WAO-ARIA consensus on chronic cough - Part II: Phenotypes and mechanisms of abnormal cough presentation - Updates in COVID-19

Affiliations


Abstract

Background: Chronic cough can be triggered by respiratory and non-respiratory tract illnesses originating mainly from the upper and lower airways, and the GI tract (ie, reflux). Recent findings suggest it can also be a prominent feature in obstructive sleep apnea (OSA), laryngeal hyperresponsiveness, and COVID-19. The classification of chronic cough is constantly updated but lacks clear definition. Epidemiological data on the prevalence of chronic cough are informative but highly variable. The underlying mechanism of chronic cough is a neurogenic inflammation of the cough reflex which becomes hypersensitive, thus the term hypersensitive cough reflex (HCR). A current challenge is to decipher how various infectious and inflammatory airway diseases and esophageal reflux, among others, modulate HCR.

Objectives: The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on classification, epidemiology, presenting features, and mechanistic pathways of chronic cough in airway- and reflux-related cough phenotypes, OSA, and COVID-19. The interplay of cough reflex sensitivity with other pathogenic mechanisms inherent to airway and reflux-related inflammatory conditions was also analyzed.

Outcomes: Currently, it is difficult to clearly ascertain true prevalence rates in epidemiological studies of chronic cough phenotypes. This is likely due to lack of standardized objective measures needed for cough classification and frequent coexistence of multi-organ cough origins. Notwithstanding, we emphasize the important role of HCR as a mechanistic trigger in airway- and reflux-related cough phenotypes. Other concomitant mechanisms can also modulate HCR, including type2/Th1/Th2 inflammation, presence or absence of deep inspiration-bronchoprotective reflex (lower airways), tissue remodeling, and likely cough plasticity, among others.

Keywords: COVID 19; Cough phenotypes; Lower airway disease; Multifactorial cough; Obstructive sleep apnea; Reflux-cough; Type 2 inflammation; Upper airway cough syndrome.

Conflict of interest statement

•Jean Bousquet discloses financial relationships with the following entities: Purina, Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Uriach, KyoMed, MASK-air.•Glenis Scadding discloses payment for talks from ALK, Bayer, GSK and Viatris. She is also chair/member of 3 Data Monitoring Committees for ALK.•Jonathan A. Bernstein discloses he is PI and consultant and speaker for Merck.•Erika Jensen-Jarolim discloses honoraria and support to attend meetings from Bencard Allergie, Germany, and Allergy Therapeutics Ltd, UK; a pending patent and stock or stock options with Biomedical Int. R + D GmbH, Vienna; participation on data monitoring or advisory boards with Allergy Therapeutics Ltd, UK; and receipt of equipment, materials, drugs, medical writing, gifts or other services from Bencard Allergie, Germany.•Giorgio Walter Canonica discloses speaker or advisory board roles with Menarini, Chiesi, Sanofi, GSK, AstraZeneca, Novartis, Stallergenes, Hall, Allergy Therapeutics.•All other authors indicated they have nothing to disclose related to the submitted work.


References

  1.  
    1. Holden S.E., Morice A., Birring S.S., et al. Cough presentation in primary care and the identification of chronic cough: a need for diagnostic clarity? Curr Med Res Opin. 2019;36(1):139–150. doi: 10.1080/03007995.2019.1673716. - DOI - PubMed
  2.  
    1. Song W.J., Chang Y.S., Faruqi S., et al. The global epidemiology of chronic cough in adults: a systematic review and meta-analysis. Eur Respir J. 2015;45(5):1479–1481. doi: 10.1183/09031936.00218714. - DOI - PubMed
  3.  
    1. Koo H.K., Jeong I., Lee S.W., et al. Prevalence of chronic cough and possible causes in the general population based on the Korean National Health and Nutrition Examination Survey. Med. 2016;95(37) doi: 10.1097/MD.0000000000004595. - DOI - PMC - PubMed
  4.  
    1. Arinze J.T., de Roos E.W., Karimi L., Verhamme K.M.C., Stricker B.H., Brusselle G.G. Prevalence and incidence of, and risk factors for chronic cough in the adult population: the Rotterdam Study. ERJ Open Res. 2020;6(2) doi: 10.1183/23120541.00300-2019. 00300-02019. - DOI - PMC - PubMed
  5.  
    1. French C.L., Irwin R.S., Curley F.J., Krikorian C.J. Impact of chronic cough in quality of life. Arch Intern Med. 1998;158(15):1657–1661. doi: 10.1001/archinte.158.15.1657. - DOI - PubMed
  6.  
    1. Song W.J., Morice A.H., Kim M.H., et al. Cough in the elderly population: relationships with multiple comorbidity. PLoS One. 2013;8(10) doi: 10.1371/journal.pone.0078081. - DOI - PMC - PubMed
  7.  
    1. Chang A.B., Robertson C.F., Van Asperen P.P., et al. A cough algorithm for chronic cough in children: a multicenter, randomized controlled study. Pediatrics. 2013;131(5):e1576–e1583. doi: 10.1542/peds.2012-3318. - DOI - PubMed
  8.  
    1. Morice A.H., McGarvey L., Pavord I. Recommendations for the management of cough in adults. Thorax. 2006;61(1):1–24. doi: 10.1136/thx.2006.065144. - DOI - PMC - PubMed
  9.  
    1. Shields M.D., Bush A., Everard M.L., McKenzie S., Primhak R. Recommendations for the assessment and management of cough in children. Thorax. 2008;63:1–15. doi: 10.1136/thx.2007.077370. - DOI - PubMed
  10.  
    1. Irwin R.S., French C.L., Chang A.B., Altman K.W. Classification of cough as a symptom in adults and management algorithms: CHEST guideline and expert panel report. Chest. 2018;153(1):196–209. doi: 10.1016/j.chest.2017.10.016. - DOI - PMC - PubMed
  11.  
    1. Chang A.B., Anderson-James S., Marchant J.M. Chronic cough in children. Clin Pulm Med. 2014;21(3):138–144. doi: 10.1097/CPM.0000000000000037. - DOI
  12.  
    1. Weinberger M., Fischer A. Differential diagnosis of chronic cough in children. Allergy Asthma Proc. 2014;35(2):95–103. doi: 10.2500/aap.2014.35.3711. - DOI - PubMed
  13.  
    1. Morice A.H., Jakes A.D., Faruqi S., et al. Worldwide survey of chronic cough: a manifestation of enhanced somatosensory response. Eur Respir J. 2014;44(5):1149–1155. doi: 10.1183/09031936.00217813. - DOI - PubMed
  14.  
    1. Song W.J., Morice A.H. Cough hypersensitivity syndrome: a few more steps forward. Allergy, Asthma Immunol Res. 2017;9:394–402. doi: 10.4168/aair.2017.9.5.394. - DOI - PMC - PubMed
  15.  
    1. Rouadi P.W., Idriss S.A., Bousquet J., Laidlaw T.M., Azar C.R., Al-Ahmad M.S. WAO-ARIA consensus ON chronic cough- part I: role of TRP channels in neurogenic inflammation of cough neuronal pathways. WAO J. Published online. 2021
  16.  
    1. Yu L., Xu X., Lv H., Qiu Z. Advances in upper airway cough syndrome. Kaohsiung J Med Sci. 2015;31(5):223–228. doi: 10.1016/j.kjms.2015.01.005. - DOI - PubMed
  17.  
    1. Pratter M.R. Chronic upper airway cough syndrome seconday to rhinosinus diseases (previously referred to as postnasal drip syndrome) Chest. 2006;129(1):63–71. doi: 10.1378/chest.129.1. - DOI - PubMed
  18.  
    1. Papadopoulos N.G., Guibas G.V. Rhinitis subtypes, endotypes and definitions. Immunol Allergy Clin N Am. 2016;36(2):215–233. doi: 10.1016/j.iac.2015.12.001. - DOI - PMC - PubMed
  19.  
    1. Bloustine S., Langston L., Miller T. Ear-cough (arnold ’s) reflex. Ann Otol. 2015;85:406–407. doi: 10.1177/000348947608500315. - DOI - PubMed
  20.  
