    1. Whiteside T.L. (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol., 16, 3–15. - PubMed
  439.  
    1. Whiteside T.L. (2002) Tumor-induced death of immune cells: its mechanisms and consequences. Semin Cancer Biol., 12, 43–50. - PubMed
  440.  
    1. Yang L., et al. (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 31, 220–227. - PMC - PubMed
  441.  
    1. Mocellin S., et al. (2004) The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev., 15, 61–76. - PubMed
  442.  
    1. Zou W. (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 5, 263–274. - PubMed
  443.  
    1. IARC (2013) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Agents classified by the IARC Monographs. International Agency for Research and Cancer, Lyon.
  444.  
    1. IARC (1982) Monograph on the Evaluation of Carcinogenic Risk to Humans. Some Industrial Chemicals and Dyestuffs. Di(2-ethylhexyl) Phthalate. International Agency for Research and Cancer, Lyon, pp. 257–280.
  445.  
    1. IARC (2000) Monograph on the Evaluation of Carcinogenic Risk to Humans. Some Industrial Chemicals. Di(2-ethylhexyl) Phthalate. International Agency for Research and Cancer, Lyon, pp. 41–148.
  446.  
    1. Odermatt A., et al. (2008) Disruption of glucocorticoid and mineralocorticoid receptor-mediated responses by environmental chemicals. CHIMIA Int. J. Chem., 62, 335–339.
  447.  
    1. Santos P.M., et al. (2009) Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics, 9, 657–670. - PubMed
  448.  
    1. Kuster M., et al. (2009) Liquid chromatography–tandem mass spectrometric analysis and regulatory issues of polar pesticides in natural and treated waters. J. Chromatogr. A, 1216, 520–529. - PubMed
  449.  
    1. Kim J.H., et al. (2013) Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid. Molecules, 18, 1564–1581. - PMC - PubMed
  450.  
    1. Çayır A., et al. (2014) Micronuclei, nucleoplasmic bridges, and nuclear buds induced in human lymphocytes by the fungicide signum and its active ingredients (boscalid and pyraclostrobin). Environ. Toxicol, 29, 723–732. - PubMed
  451.  
    1. Judson R.S., et al. (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ. Health Persp. (Online), 118, 485. - PMC - PubMed
  452.  
    1. Pereboeva L., et al. (2013) DNA damage responses and oxidative stress in dyskeratosis congenita. PLoS One, 8, e76473. - PMC - PubMed
  453.  
    1. Pinchuk L.M., et al. (2007) In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells. Toxicol. Appl. Pharmacol., 223, 206–217. - PMC - PubMed
  454.  
    1. Kavlock R., et al. (2012) Update on EPA’s ToxCast program: providing high throughput decision support tools for chemical risk management. Chem. Res. Toxicol., 25, 1287–1302. - PubMed
  455.  
    1. Martin M.T., et al. (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol. Reprod., 85, 327–339. - PubMed
  456.  
    1. Metzler M., et al. (2001) Chemistry of natural and anthropogenic endocrine active compounds. In M.Metzler (ed) The Handbook of Environmental Chemistry Vol. 3, Part L. Endocrine Disruptors–Part I. Springer, Berlin Heidelberg, pp. 63–80.
  457.  
    1. Gatidou G., et al. (2007) Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry. J. Chromatogr. A, 1138, 32–41. - PubMed
  458.  
    1. Foran C., et al. (2000) Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res., 50, 153–156. - PubMed
  459.  
    1. Ishibashi H., et al. (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol., 67, 167–179. - PubMed
  460.  
    1. Boyd G.R., et al. (2003) Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. Total Environ., 311, 135–149. - PubMed
  461.  
    1. Kolpin D.W., et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol., 36, 1202–1211. - PubMed
  462.  
    1. Vandhana S., et al. (2013) Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors. Biochim. Biophys. Acta (BBA)-Molecular and Cell Biology of Lipids, 1831, 1458–1466. - PubMed
  463.  
    1. Zuckerbraun H.L., et al. (1998) Triclosan, cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro . Eur. J. Oral Sci., 106, 628–636. - PubMed
  464.  
