A saturated map of common genetic variants associated with human height

Loïc Yengo # 1, Sailaja Vedantam # 2 3, Eirini Marouli # 4, Julia Sidorenko 5, Eric Bartell 2 3 6, Saori Sakaue 3 7 8 9, Marielisa Graff 10, Anders U Eliasen 11 12, Yunxuan Jiang 13, Sridharan Raghavan 14 15, Jenkai Miao 2 3, Joshua D Arias 16, Sarah E Graham 17, Ronen E Mukamel 3 18 19, Cassandra N Spracklen 20 21, Xianyong Yin 22, Shyh-Huei Chen 23, Teresa Ferreira 24, Heather H Highland 10, Yingjie Ji 25, Tugce Karaderi 26 27, Kuang Lin 28, Kreete Lüll 29, Deborah E Malden 28, Carolina Medina-Gomez 30, Moara Machado 16, Amy Moore 31, Sina Rüeger 32 33, Xueling Sim 34, Scott Vrieze 35, Tarunveer S Ahluwalia 36 37, Masato Akiyama 7 38, Matthew A Allison 39, Marcus Alvarez 40, Mette K Andersen 41, Alireza Ani 42 43, Vivek Appadurai 44, Liubov Arbeeva 45, Seema Bhaskar 46, Lawrence F Bielak 47, Sailalitha Bollepalli 48, Lori L Bonnycastle 49, Jette Bork-Jensen 41, Jonathan P Bradfield 50 51, Yuki Bradford 52, Peter S Braund 53 54, Jennifer A Brody 55, Kristoffer S Burgdorf 56 57, Brian E Cade 6 58, Hui Cai 59, Qiuyin Cai 59, Archie Campbell 60, Marisa Cañadas-Garre 61, Eulalia Catamo 62, Jin-Fang Chai 34, Xiaoran Chai 63 64, Li-Ching Chang 65, Yi-Cheng Chang 65 66 67, Chien-Hsiun Chen 65, Alessandra Chesi 68 69, Seung Hoan Choi 70, Ren-Hua Chung 71, Massimiliano Cocca 62, Maria Pina Concas 62, Christian Couture 72, Gabriel Cuellar-Partida 13 73, Rebecca Danning 74, E Warwick Daw 75, Frauke Degenhard 76, Graciela E Delgado 77, Alessandro Delitala 78, Ayse Demirkan 79 80, Xuan Deng 81, Poornima Devineni 82, Alexander Dietl 83 84, Maria Dimitriou 85, Latchezar Dimitrov 86, Rajkumar Dorajoo 87 88, Arif B Ekici 89, Jorgen E Engmann 90, Zammy Fairhurst-Hunter 28, Aliki-Eleni Farmaki 85, Jessica D Faul 91, Juan-Carlos Fernandez-Lopez 92, Lukas Forer 93, Margherita Francescatto 94, Sandra Freitag-Wolf 95, Christian Fuchsberger 96, Tessel E Galesloot 97, Yan Gao 98, Zishan Gao 99 100 101, Frank Geller 102, Olga Giannakopoulou 4, Franco Giulianini 74, Anette P Gjesing 41, Anuj Goel 27 103, Scott D Gordon 104, Mathias Gorski 83, Jakob Grove 105 106 107, Xiuqing Guo 108, Stefan Gustafsson 109, Jeffrey Haessler 110, Thomas F Hansen 44 57 111, Aki S Havulinna 48 112, Simon J Haworth 113 114, Jing He 59, Nancy Heard-Costa 115 116, Prashantha Hebbar 117, George Hindy 3 118, Yuk-Lam A Ho 119, Edith Hofer 120 121, Elizabeth Holliday 122, Katrin Horn 123 124, Whitney E Hornsby 17, Jouke-Jan Hottenga 125, Hongyan Huang 126, Jie Huang 127 128, Alicia Huerta-Chagoya 129 130 131, Jennifer E Huffman 119, Yi-Jen Hung 132, Shaofeng Huo 133, Mi Yeong Hwang 134, Hiroyuki Iha 135, Daisuke D Ikeda 135, Masato Isono 136, Anne U Jackson 22, Susanne Jäger 137 138, Iris E Jansen 139 140, Ingegerd Johansson 141 142, Jost B Jonas 143 144 145 146, Anna Jonsson 41, Torben Jørgensen 147 148, Ioanna-Panagiota Kalafati 85, Masahiro Kanai 3 7 8, Stavroula Kanoni 4, Line L Kårhus 147, Anuradhani Kasturiratne 149, Tomohiro Katsuya 150, Takahisa Kawaguchi 151, Rachel L Kember 152, Katherine A Kentistou 153 154, Han-Na Kim 155 156, Young Jin Kim 134, Marcus E Kleber 77 157, Maria J Knol 79, Azra