    1. Ryan N.M., Gibson P.G., Birring S.S. Arnold's nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy. J Thorac Dis. 2014;6(7):S748–S752. doi: 10.3978/j.issn.2072-1439.2014.04.22. - DOI - PMC - PubMed
  21.  
    1. Gao F., Gu Q.L., Jiang Z.D. Upper airway cough syndrome in 103 children. Chin Med J (Engl) 2019;132(6):653–658. doi: 10.1097/CM9.0000000000000118. - DOI - PMC - PubMed
  22.  
    1. Ioan I., Poussel M., Coutier L., et al. What is chronic cough in children? Front Physiol. 2014;28(5):322. doi: 10.3389/fphys.2014.00322. - DOI - PMC - PubMed
  23.  
    1. Wilson N.W., Hogan M.B., Harper C.B., et al. Sinusitis and chronic cough in children. J Asthma Allergy. 2012;5:27–32. doi: 10.2147/JAA.S31874. - DOI - PMC - PubMed
  24.  
    1. Yu X., Kong L., Jiang W., et al. Etiologies associated with chronic cough and its clinical characteristics in school-age children. J Thorac Dis. 2019;11(7):3093–3102. doi: 10.21037/jtd.2019.07.36. - DOI - PMC - PubMed
  25.  
    1. Watelet J.B., Van Zele T., Brusselle G. Chronic cough in upper airway diseases. Respir Med. 2010;104(5):652–657. doi: 10.1016/j.rmed.2009.11.020. - DOI - PubMed
  26.  
    1. Chang A.B., Oppenheimer J.J., Weinberger M.M., et al. Management of children with chronic wet cough and protracted bacterial bronchitis: CHEST guideline and expert panel report. Chest. 2017;151(4):884–890. doi: 10.1016/j.chest.2017.01.025. - DOI - PubMed
  27.  
    1. Mello C.J., Irwin R.S., Curley F.J. Predictive values of the character, timing, and complications of chronic cough in diagnosing its cause. Arch Intern Med. 1996;156:997–1003. doi: 10.1001/archinte.1996.00440090103010. - DOI - PubMed
  28.  
    1. Polverino M., Polverino F., Fasolino M., Andò F., Alfieri A., De Blasio F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip Respir Med. 2012;7(1):1–5. doi: 10.1186/2049-6958-7-5. - DOI - PMC - PubMed
  29.  
    1. Tatar M., Plevkova J., Brozmanova M., Pecova R., Kollarik M. Mechanisms of the cough associated with rhinosinusitis. Pulm Pharmacol Ther. 2009;22(2):121–126. doi: 10.1016/j.pupt.2008.11.014. - DOI - PubMed
  30.  
    1. Yu J.L., Becker S.S. Postnasal drip and postnasal drip-related cough. Curr Opin Otolaryngol Head Neck Surg. 2016;24:15–19. doi: 10.1097/MOO.0000000000000226. - DOI - PubMed
  31.  
    1. Morice A.H. Post-nasal drip syndrome — a symptom to be sniffed at. Pulm Pharmacol Ther. 2004;17(6):343–345. doi: 10.1016/j.pupt.2004.09.005. - DOI - PubMed
  32.  
    1. Braunstahl G.J., Overbeek S.E., KleinJan A., Prins J.B., Hoogsteden H.C., Fokkens W.J. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001;107(3):469–476. doi: 10.1067/mai.2001.113046. - DOI - PubMed
  33.  
    1. Bousquet J., Khaltaev N., Cruz A.A., et al. Allergic rhinitis and its impact on asthma ( ARIA ) 2008. Prim Care. 2008;63:8–160. doi: 10.1111/j.1398-9995.2007.01620.x. - DOI - PubMed
  34.  
    1. Mandadi S., Roufogalis B.D. ThermoTRP channels in nociceptors: taking a lead from capsaicin receptor TRPV1. Curr Neuropharmacol. 2008;6(1):21–38. doi: 10.2174/157015908783769680. - DOI - PMC - PubMed
  35.  
    1. Cho P.S.P., Birring S.S., Fletcher H.V., Turner R.D. Methods of cough assessment. J Allergy Clin Immunol Pract. 2019;7(6):1715–1723. doi: 10.1016/j.jaip.2019.01.049. - DOI - PubMed
  36.  
    1. Yamasaki M., Ebihara S., Ebihara T., et al. Cough reflex and oral chemesthesis induced by capsaicin and capsiate in healthy never-smokers. Cough. 2007;3(9) doi: 10.1186/1745-9974-3-9. - DOI - PMC - PubMed
  37.  
    1. Bessac B.F., Jordt S.E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiol. 2008;23:360–370. doi: 10.1152/physiol.00026.2008. - DOI - PMC - PubMed
  38.  
    1. Plevková J., Poliaček I., Adamkov M., Svirlochová K., Varga I. Brainstem neuronal populations activated in the model of ovalbumine induced allergic rhinitis in Guinea pigs - the c-Fos study. Biologia (Bratisl). 2011;66(5):922–927. doi: 10.2478/s11756-011-0096-0. - DOI
  39.  
    1. Plevkova J., Song W.J. Chronic cough in subjects with upper airway diseases - analysis of mechanisms and clinical applications. Asia Pac Allergy. 2013;3(2):127–135. doi: 10.5415/apallergy.2013.3.2.127. - DOI - PMC - PubMed
  40.  
    1. Lucanska M., Hajtman A., Calkovsky V., Kunc P., Pecova R. Upper airway cough syndrome in pathogenesis of chronic cough. Physiol Res. 2020;69(1):35–42. doi: 10.33549/physiolres.934400. - DOI - PMC - PubMed
  41.  
    1. Plevkova J., Brozmanova M., Pecova R., Tatar M. The effects of nasal histamine challenge on cough reflex in healthy volunteers. Pulm Pharmacol Ther. 2006;19(2):120–127. doi: 10.1016/j.pupt.2005.04.004. - DOI - PubMed
  42.  
    1. Lee P.C.L., Eccles R. Cough induction by high-frequency chest percussion in healthy volunteers and patients with common cold. Respir Med. 2004;98(8):771–776. doi: 10.1016/j.rmed.2004.01.006. - DOI - PubMed
  43.  
    1. O'Connell F., Thomas V.E., Studham J.M., Pride N.B., Fuller R.W. Capsaicin cough sensitivity increases during upper respiratory infection. Respir Med. 1996;90(5):279–286. doi: 10.1016/S0954-6111(96)90099-2. - DOI - PubMed
  44.  
    1. Meseguer V., Alpizar Y.A., Luis E., et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014;5:1–14. doi: 10.1038/ncomms4125. - DOI - PMC - PubMed
  45.  
    1. Park C.K., Xu Z.Z., Berta T., et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron. 2014;82(1):47–54. doi: 10.1016/j.neuron.2014.02.011. - DOI - PMC - PubMed
  46.  
    1. Guerra S., Sherrill D.L., Baldacci S., et al. Rhinitis is an independent risk factor for developing cough apart from colds among adults. Allergy. 2005;60(3):343–349. doi: 10.1111/j.1398-9995.2005.00717.x. - DOI - PubMed
  47.  
    1. Bousquet J., Boushey H.A., Busse W.W., et al. Characteristics of patients with seasonal allergic rhinitis and concomitant asthma. Clin Exp Allergy. 2004;34(6):897–903. doi: 10.1111/j.1365-2222.2004.01969.x. - DOI - PubMed
  48.  
    1. Kim S.W., Han D.H., Lee S.J., Lee C.H., Rhee C.S. Bronchial hyperresponsiveness in pediatric rhinitis patients: the difference between allergic and nonallergic rhinitis. Am J Rhinol Allergy. 2013;27(3):63–68. doi: 10.2500/ajra.2013.27.3877. - DOI - PubMed
  49.  
    1. Shaaban R., Zureik M., Soussan D., et al. Allergic rhinitis and onset of bronchial hyperresponsiveness: a population-based study. Am J Respir Crit Care Med. 2007;176(7):659–666. doi: 10.1164/rccm.200703-427OC. - DOI - PubMed
  50.  