    1. Terasaka H., et al. (2005) Cytotoxicity and apoptosis-inducing activity of bisphenol A and hydroquinone in HL-60 cells. Anticancer Res., 25, 2241–2247. - PubMed
  465.  
    1. The Australian National Industrial Chemicals Notification and Assessment Scheme (2006) Diethylhexyl Phthalate (DEHP) Factsheet. CAS: 117-81-7. http://www.nicnas.gov.au/communications/publications/information-sheets/... (7 May 2015, date last accessed).
  466.  
    1. Jobling S., et al. (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Persp., 103, 582. - PMC - PubMed
  467.  
    1. Hao C., et al. (2012) Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front. Biosci. (Elite edition), 5, 725–733. - PubMed
  468.  
    1. Moushumi Priya A., et al. (2012) Induction of Apoptosis and cell cycle arrest by Bis (2-ethylhexyl) phthalate produced by Marine Bacillus pumilus MB 40. Chem. Biol. Interact., 195, 133–143. - PubMed
  469.  
    1. Park M.A., et al. (2012) Cell growth of BG-1 ovarian cancer cells is promoted by di-n-butyl phthalate and hexabromocyclododecane via upregulation of the cyclin D and cyclin-dependent kinase-4 genes. Mol. Med. Rep., 5, 761–766. - PubMed
  470.  
    1. Kinoshita Y., et al. (2003) Induction of aromatase (CYP19) expression in breast cancer cells through a nongenomic action of estrogen receptor alpha. Cancer Res., 63, 3546–3555. - PubMed
  471.  
    1. Prins G.S. (2008) Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer, 15, 649–656. - PMC - PubMed
  472.  
    1. Laville N., et al. (2006) Modulation of aromatase activity and mRNA by various selected pesticides in the human choriocarcinoma JEG-3 cell line. Toxicology, 228, 98–108. - PubMed
  473.  
    1. Bulun S.E., et al. (2007) Aromatase excess in cancers of breast, endometrium and ovary. J. Steroid Biochem. Mol. Biol., 106, 81–96. - PMC - PubMed
  474.  
    1. (2012) A Review of Human Carcinogens—Pharmaceuticals IARC Monographs on the Evaluation of Caricinogenic Risk to Humans. Vol. 100, World health Organization IARC, Geneva, Switzerland.
  475.  
    1. Paul A., et al. (2014) The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front. Biosci. (Landmark Ed), 19, 605–618. - PMC - PubMed
  476.  
    1. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures (2000) U.S. Environmental Protection Agency Report No. EPA/630/R-00/002, Washington, DC.
  477.  
    1. Dellarco V., et al. (2012) Mode of action: moving toward a more relevant and efficient assessment paradigm. J. Nutr., 142, 2192S–2198S. - PubMed
  478.  
    1. Meek M.E., et al. (2003) A framework for human relevance analysis of information on carcinogenic modes of action. Crit. Rev. Toxicol., 33, 591–653. - PubMed
  479.  
    1. Boobis A.R., et al. (2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit. Rev. Toxicol., 36, 781–792. - PubMed
  480.  
    1. (2012) OECD Guidance Document 116 On The Conduct And Design Of Chronic Toxicity And Carcinogenicity Studies, Supporting Test Guidelines 451, 452 And 453, 2nd Edition, Series on Testing and Assessment, ENV/JM/MONO(2011)47. OECD Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Paris, France.
  481.  
    1. U.S.E.P.A. (2002) Guidance on Cumulative Risk Assessment of Pesticide Chemicals That Have a Common Mechanism of Toxicity. In Office of Pesticide Programs, Washington, D.C. 20460.
  482.  
    1. EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues) (2013). Scientific opinion on the relevance of dissimilar mode of action and its appropriate application for cumulative risk assessment of pesticides residues in food. EFSA J., 11, 40.
  483.  
    1. Driedger A.A., et al. (1971) Demonstration of two types of DNA repair in X-irradiated Micrococcus radiodurans. Can. J. Microbiol., 17, 495–499. - PubMed
  484.  