Kurbasic 158, Marie Lauzon 108, Phuong Le 159 160, Rodney Lea 161, Jong-Young Lee 162, Hampton L Leonard 163 164 165, Shengchao A Li 16 166, Xiaohui Li 108, Xiaoyin Li 167 168, Jingjing Liang 167, Honghuang Lin 169, Shih-Yi Lin 170, Jun Liu 28 79, Xueping Liu 102, Ken Sin Lo 171, Jirong Long 59, Laura Lores-Motta 172, Jian'an Luan 173, Valeriya Lyssenko 174 175, Leo-Pekka Lyytikäinen 176 177 178, Anubha Mahajan 27 179, Vasiliki Mamakou 180, Massimo Mangino 181 182, Ani Manichaikul 183, Jonathan Marten 184, Manuel Mattheisen 105 185 186, Laven Mavarani 187, Aaron F McDaid 32 33, Karina Meidtner 137 138, Tori L Melendez 17, Josep M Mercader 19 129 188 189, Yuri Milaneschi 190, Jason E Miller 191 192, Iona Y Millwood 28 193, Pashupati P Mishra 176 177, Ruth E Mitchell 113 194, Line T Møllehave 147, Anna Morgan 62, Soeren Mucha 195, Matthias Munz 195, Masahiro Nakatochi 196, Christopher P Nelson 53 54, Maria Nethander 197 198, Chu Won Nho 199, Aneta A Nielsen 200, Ilja M Nolte 42, Suraj S Nongmaithem 46 201, Raymond Noordam 202, Ioanna Ntalla 4, Teresa Nutile 203, Anita Pandit 22, Paraskevi Christofidou 181, Katri Pärna 29 42, Marc Pauper 172, Eva R B Petersen 204, Liselotte V Petersen 106 205, Niina Pitkänen 206 207, Ozren Polašek 208 209, Alaitz Poveda 158, Michael H Preuss 210 211, Saiju Pyarajan 6 58 82, Laura M Raffield 20, Hiromi Rakugi 150, Julia Ramirez 4 212 213, Asif Rasheed 214, Dennis Raven 215, Nigel W Rayner 27 201 216 217, Carlos Riveros 218 219, Rebecca Rohde 10, Daniela Ruggiero 203 220, Sanni E Ruotsalainen 48, Kathleen A Ryan 221 222, Maria Sabater-Lleal 223 224, Richa Saxena 3 189, Markus Scholz 123 124, Anoop Sendamarai 82, Botong Shen 225, Jingchunzi Shi 13, Jae Hun Shin 226, Carlo Sidore 227, Colleen M Sitlani 55, Roderick C Slieker 228 229 230, Roelof A J Smit 210 231, Albert V Smith 47 232, Jennifer A Smith 47 91, Laura J Smyth 61, Lorraine Southam 216 233, Valgerdur Steinthorsdottir 234, Liang Sun 133, Fumihiko Takeuchi 136, Divya Sri Priyanka Tallapragada 46 235, Kent D Taylor 108, Bamidele O Tayo 236, Catherine Tcheandjieu 237 238, Natalie Terzikhan 79, Paola Tesolin 94, Alexander Teumer 239 240, Elizabeth Theusch 241, Deborah J Thompson 242 243, Gudmar Thorleifsson 234, Paul R H J Timmers 153 184, Stella Trompet 202 244, Constance Turman 126, Simona Vaccargiu 227, Sander W van der Laan 245, Peter J van der Most 42, Jan B van Klinken 246 247 248, Jessica van Setten 249, Shefali S Verma 68, Niek Verweij 250, Yogasudha Veturi 52, Carol A Wang 218 219, Chaolong Wang 87 251, Lihua Wang 75, Zhe Wang 210, Helen R Warren 4 252, Wen Bin Wei 253, Ananda R Wickremasinghe 149, Matthias Wielscher 254 255, Kerri L Wiggins 55, Bendik S Winsvold 256 257, Andrew Wong 258, Yang Wu 5, Matthias Wuttke 259 260, Rui Xia 261, Tian Xie 42, Ken Yamamoto 262, Jingyun Yang 263 264, Jie Yao 108, Hannah Young 35, Noha A Yousri 265 266, Lei Yu 263 264, Lingyao Zeng 267, Weihua Zhang 268 269, Xinyuan Zhang 52, Jing-Hua Zhao 270, Wei Zhao 47, Wei Zhou 3 271 272 273, Martina E Zimmermann 83, Magdalena Zoledziewska 227, Linda S Adair 274 275, Hieab H H Adams 276 277 278, Carlos A Aguilar-Salinas 279 280, Fahd Al-Mulla 117, Donna