    1. Suh D.I., Koh Y.Y. Relationship between atopy and bronchial hyperresponsiveness. Allergy, Asthma Immunol Res. 2013;5(4):181–188. doi: 10.4168/aair.2013.5.4.181. - DOI - PMC - PubMed
  51.  
    1. Verdiani P., Di Carlo S., Baronti A. Different prevalence and degree of nonspecific bronchial hyperreactivity between seasonal and perennial rhinitis. J Allergy Clin Immunol. 1990;86:576–582. doi: 10.1016/S0091-6749(05)80215-5. - DOI - PubMed
  52.  
    1. Pecova R., Vrlik M., Tatar M. Cough sensitivity in allergic rhinitis. J Physiol Pharmacol. 2005;56(4):171–178. - PubMed
  53.  
    1. Pecova R., Zucha J., Pec M., Neuschlova M., Hanzel P., Tatar M. Cough reflex sensitivity testing in seasonal allergic rhinitis patients and healthy volunteers. J Physiol Pharmacol. 2008;59(6):557–564. - PubMed
  54.  
    1. Plevkova J., Varechova S., Brozmanova M., Tatar M. Testing of cough reflex sensitivity in children suffering from allergic rhinitis and common cold. J Physiol Pharmacol. 2006;57(4):289–296. - PubMed
  55.  
    1. Connell J.T. Quantitative intranasal pollen challenge. II. Effect of daily pollen challenge, environmental pollen exposure, and placebo challenge on the nasal membrane. J Allergy. 1968;41:123–139. doi: 10.1016/0021-8707(68)90053-1. - DOI - PubMed
  56.  
    1. Connell J.T. Quantitative intranasal pollen challenges. 3. The priming effect in allergic rhinitis. J Allergy. 1969;43:33–44. doi: 10.1016/0021-8707(69)90018-5. - DOI - PubMed
  57.  
    1. Brozmanova M., Plevkova J., Bartos V., Plank L., Tatar M. Antileukotriene treatment and allergic rhinitis-related cough in Guinea pigs. J Physiol Pharmacol. 2005;56(4):21–30. - PubMed
  58.  
    1. Brozmanova M., Calkovsky V., Plevkova J., Tatar M. Effects of inhaled corticosteroids on cough in awake Guinea pigs with experimental allergic rhinitis--the first experience. J Physiol Pharmacol. 2004;55(3):23–30. - PubMed
  59.  
    1. Shusterman D. Nonallergic rhinitis: environmental determinants. Immunol Allergy Clin. 2016;36(2):379–399. doi: 10.1016/j.iac.2015.12.013. - DOI - PubMed
  60.  
    1. Scarupa M.D., Kaliner M.A. Nonallergic rhinitis, with a focus on vasomotor rhinitis. World Allergy Organ J. 2009;2(3):20–25. doi: 10.1097/wox.0b013e3181990aac. - DOI - PMC - PubMed
  61.  
    1. Van Gerven L., Alpizar Y.A., Steelant B., et al. Enhanced chemosensory sensitivity in patients with idiopathic rhinitis and its reversal by nasal capsaicin treatment. J Allergy Clin Immunol. 2017;140(2):437–446. doi: 10.1016/j.jaci.2017.03.014. - DOI - PubMed
  62.  
    1. Bernstein J.A., Singh U. Neural abnormalities in nonallergic rhinitis. Curr Allergy Asthma Rep. 2015;15(4):18. doi: 10.1007/s11882-015-0511-7. - DOI - PubMed
  63.  
    1. Van Gerven L., Alpizar Y.A., Wouters M.M., et al. Capsaicin treatment reduces nasal hyperreactivity and transient receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis. J Allergy Clin Immunol. 2014;133(5):1332–1339. doi: 10.1016/j.jaci.2013.08.026. - DOI - PubMed
  64.  
    1. Van Gerven L., Steelant B., Hellings P.W. Nasal hyperreactivity in rhinitis: a diagnostic and therapeutic challenge. Allergy. 2018;73(9):1784–1791. doi: 10.1111/all.13453. - DOI - PubMed
  65.  
    1. Fokkens W.J., Lund V.J., Hopkins C., et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(29):1–464. doi: 10.4193/Rhin20.600. - DOI - PubMed
  66.  
    1. Li H., Wang D., Sun X., Hu L., Yu H., Wang J. Relationship between bacterial biofilm and clinical features of patients with chronic rhinosinusitis. Eur Arch Oto-Rhino-Laryngol. 2012;269(1):155–163. doi: 10.1007/s00405-011-1683-y. - DOI - PubMed
  67.  
    1. Kariya S., Okano M., Higaki T., Makihara S., Tachibana T., Nishizaki K. Long-term treatment with clarithromycin and carbocisteine improves lung function in chronic cough patients with chronic rhinosinusitis. Am J Otolaryngol. 2020;41(1):102315. doi: 10.1016/j.amjoto.2019.102315. - DOI - PubMed
  68.  
    1. Pham V., Sykes K., Wei J. Long-term Outcome of once daily nasal irrigation for the treatment of pediatric chronic rhinosinusitis. Laryngoscope. 2015;124:10–16. doi: 10.1002/lary.24224.Long-term. - DOI - PMC - PubMed
  69.  
    1. Ozturk F., Bakirtas A., Ileri F., Turktas I. Efficacy and tolerability of systemic methylprednisolone in children and adolescents with chronic rhinosinusitis : a double-blind , placebo-controlled randomized trial. J Allergy Clin Immunol. 2011;128(2):348–352. doi: 10.1016/j.jaci.2011.04.045. - DOI - PubMed
  70.  
    1. Chang P.H., Lee L.A., Huang C.C., Lai C.H., Lee T.J. Functional endoscopic sinus surgery in children using a limited approach. Arch Otolaryngol - Head Neck Surg. 2004;130(9):1033–1036. doi: 10.1001/archotol.130.9.1033. - DOI - PubMed
  71.  
    1. Ryu G., Min C., Park B., Choi H.G., Mo J.H. Bidirectional association between asthma and chronic rhinosinusitis: two longitudinal follow-up studies using a national sample cohort. Sci Rep. 2020;10:9589. doi: 10.1038/s41598-020-66479-8. - DOI - PMC - PubMed
  72.  
    1. Poelmans J., Tack J. Extraoesophageal manifestations of gastro-oesophageal reflux. Gut. 2005;54:1492–1499. doi: 10.1136/gut.2004.053025. - DOI - PMC - PubMed
  73.  
    1. Chang A.B., Oppenheimer J.J., Weinberger M., Grant C.C., Rubin B.K., Irwin R.S. Etiologies of chronic cough in pediatric cohorts: CHEST guideline and expert panel report. Chest. 2017;152(3):607–617. doi: 10.1016/j.chest.2017.06.006. - DOI - PMC - PubMed
  74.  
    1. Sundar K.M., Daly S.E. Chronic cough and OSA: a new association? J Clin Sleep Med. 2011;7(6):669–677. doi: 10.5664/jcsm.1482. - DOI - PMC - PubMed
  75.  
    1. Birring S.S., Ing A.J., Chan K., et al. Obstructive sleep apnoea: a cause of chronic cough. Cough. 2007;3(1):1–5. doi: 10.1186/1745-9974-3-7. - DOI - PMC - PubMed
  76.  
    1. Chan K., Ing A., Birring S.S. Cough in obstructive sleep apnoea. Pulm Pharmacol Ther. 2015;35:129–131. doi: 10.1016/j.pupt.2015.05.008. - DOI - PubMed
  77.  
    1. Chan K.K.Y., Ing A.J., Laks L., Cossa G., Rogers P., Birring S.S. Chronic cough in patients with sleep-disordered breathing. Eur Respir J. 2010;35(2):368–372. doi: 10.1183/09031936.00110409. - DOI - PubMed
  78.  