    1. Mason P.A., et al. (2003) Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res., 31, 1052–1058. - PMC - PubMed
  485.  
    1. Heindorff K., et al. (1983) Genetic toxicology of ethylenediaminetetraacetic acid (EDTA). Mutat. Res., 115, 149–173. - PubMed
  486.  
    1. Cory-Slechta, D. et al. (2008) Phthalates Cumulative Risk Assessment—The Tasks Ahead. In National Research Council, N.A.o.S., Board on Environmental Science and Technology, Committee on Phthalates Health Risks. National Academy Press, Washington, DC, p. 208.
  487.  
    1. Bucala R. (1996) MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J., 10, 1607–1613. - PubMed
  488.  
    1. Bucala R., et al. (2007) Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity, 26, 281–285. - PubMed
  489.  
    1. Grieb G., et al. (2010) Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect., 23, 257–264. - PMC - PubMed
  490.  
    1. Landesmann B., et al. (2013) Adverse outcome pathway-based screening strategies for an animal-free safety assessment of chemicals. Altern. Lab. Anim., 41, 461–471. - PubMed
  491.  
    1. Malhotra J., et al. (2015) Effect of occupational exposures on lung cancer susceptibility: a study of gene-environment interaction analysis. Cancer Epidemiol. Biomarkers Prev., 24, 570–579. - PubMed
  492.  
    1. Singh S., et al. (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int. J. Mol. Sci., 13, 10143–10153. - PMC - PubMed
  493.  
    1. Vineis P., et al. (2010) Models of carcinogenesis: an overview. Carcinogenesis, 31, 1703–1709. - PMC - PubMed
  494.  
    1. Brash D., et al. (2009) The mysterious steps in carcinogenesis. Br. J. Cancer, 101, 379–380. - PMC - PubMed
  495.  
    1. Brash D., et al. (2009) The mysterious steps in carcinogenesis: addendum. Br. J. Cancer, 101, 1490. - PMC - PubMed
  496.  
    1. Rappaport S.M., et al. (2010) Epidemiology. Environment and disease risks. Science, 330, 460–461. - PMC - PubMed
  497.  
    1. Bisson W.H. (2012) Editorial: computational chemogenomics in drug design and discovery. Curr. Top. Med. Chem., 12, 1867–1868. - PubMed
  498.  
    1. Tomasetti C., et al. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347, 78–81. - PMC - PubMed
  499.  
    1. Weinberg R.A. (2014) Coming full circle-from endless complexity to simplicity and back again. Cell, 157, 267–271. - PubMed
  500.  
    1. Koutsogiannouli E., et al. (2013) Complexity in cancer biology: is systems biology the answer? Cancer Med., 2, 164–177. - PMC - PubMed
  501.  
    1. Alberghina L., et al. (2004) Systems biology and the molecular circuits of cancer. Chembiochem, 5, 1322–1333. - PubMed
  502.  
    1. Carvalho R.N., et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol. Sci., 141, 218–233. - PMC - PubMed
  503.  
    1. Porter W.P., et al. (1999) Endocrine, immune, and behavioral effects of aldicarb (carbamate), atrazine (triazine) and nitrate (fertilizer) mixtures at groundwater concentrations. Toxicol. Ind. Health, 15, 133–150. - PubMed
  504.  
    1. Tarone R.E., et al. (2011) Combating environmental causes of cancer. N. Engl. J. Med., 364, 2266–2267. - PubMed
  505.  
    1. Willett W.C., et al. (2011) Combating environmental causes of cancer. N. Engl. J. Med., 364, 2266. - PubMed
  506.  
    1. Richter E.D., et al. (2004) The precautionary principle, epidemiology and the ethics of delay. Int. J. Occup. Med. Environ. Health, 17, 9–16. - PubMed
  507.  
    1. Pohl H.R., et al. (2010) Chemical risk assessment and uncertainty associated with extrapolation across exposure duration. Regul. Toxicol. Pharmacol., 57, 18–23. - PubMed
  508.  
    1. Tice R.R., et al. (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ. Health Perspect., 121, 756–765. - PMC - PubMed