    1. Wang T.Y., Lo Y.L., Liu W.T., et al. Chronic cough and obstructive sleep apnoea in a sleep laboratory-based pulmonary practice. Cough. 2013;9(1):1–5. doi: 10.1186/1745-9974-9-24. - DOI - PMC - PubMed
  79.  
    1. Sundar K.M., Daly S.E., Pearce M.J., Alward W.T. Chronic cough and obstructive sleep apnea in a community-based pulmonary practice. Cough. 2010;6:2. doi: 10.1186/1745-9974-6-2. - DOI - PMC - PubMed
  80.  
    1. Fortuna A.M., Miralda R., Calaf N., González M., Casan P., Mayos M. Airway and alveolar nitric oxide measurements in obstructive sleep apnea syndrome. Respir Med. 2011;105(4):630–636. doi: 10.1016/j.rmed.2010.12.004. - DOI - PubMed
  81.  
    1. Faruqi S., Fahim A., Morice A.H. Chronic cough and obstructive sleep apnoea: reflux-associated cough hypersensitivity? Eur Respir J. 2012;40(4):1049–1050. doi: 10.1183/09031936.00025012. - DOI - PubMed
  82.  
    1. Sundar K.M., Willis A.M., Smith S., Hu N., Kitt J.P., Birring S.S. A randomized, controlled, pilot study of CPAP for patients with chronic cough and obstructive sleep apnea. Lung. 2020;198(3):449–457. doi: 10.1007/s00408-020-00354-1. - DOI - PMC - PubMed
  83.  
    1. Bucca C.B., Bugiani M., Culla B., et al. Chronic cough and irritable larynx. J Allergy Clin Immunol. 2011;127:412–419. doi: 10.1016/j.jaci.2010.10.038. - DOI - PubMed
  84.  
    1. Gibson P.G., Simpson J.L., Ryan N.M., Vertigan A.E. Mechanisms of cough. Curr Opin Allergy Clin Immunol. 2014;14(1):55–61. doi: 10.1097/ACI.0000000000000027. - DOI - PubMed
  85.  
    1. Vertigan A.E., Theodoros D.G., Gibson P.G., Winkworth A.L. Voice and upper airway symptoms in people with chronic cough and paradoxical vocal fold movement. Curr Opin Allergy Clin Immunol. 2007;7(3):361–383. doi: 10.1097/ACI.0b013e328012c587. - DOI - PubMed
  86.  
    1. Thach B.T. Maturation of cough and other reflexes that protect the fetal and neonatal airway. Pulm Pharmacol Ther. 2007;20(4):365–370. doi: 10.1016/j.pupt.2006.11.011. - DOI - PMC - PubMed
  87.  
    1. Bucca C., Rolla G., Scappaticci E., Baldi S., Caria E., Oliva A. Histamine hyperresponsiveness of the extrathoracic airway in patients with asthmatic symptoms. Allergy. 1991;46:147–153. doi: 10.1111/j.1398-9995.1991.tb00559.x. - DOI - PubMed
  88.  
    1. Famokunwa B., Walsted E.S., Hull J.H. Assessing laryngeal function and hypersensitivity. Pulm Pharmacol Ther. 2019;56:108–115. doi: 10.1016/j.pupt.2019.04.003. - DOI - PubMed
  89.  
    1. Morrison M., Rammage L., Emami A.J. The irritable larynx syndrome. J Voice. 1999;13(3):447–455. doi: 10.1016/S0892-1997(99)80049-6. - DOI - PubMed
  90.  
    1. Andrianopoulos M.V., Gallivan G.J., Gallivan K.H. PVCM, PVCD, EPL, and irritable larynx syndrome: what are we talking about and how do we treat it? J Voice. 2000;14(4):607–618. doi: 10.1016/S0892-1997(00)80016-8. - DOI - PubMed
  91.  
    1. Aviv J.E., Martin J.H., Kim T., et al. Laryngopharyngeal sensory discrimination testing and the laryngeal adductor reflex. Ann Otol Rhinol Laryngol. 1999;108(8):725–730. doi: 10.1177/000348949910800802. - DOI - PubMed
  92.  
    1. Phua S.Y., McGarvey L., Ngu M., Ing A. The differential effect of gastroesophageal reflux disease on mechanostimulation and chemostimulation of the laryngopharynx. Chest. 2010;138(5):1180–1185. doi: 10.1378/chest.09-2387. - DOI - PubMed
  93.  
    1. Cukier-Blaj S., Bewley A., Aviv J.E., Murry T. Paradoxical vocal fold motion: a sensory-motor laryngeal disorder. Laryngoscope. 2008;118(2):367–370. doi: 10.1097/MLG.0b013e31815988b0. - DOI - PubMed
  94.  
    1. Lee B., Woo P. Chronic cough as a sign of laryngeal sensory neuropathy: diagnosis and treatment. Ann Otol Rhinol Laryngol. 2005;114(4):253–257. doi: 10.1177/000348940511400401. - DOI - PubMed
  95.  
    1. Turcotte S.E., Lougheed M.D. Cough in asthma. Curr Opin Pharmacol. 2011;11(3):231–237. doi: 10.1016/j.coph.2011.04.008. - DOI - PubMed
  96.  
    1. Niimi A., Fukumitsu K., Takeda N., Kanemitsu Y. Interfering with airway nerves in cough associated with asthma. Pulm Pharmacol Ther. 2019;59:101854. doi: 10.1016/j.pupt.2019.101854. - DOI - PubMed
  97.  
    1. Drake M.G., Scott G.D., Blum E.D., et al. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med. 2018;10(457) doi: 10.1126/scitranslmed.aar8477. - DOI - PMC - PubMed
  98.  
    1. Sastre B., Fernández-Nieto M., Mollá R., et al. Increased prostaglandin E2 levels in the airway of patients with eosinophilic bronchitis. Allergy Eur J Allergy Clin Immunol. 2008;63(1):58–66. doi: 10.1111/j.1398-9995.2007.01515.x. - DOI - PubMed
  99.  
    1. Wang J.L., Ren Z.Y., Xia J.B., et al. The mechanism of airway inflammation in eosinophilic bronchitis and cough variant asthma. Zhonghua Jie He He Hu Xi Za Zhi. 2011;34(6):433–437. - PubMed
  100.  
    1. Brightling C.E., Ward R., Goh K.L., Wardlaw A.J., Pavord I.D. Eosinophilic bronchitis is an important cause of cough. Am J Respir Crit Care Med. 1999;160(2):406–410. doi: 10.1164/ajrccm.160.2.9810100. - DOI - PubMed
  101.  
    1. Lund S., Walford H., Doherty T. Type 2 innate lymphoid cells in allergic disease. Curr Immunol Rev. 2013;9(4):214–221. doi: 10.2174/1573395510666140304235916. - DOI - PMC - PubMed
  102.  
    1. Satia I., Watson R., Scime T., et al. Allergen challenge increases capsaicin-evoked cough responses in patients with allergic asthma. J Allergy Clin Immunol. 2019;144(3):788–795. doi: 10.1016/j.jaci.2018.11.050. e1. - DOI - PubMed
  103.  
    1. Ribeiro M., De Castro Pereira C.A., Nery L.E., Beppu O.S., Silva C.O.S. A prospective longitudinal study of clinical characteristics, laboratory findings, diagnostic spectrum and outcomes of specific therapy in adult patients with chronic cough in a general respiratory clinic. Int J Clin Pract. 2006;60(7):799–805. doi: 10.1111/j.1368-5031.2006.00876.x. - DOI - PubMed
  104.  
    1. Çolak Y., Afzal S., Lange P., Laursen L.C., Nordestgaard B.G., Dahl M. Role and impact of chronic cough in individuals with asthma from the general population. J Allergy Clin Immunol Pract. 2019;7(6):1783–1792. doi: 10.1016/j.jaip.2019.02.021. e8. - DOI - PubMed
  105.  
    1. De Marco R., Marcon A., Jarvis D., et al. Prognostic factors of asthma severity: a 9-year international prospective cohort study. J Allergy Clin Immunol. 2006;117(6):1249–1256. doi: 10.1016/j.jaci.2006.03.019. - DOI - PubMed
  106.  
    1. Marsden P.A., Satia I., Ibrahim B., et al. Objective cough frequency, airway inflammation, and disease control in asthma. Chest. 2016;149(6):1460–1466. doi: 10.1016/j.chest.2016.02.676. - DOI - PubMed
  107.  
    1. Satia I., Tsamandouras N., Holt K., et al. Capsaicin-evoked cough responses in asthmatic patients: evidence for airway neuronal dysfunction. J Allergy Clin Immunol. 2017;139(3):771–779. doi: 10.1016/j.jaci.2016.04.045. e10. - DOI - PubMed
  108.  
    1. Kanemitsu Y., Fukumitsu K., Kurokawa R., et al. Increased capsaicin sensitivity in patients with severe asthma is associated with worse clinical outcome. Am J Respir Crit Care Med. 2020;201(9):1068–1077. doi: 10.1164/RCCM.201911-2263OC. - DOI - PubMed
  109.  
    1. Ulrik C.S. Outcome of asthma: longitudinal changes in lung function. Eur Respir J. 1999;13(4):904–918. doi: 10.1034/j.1399-3003.1999.13d35.x. - DOI - PubMed
  110.  
    1. Martin M.J., Harrison T.W. Causes of chronic productive cough: an approach to management. Respir Med. 2015;109(9):1105–1113. doi: 10.1016/j.rmed.2015.05.020. - DOI - PubMed
  111.  
    1. Crimi E., Saporiti R., Bartolini S., Baroffio M., Pellegrino R., Brusasco V. Airway responsiveness to methacholine and deep inhalations in subjects with rhinitis without asthma. J Allergy Clin Immunol. 2008;121(2):403–407. doi: 10.1016/j.jaci.2007.09.009. - DOI - PubMed
  112.  
    1. Scichilone N., Kapsali T., Permutt S., Togias A. Deep inspiration-induced bronchoprotection is stronger than bronchodilation. Am J Respir Crit Care Med. 2000;162(3):910–916. doi: 10.1164/ajrccm.162.3.9907048. - DOI - PubMed
  113.  
    1. Lougheed M.D., Turcotte S.E., Fisher T. Cough variant asthma: lessons learned from deep inspirations. Lung. 2012;190:17–22. doi: 10.1007/s00408-011-9348-6. - DOI - PubMed
  114.  
    1. Choudry N.B., Fuller R.W., Pride N.B. Effect of inflammatory mediators prostaglandin E2 , bradykinin, and histamine. Am Rev Respir Dis. 1989;140:137–141. - PubMed
  115.  
    1. Maher S.A., Birrell M.A., Adcock J.J., et al. Prostaglandin D2 and the role of the DP1, DP2 and TP receptors in the control of airway reflex events. Eur Respir J. 2015;45(4):1108–1118. doi: 10.1183/09031936.00061614. - DOI - PubMed
  116.  
    1. Grace M.S., Baxter M., Dubuis E., Birrell M.A., Belvisi M.G. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol. 2014;171(10):2593–2607. doi: 10.1111/bph.12538. - DOI - PMC - PubMed
  117.  
    1. Fujimura M., Sakamoto S., Kamio T., Bando T., Kurashima K., Matsuda T. Effect of inhaled procaterol on cough receptor sensitivity to capsaicin in patients with asthma or chronic bronchitis and in normal subjects. Thorax. 1993;48(6):615–618. doi: 10.1136/thx.48.6.615. - DOI - PMC - PubMed
  118.  
    1. Hilton E.C.Y., Baverel P.G., Woodcock A., Van Der Graaf P.H., Smith J.A. Pharmacodynamic modeling of cough responses to capsaicin inhalation calls into question the utility of the C5 end point. J Allergy Clin Immunol. 2013;132(4):847–855. doi: 10.1016/j.jaci.2013.04.042. e5. - DOI - PubMed
  119.  
    1. Dicpinigaitis P.V. Short- and long-term reproducibility of capsaicin cough challenge testing. Pulm Pharmacol Ther. 2003;16(1):61–65. doi: 10.1016/S1094-5539(02)00149-9. - DOI - PubMed
  120.  
    1. Satia I., Badri H., Woodhead M., O'Byrne P.M., Fowler S.J., Smith J.A. The interaction between bronchoconstriction and cough in asthma. Thorax. 2017;72(12):1144–1146. doi: 10.1136/thoraxjnl-2016-209625. - DOI - PubMed
  121.  
    1. Lai K., Chen R., Lin J., et al. A prospective, multicenter survey on causes of chronic cough in China. Chest. 2013;143(3):613–620. doi: 10.1378/chest.12-0441. - DOI - PubMed
  122.  
    1. Lai K., Pan J., Chen R., Liu B., Luo W., Zhong N. Epidemiology of cough in relation to China. Cough. 2013;9:18. doi: 10.1186/1745-9974-9-18. - DOI - PMC - PubMed
  123.  
    1. Kim Y.H., Kim K.W., Baek J., et al. Usefulness of impulse oscillometry and fractional exhaled nitric oxide in children with Eosinophilic bronchitis. Pediatr Pulmonol. 2012;48(3):221–228. doi: 10.1002/ppul.22631. - DOI - PubMed
  124.  
    1. Brightling C.E. Chronic cough due to nonasthmatic eosinophilic bronchitis ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1):116S–121S. doi: 10.1378/chest.129.1_suppl.116S. - DOI - PubMed
  125.  
    1. Yıldız T., Dülger S. Non-astmatic eosinophilic bronchitis. Turkish Thorac J. 2018;19(1):41–45. doi: 10.5152/TurkThoracJ.2017.17017. - DOI - PMC - PubMed
  126.  
    1. Chen L., Lai K., Xie J. Establishment of airway eosinophilic bronchitis mouse model without hyperresponsiveness by ovalbumin. Clin Exp Med. 2011;11(1):19–24. doi: 10.1007/s10238-010-0106-5. - DOI - PubMed
  127.  
    1. Niimi A., Matsumoto H., Mishima M. Eosinophilic airway disorders associated with chronic cough. Pulm Pharmacol Ther. 2009;22(2):114–120. doi: 10.1016/j.pupt.2008.12.001. - DOI - PubMed
  128.  
    1. Fujimura M., Ogawa H., Yasui M., Matsuda T. Eosinophilic tracheobronchitis and airway cough hypersensitivity in chronic non-productive cough. Clin Exp Allergy. 2000;30(1):41–47. doi: 10.1046/j.1365-2222.2000.00698.x. - DOI - PubMed
  129.  
    1. Fujimura M., Ogawa H., Nishizawa Y., Nishi K. Comparison of atopic cough with cough variant asthma: is atopic cough a precursor of asthma? Thorax. 2003;58(1):14–18. doi: 10.1136/thorax.58.1.14. - DOI - PMC - PubMed
  130.  
    1. Fujimura M., Sakamoto S., Matsuda T., Fujimura M. Bronchodilator-resistive cough in atopic patients: bronchial reversibility and hyperresponsiveness. Intern Med. 1992;31(4):447–452. doi: 10.2169/internalmedicine.31.447. - DOI - PubMed
  131.  
    1. Brightling C.E., Ward R., Wardlaw A.J., Pavord I.D. Airway inflammation, airway responsiveness and cough before and after inhaled budesonide in patients with eosinophilic bronchitis. Eur Respir J. 2000;15(4):682–686. doi: 10.1034/j.1399-3003.2000.15d10.x. - DOI - PubMed
  132.  
    1. Zhan C., Xu R., Liu J., et al. Increased sputum IL-17a level in non-asthmatic eosinophilic bronchitis. Lung. 2018;196(6):699–705. doi: 10.1007/s00408-018-0166-y. - DOI - PubMed
  133.  
    1. Diver S., Russell R.J., Brightling C.E. Cough and eosinophilia. J Allergy Clin Immunol. 2019;7(6):1740–1747. doi: 10.1016/j.jaip.2019.04.048. - DOI - PubMed
  134.  
    1. Sastre B., Del Pozo V. Role of PGE 2 in asthma and nonasthmatic eosinophilic bronchitis. Mediat Inflamm. 2012;2012:645383. doi: 10.1155/2012/645383. - DOI - PMC - PubMed
  135.  
    1. Berry M.A., Parker D., Neale N., et al. Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. J Allergy Clin Immunol. 2004;114:1106–1109. doi: 10.1016/j.jaci.2004.08.032. - DOI - PubMed
  136.  
    1. Siddiqui S., Gupta S., Cruse G., et al. Airway wall geometry in asthma and nonasthmatic eosinophilic bronchitis. Allergy. 2009;64(6):951–958. doi: 10.1111/j.1398-9995.2009.01951.x. - DOI - PMC - PubMed
  137.  
    1. Sastre B., Fernández-Nieto M., López E., et al. PGE2 decreases muscle cell proliferation in patients with non-asthmatic eosinophilic bronchitis. Prostag Other Lipid Mediat. 2011;95(1-4):11–18. doi: 10.1016/j.prostaglandins.2011.03.002. - DOI - PubMed
  138.  
    1. Vujnović S.D., Domuz A., Petrović S. In: Approach Based on Phenotype and Endotype. Huang K.-H.G., Hsuan C., Tsai S., editors. IntechOpen; 2018. Cough variant asthma as a phenotype of classic asthma. - DOI
  139.  
    1. Pavord I.D. Cough and asthma. Pulm Pharmacol Ther. 2004;17(6 SPEC.ISS.):399–402. doi: 10.1016/j.pupt.2004.09.009. - DOI - PubMed
  140.  
    1. Magni C., Chellini E., Zanasi A. Cough variant asthma and atopic cough. Multidiscip Respir Med. 2010;5(2):99–103. doi: 10.1186/2049-6958-5-2-99. - DOI - PMC - PubMed
  141.  
    1. Gao J., Wu F., Wu S., Yang X. Inflammatory subtypes in classic asthma and cough variant asthma. J Inflamm Res. 2020;13:1167–1173. doi: 10.2147/JIR.S269795. - DOI - PMC - PubMed
  142.  
    1. Kanemitsu Y., Matsumoto H., Osman N., et al. “Cold air” and/or “talking” as cough triggers, a sign for the diagnosis of cough variant asthma. Respir Investig. 2016;54(6):413–418. doi: 10.1016/j.resinv.2016.07.002. - DOI - PubMed
  143.  
    1. Wasilewski N.V., Fisher T., Turcotte S.E., Fisher J.T., Lougheed M.D. Bronchoprotective effect of deep inspirations in cough variant asthma: a distinguishing feature in the spectrum of airway disease? Respir Physiol Neurobiol. 2018;257:55–64. doi: 10.1016/j.resp.2017.09.004. - DOI - PubMed
  144.  
    1. Koh Y.Y., Jeong J.H., Park Y., Kim C.K. Development of wheezing in patients with cough variant asthma during an increase in airway responsiveness. Eur Respir J. 1999;14(2):302–308. doi: 10.1034/j.1399-3003.1999.14b11.x. - DOI - PubMed
  145.  
    1. Nakajima T., Nishimura Y., Nishiuma T., Kotani Y., Nakata H., Yokoyama M. Cough sensitivity in pure cough variant asthma elicited using continuous capsaicin inhalation. Allergol Int. 2006;55(2):149–155. doi: 10.2332/allergolint.55.149. - DOI - PubMed
  146.  
    1. Nakaji H., Niimi A., Matsuoka H., et al. Airway remodeling associated with cough hypersensitivity as a consequence of persistent cough: an experimental study. Respir Investig. 2016;54(6):419–427. doi: 10.1016/j.resinv.2016.06.005. - DOI - PubMed
  147.  
    1. Fujimura M. Pathophysiology, diagnosis and treatment of cough variant asthma. Rinsho Byori. 2014;62(5):464–470. - PubMed
  148.  
    1. Dicpinigaitis P.V., Dobkin J.B., Reichel J. Antitussive effect of the leukotriene receptor antagonist zafirlukast in subjects with cough-variant asthma. J Asthma. 2002;39(4):291–297. doi: 10.1081/JAS-120002285. - DOI - PubMed
  149.  
    1. Takemura M., Niimi A., Matsumoto H., et al. Clinical, physiological and anti-inflammatory effect of montelukast in patients with cough variant asthma. Respiration. 2012;83(4):308–315. doi: 10.1159/000332835. - DOI - PubMed
  150.  
    1. Fujimura M., Hara J., Myou S. Change in bronchial responsiveness and cough reflex sensitivity in patients with cough variant asthma: effect of inhaled corticosteroids. Cough. 2005;1(3):1–8. doi: 10.1186/1745-9974-1-5. - DOI - PMC - PubMed
  151.  
    1. Gold Pocket guide to copd diagnosis, management, and prevention. Handout. 2020:1–48. Published online.
  152.  
    1. Hantera M., Abdel-Hafiz H. Methacholine challenge test as indicator for add on inhaled corticosteroids in COPD patients. Egypt J Chest Dis Tuberc. 2014;63(2):351–354. doi: 10.1016/j.ejcdt.2014.01.006. - DOI
  153.  
    1. Christenson S.A., Steiling K., Van Den Berge M., et al. Asthma-COPD overlap: clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758–766. doi: 10.1164/rccm.201408-1458OC. - DOI - PMC - PubMed
  154.  
    1. Hastie A.T., Martinez F.J., Curtis J.L., et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(12):956–967. doi: 10.1016/S2213-2600(17)30432-0. - DOI - PMC - PubMed
  155.  
    1. Brightling C.E., Monteiro W., Ward R., et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000;356(9240):1480–1485. doi: 10.1016/S0140-6736(00)02872-5. - DOI - PubMed
  156.  
    1. Bafadhel M., McKenna S., Terry S., et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2012;186(1):48–55. doi: 10.1164/rccm.201108-1553OC. - DOI - PMC - PubMed
  157.  
    1. Koo H.K., Park S.W., Park J.W., et al. Chronic cough as a novel phenotype of chronic obstructive pulmonary disease. Int J COPD. 2018;13:1793–1801. doi: 10.2147/COPD.S153821. - DOI - PMC - PubMed
  158.  
    1. Landt E., Çolak Y., Lange P., Laursen L.C., Nordestgaard B.G., Dahl M. Chronic cough in individuals with COPD: a population-based cohort study. Chest. 2020;157(6):1446–1454. doi: 10.1016/j.chest.2019.12.038. - DOI - PubMed
  159.  
    1. Abbott-Banner K., Poll C., Verkuyl J.M. Targeting TRP channels in airway disorders. Curr Top Med Chem. 2013;13(3):310–321. doi: 10.2174/1568026611313030008. - DOI - PubMed
  160.  
    1. Zhu G., Gulsvik A., Bakke P., et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet. 2009;18(11):2053–2062. doi: 10.1093/hmg/ddp111. - DOI - PubMed
  161.  
    1. Cho P.S.P., Fletcher H.V., Turner R.D., Patel I.S., Jolley C.J., Birring S.S. The relationship between cough reflex sensitivity and exacerbation frequency in chronic obstructive pulmonary disease. Lung. 2020;198(4):617–628. doi: 10.1007/s00408-020-00366-x. - DOI - PMC - PubMed
  162.  
    1. Cho P.S.P., Fletcher H.V., Patel I.S., Turner R.D., Jolley C.J., Birring S.S. Cough hypersensitivity and suppression in COPD. Eur Respir J. 2021;57(5):2003569. doi: 10.1183/13993003.03569-2020. - DOI - PubMed
  163.  
    1. Vakil N., Van Zanten S.V., Kahrilas P., Dent J., Jones R., Global Consensus group The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101(8):1900–1921. doi: 10.1111/j.1572-0241.2006.00630.x. - DOI - PubMed
  164.  
    1. Durazzo M., Lupi G., Cicerchia F., et al. Extra-esophageal presentation of gastroesophageal reflux disease: 2020 update. J Clin Med. 2020;9(8):2559. doi: 10.3390/jcm9082559. - DOI - PMC - PubMed
  165.  
    1. Irwin R.S., Mark Madison J. Diagnosis and treatment of chronic cough due to gastro-esophageal reflux disease and postnasal drip syndrome. Pulm Pharmacol Ther. 2002;15(3):261–266. doi: 10.1006/pupt.2002.0348. - DOI - PubMed
  166.  
    1. Jaspersen D., Kulig M., Labenz J., et al. Prevalence of extra-oesophageal manifestations in gastro-oesophageal reflux disease: an analysis based on the ProGERD Study. Aliment Pharmacol Ther. 2003;17(12):1515–1520. doi: 10.1046/j.1365-2036.2003.01606.x. - DOI - PubMed
  167.  
    1. Kahrilas P.J., Altman K.W., Chang A.B., et al. Chronic cough due to gastroesophageal reflux in adults: CHEST guideline and expert panel report. Chest. 2016;150(6):1341–1360. doi: 10.1016/j.chest.2016.08.1458. - DOI - PMC - PubMed
  168.  
    1. Herregods T.V.K., Pauwels A., Tack J., Smout A.J.P.M., Bredenoord A.J. Reflux-cough syndrome: assessment of temporal association between reflux episodes and cough bursts. Neuro Gastroenterol Motil. 2017;29(12) doi: 10.1111/nmo.13129. - DOI - PubMed
  169.  
    1. Sifrim D., Dupont L., Blondeau K., Zhang X., Tack J., Janssens J. Weakly acidic reflux in patients with chronic unexplained cough during 24 hour pressure, pH, and impedance monitoring. Gut. 2005;54(4):449–454. doi: 10.1136/gut.2004.055418. - DOI - PMC - PubMed
  170.  
    1. Weusten B.L.A.M., Roelofs J.M.M., Akkermans L.M.A., Van Berge-Henegouwen G.P., Smout A.J.P.M. The symptom-association probability: an improved method for symptom analysis of 24-hour esophageal pH data. Gastroenterology. 1994;107(6):1741–1745. doi: 10.1016/0016-5085(94)90815-X. - DOI - PubMed
  171.  
    1. De Giorgi F., Palmiero M., Esposito I., Mosca F., Cuomo R. Pathophysiology of gastro-oesophageal reflux disease. Acta Otorhinolaryngol Ital. 2006;26(5):241–246. doi: 10.1097/00020840-199402000-00016. - DOI - PMC - PubMed
  172.  
    1. Ates F., Vaezi M.F. Approach to the patient with presumed extraoesophageal GERD. Best Pract Res Clin Gastroenterol. 2013;27(3):415–431. doi: 10.1016/j.bpg.2013.06.009. - DOI - PubMed
  173.  
    1. Yu Y., Wen S., Wang S., et al. Reflux characteristics in patients with gastroesophageal reflux-related chronic cough complicated by laryngopharyngeal reflux. Ann Transl Med. 2019;7(20) doi: 10.21037/atm.2019.09.162. 529-529. - DOI - PMC - PubMed
  174.  
    1. Smith J.A., Houghton L.A. The oesophagus and cough: laryngo-pharyngeal reflux, microaspiration and vagal reflexes. Cough. 2013;9:12. doi: 10.1186/1745-9974-9-12. - DOI - PMC - PubMed
  175.  
    1. Patterson R.N., Johnston B.T., Ardill J.E.S., Heaney L.G., McGarvey L.P.A. Increased tachykinin levels in induced sputum from asthmatic and cough patients with acid reflux. Thorax. 2007;62(6):491–495. doi: 10.1136/thx.2006.063982. - DOI - PMC - PubMed
  176.  
    1. Chang A.B., Gibson P.G., Ardill J., McGarvey L.P.A. Calcitonin gene-related peptide relates to cough sensitivity in children with chronic cough. Eur Respir J. 2007;30(1):66–72. doi: 10.1183/09031936.00150006. - DOI - PubMed
  177.  
    1. Qiu Z., Yu L., Xu S., et al. Cough reflex sensitivity and airway inflammation in patients with chronic cough due to non-acid gastro-oesophageal reflux. Respirology. 2011;16(4):645–652. doi: 10.1111/j.1440-1843.2011.01952.x. - DOI - PubMed
  178.  
    1. Decalmer S., Stovold R., Houghton L.A., et al. Chronic cough: relationship between microaspiration, gastroesophageal reflux, and cough frequency. Chest. 2012;142(4):958–964. doi: 10.1378/chest.12-0044. - DOI - PubMed
  179.  
    1. Kastelik J.A., Redington A.E., Aziz I., et al. Abnormal oesophageal motility in patients with chronic cough. Thorax. 2003;58(8):699–702. doi: 10.1136/thorax.58.8.699. - DOI - PMC - PubMed
  180.  
    1. Halpin S., O'Connor R., Sivan M. Long COVID and chronic COVID syndromes. J Med Virol. 2021;93(3):1242–1243. doi: 10.1002/jmv.26587. - DOI - PMC - PubMed
  181.  
    1. Cortinovis M., Perico N., Remuzzi G. Long-term follow-up of recovered patients with COVID-19. Lancet. 2021;397(10270):173–175. doi: 10.1016/S0140-6736(21)00039-8. - DOI - PMC - PubMed
  182.  
    1. Gorna R., MacDermott N., Rayner C., et al. Long COVID guidelines need to reflect lived experience. Lancet. Published online. 2020 doi: 10.1016/S0140-6736(20)32705-7. - DOI - PMC - PubMed
  183.  
    1. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021 doi: 10.1016/S2213-2600(21)00031-X. Published online. - DOI - PMC - PubMed
  184.  
    1. Hu Y., Sun J., Dai Z., et al. Prevalence and severity of corona virus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Virol. Published online. 2020:104371. doi: 10.1016/j.jcv.2020.104371. - DOI - PMC - PubMed
  185.  
    1. Blain H, Gamon L, Tuaillon E, et al. Atypical Symptoms, SARS-CoV-2 Test Results, and Immunization Rates in 456 Residents from Eight Nursing Homes Facing a COVID-19 Outbreak. Age Ageing. Published online 2021. doi:10.1093/ageing/afab050. - PMC - PubMed
  186.  
    1. D'Cruz R.F., Waller M.D., Perrin F., et al. Chest radiography is a poor predictor of respiratory symptoms and functional impairment in survivors of severe COVID-19 pneumonia. ERJ Open Res. 2021;7(1) doi: 10.1183/23120541.00655-2020. 00655-02020. - DOI - PMC - PubMed
  187.  
    1. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19. J Am Med Assoc. 2020;324:603–605. doi: 10.1001/jama.2020.12603. - DOI - PMC - PubMed
  188.  
    1. Mandal S., Barnett J., Brill S.E., et al. Long-COVID”: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2020:1–3. doi: 10.1136/thoraxjnl-2020-215818. Published online. - DOI - PMC - PubMed
  189.  
    1. Arnold D.T., Hamilton F.W., Milne A., et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2020:1–4. doi: 10.1136/thoraxjnl-2020-216086. Published online. - DOI - PMC - PubMed
  190.  
    1. Ding H., Xu X., Wen S., et al. Changing etiological frequency of chronic cough in a tertiary hospital in Shanghai, China. J Thorac Dis. 2019;11(8):3482–3489. doi: 10.21037/jtd.2019.07.86. - DOI - PMC - PubMed
  191.  
    1. Nahama A., Ramachandran R., Cisternas A.F., Ji H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis : a review. Med Drug Discov. Published online. 2020:100033. doi: 10.1016/j.medidd.2020.100033. - DOI - PMC - PubMed
  192.  
    1. Achanta S., Jordt S.E. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci. 2020;1480(1):73–103. doi: 10.1111/nyas.14472. - DOI - PMC - PubMed
  193.  
    1. Bousquet J., Anto J.M., Czarlewski W., et al. Cabbage and fermented vegetables: from death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy. 2020;6 doi: 10.1111/all.14549. - DOI - PMC - PubMed
  194.  
    1. Bousquet J., Cristol J.P., Czarlewski W., et al. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy. 2020;10(1):58. doi: 10.1186/s13601-020-00362-7. - DOI - PMC - PubMed
  195.  
    1. Bousquet J., Wienczyslawa C., Zuberbier T., De-la-Torre R., Anto J.M. 2020. Induced Cough Challenges in a Single Patient with COVID-19 Showing an Interplay between Nrf2, TRPA1 and TRPV1 Agonists.
  196.  
    1. Bousquet J., Le V., Blain H., Czarlewski W. Efficacy of broccoli and glucoraphanin in COVID-19 : from hypothesis to proof-of- concept with three experimental clinical cases. World Allergy Organ J. 2020;14(1):100498. doi: 10.1016/j.waojou.2020.100498. - DOI - PMC - PubMed
  197.  
    1. Bousquet J., Czarlewski W., Zuberbier T., Mullol J., Blain H., Cristol J.P., et al. Spices to control COVID-19 symptoms: yes, but not only…. Int Arch Allergy Immunol. 2021;182(6):489–495. doi: 10.1159/000513538. - DOI - PMC - PubMed
  198.  
    1. Talavera K., Startek J.B., Alvarez-Collazo J., et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev. 2020;100(2):725–803. 1152/physrev.00005.2019. - PubMed
  199.  
    1. Colarusso C., Terlizzi M., Pinto A., Sorrentino R. A lesson from a saboteur: high-MW kininogen impact in coronavirus-induced disease 2019. Br J Pharmacol. 2020;177(21):4866–4872. doi: 10.1111/bph.15154. - DOI - PMC - PubMed
  200.  
    1. Kickbusch I., Leung G. Response to the emerging novel coronavirus outbreak. BMJ. 2020;368(January):1–2. doi: 10.1136/bmj.m406. - DOI - PubMed
  201.  
    1. Canning B.J., Mazzone S.B., Meeker S.N., Mori N., Reynolds S.M., Undem B.J. Identification of the tracheal and laryngeal afferent neurons mediating cough in anaesthetized Guinea-pigs. J Physiol. 2004;557(2):543–558. doi: 10.1113/jphysiol.2003.057885. - DOI - PMC - PubMed
  202.  
    1. Chou Y.L., Mori N., Canning B.J. Opposing effects of bronchopulmonary C-fiber subtypes on cough in Guinea pigs. Am J Physiol Regul Integr Comp Physiol. 2018;314(3):489–498. doi: 10.1152/ajpregu.00313.2017. - DOI - PMC - PubMed
  203.  
    1. Dicpinigaitis P.V., Canning B.J. Is there (will there Be) a post-COVID-19 chronic cough? Lung. 2020;198(6):863–865. doi: 10.1007/s00408-020-00406-6. - DOI - PMC - PubMed
  204.  
    1. Braman S.S. Postinfectious cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 SUPPL):138S–146S. doi: 10.1378/chest.129.1_suppl.138S. - DOI - PubMed
  205.  
    1. Abdullah H., Heaney L.G., Cosby S.L., McGarvey L.P.A. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. Thorax. 2014;69(1):46–54. doi: 10.1136/thoraxjnl-2013-203894. - DOI - PubMed
  206.  
    1. Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the immune system. Physiol Res. 2020;16(69):379–388. doi: 10.33549/physiolres.934492. - DOI - PMC - PubMed
  207.  
    1. Chowdhurry M.A., Hossain N., Abul M., Shahid M.A., Alam A. Immune response in COVID-19 : a review. J Infect Public Health. 2020;13:1619–1629. doi: 10.1016/j.jiph.2020.07.001. - DOI - PMC - PubMed
  208.  
    1. Del Valle D.M., Kim-Schulze S., Huang H.H., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643. doi: 10.1038/s41591-020-1051-9. - DOI - PMC - PubMed
  209.  
    1. Li L., Li J., Gao M., et al. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front Immunol. 2021;11(January):1–10. doi: 10.3389/fimmu.2020.602395. - DOI - PMC - PubMed
  210.  
    1. Bousquet J., Czarlewski W., Zuberbier T., et al. Potential interplay between Nrf2 , TRPA1 , and TRPV1 in nutrients for the control of COVID-19. Int Arch Allergy Immunol. 2021;182:324–338. doi: 10.1159/000514204. - DOI - PMC - PubMed
  211.  
    1. Bousquet J., Czarlewski W., Zuberbier T. Potential control of COVID-19 symptoms by Nrf2-interacting nutrients with TRPA1 (transient receptor potential ankyrin 1) agonist activity. Clin Transl Allergy. 2020;58
  212.  
    1. Myall K.J., Mukherjee B., Castanheira A.M., et al. Persistent post-COVID-19 inflammatory interstitial lung disease: an observational study of corticosteroid treatment. Ann Am Thorac Soc. 2021:1–26. doi: 10.1513/annalsats.202008-1002oc. 0(Md) - DOI - PMC - PubMed
  213.  
    1. Zanasi A., Lecchi M., Del Forno M., et al. A randomized, placebo-controlled, double-blind trial on the management of post-infective cough by inhaled ipratropium and salbutamol administered in combination. Pulm Pharmacol Ther. 2014;29(2):224–232. doi: 10.1016/j.pupt.2014.07.008. - DOI - PubMed
  214.  
    1. Irwin R.S., Curley F.J., French C.L. Chronic cough. The spectrum and frequency of causes, key components of the diagnostic evaluation, and outcome of specific therapy. Am Rev Respir Dis. 1990;141(3 I):640–647. doi: 10.1164/ajrccm/141.3.640. - DOI - PubMed
  215.  
    1. McGarvey L.P.A. Does idiopathic cough exist? Lung. 2008;186(SUPPL. 1):78–81. doi: 10.1007/s00408-007-9048-4. - DOI - PubMed
  216.  
    1. Kang S.Y., Won H.K., Lee S.M., et al. Impact of cough and unmet needs in chronic cough: a survey of patients in korea. Lung. 2019;197(5):635–639. doi: 10.1007/s00408-019-00258-9. - DOI - PubMed
  217.  
    1. Zeiger R.S., Schatz M., Butler R.K., Weaver J.P., Bali V., Chen W. Burden of specialist-diagnosed chronic cough in adults. J Allergy Clin Immunol Pract. 2020;8(5):1645–1657. doi: 10.1016/j.jaip.2020.01.054. - DOI - PubMed
  218.  
    1. Brignall K., Jayaraman B., Birring S.S. Quality of life and psychosocial aspects of cough. Lung. 2008;186(SUPPL. 1):55–58. doi: 10.1007/s00408-007-9034-x. - DOI - PubMed
  219.  
    1. Chamberlain S., Birring S.S., Garrod R. Nonpharmacological interventions for refractory chronic cough patients: systematic review. Lung. 2014;192(1):75–85. doi: 10.1007/s00408-013-9508-y. - DOI - PubMed
  220.  
    1. Lai K., Luo W., Zeng G., Zhong N. Diagnosis and treatment of chronic cough in China: an insight into the status quo. Cough. 2012;8(1):4. doi: 10.1186/1745-9974-8-4. - DOI - PMC - PubMed
  221.  
    1. Dagouassat M., Gagliolo J.M., Chrusciel S., et al. The cyclooxygenase-2-prostaglandin e2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 2013;187(7):703–714. doi: 10.1164/rccm.201208-1361OC. - DOI - PubMed
  222.  
    1. Zaslona Z., Peters-Golden M. Prostanoids in asthma and COPD actions, dysregulation, and th erapeutic opportunities. Chest. 2015;148(5):1300–1306. doi: 10.1378/chest.15-1029. - DOI - PMC - PubMed
  223.  
    1. Sadeghi M.H., Morice A.H. The emerging role of the eosinophil and its measurement in. Open Respir Med J. 2017;11:17–30. doi: 10.2174/1874306401711010017. - DOI - PMC - PubMed
  224.  
    1. Schleimer R.P. Innate immune responses and chronic obstructive pulmonary disease: “Terminator” or “terminator 2”. Proc Am Thorac Soc. 2005;2(4):342–346. doi: 10.1513/pats.200504-030SR. - DOI - PMC - PubMed