K Arnett 281, Folkert W Asselbergs 249 282 283, Bjørn Olav Åsvold 284 285 286, John Attia 122, Bernhard Banas 287, Stefania Bandinelli 288, David A Bennett 263 264, Tobias Bergler 287, Dwaipayan Bharadwaj 289, Ginevra Biino 290, Hans Bisgaard 11, Eric Boerwinkle 291, Carsten A Böger 287 292 293, Klaus Bønnelykke 11, Dorret I Boomsma 125, Anders D Børglum 105 106 294 295, Judith B Borja 296 297, Claude Bouchard 298, Donald W Bowden 86 299, Ivan Brandslund 300 301, Ben Brumpton 284 302, Julie E Buring 6 74, Mark J Caulfield 4 252, John C Chambers 268 269 303 304, Giriraj R Chandak 46 305, Stephen J Chanock 16, Nish Chaturvedi 258, Yii-Der Ida Chen 108, Zhengming Chen 28 193, Ching-Yu Cheng 63 306, Ingrid E Christophersen 307 308, Marina Ciullo 203 220, John W Cole 309 310, Francis S Collins 49, Richard S Cooper 236, Miguel Cruz 311, Francesco Cucca 227 312, L Adrienne Cupples 81 116, Michael J Cutler 313, Scott M Damrauer 52 314 315, Thomas M Dantoft 147, Gert J de Borst 316, Lisette C P G M de Groot 317, Philip L De Jager 3 318, Dominique P V de Kleijn 316, H Janaka de Silva 149, George V Dedoussis 85, Anneke I den Hollander 172, Shufa Du 274 275, Douglas F Easton 242 319, Petra J M Elders 320, A Heather Eliassen 58 126 321, Patrick T Ellinor 70 322 323, Sölve Elmståhl 324, Jeanette Erdmann 195, Michele K Evans 225, Diane Fatkin 325 326 327, Bjarke Feenstra 102, Mary F Feitosa 75, Luigi Ferrucci 328, Ian Ford 329, Myriam Fornage 261 330, Andre Franke 76, Paul W Franks 158 321 331, Barry I Freedman 332, Paolo Gasparini 62 94, Christian Gieger 100 138, Giorgia Girotto 62 94, Michael E Goddard 333 334, Yvonne M Golightly 10 45 335 336, Clicerio Gonzalez-Villalpando 337, Penny Gordon-Larsen 274 275, Harald Grallert 100 138, Struan F A Grant 50 338 339 340, Niels Grarup 41, Lyn Griffiths 161, Vilmundur Gudnason 232 341, Christopher Haiman 342, Hakon Hakonarson 50 338 343 344, Torben Hansen 41, Catharina A Hartman 215, Andrew T Hattersley 345, Caroline Hayward 184, Susan R Heckbert 346, Chew-Kiat Heng 347 348, Christian Hengstenberg 349, Alex W Hewitt 350 351 352, Haretsugu Hishigaki 135, Carel B Hoyng 172, Paul L Huang 6 323 353, Wei Huang 354, Steven C Hunt 265 355, Kristian Hveem 284 285, Elina Hyppönen 356 357, William G Iacono 35, Sahoko Ichihara 358, M Arfan Ikram 79, Carmen R Isasi 359, Rebecca D Jackson 360, Marjo-Riitta Jarvelin 254 361 362 363, Zi-Bing Jin 146 364, Karl-Heinz Jöckel 187, Peter K Joshi 154, Pekka Jousilahti 112, J Wouter Jukema 244 365 366, Mika Kähönen 367 368, Yoichiro Kamatani 7 369, Kui Dong Kang 370, Jaakko Kaprio 48, Sharon L R Kardia 47, Fredrik Karpe 217 371, Norihiro Kato 136, Frank Kee 61, Thorsten Kessler 267 372, Amit V Khera 3 189, Chiea Chuen Khor 87, Lambertus A L M Kiemeney 97 373, Bong-Jo Kim 134, Eung Kweon Kim 374 375, Hyung-Lae Kim 376, Paulus Kirchhof 377 378 379 380, Mika Kivimaki 381, Woon-Puay Koh 382, Heikki A Koistinen 112 383 384, Genovefa D Kolovou 385, Jaspal S Kooner 268 304 386 387, Charles Kooperberg 110, Anna Köttgen 259, Peter Kovacs 388, Adriaan Kraaijeveld 249, Peter Kraft 126, Ronald M Krauss 241, Meena Kumari 389, Zoltan Kutalik 32 33, Markku Laakso 390, Leslie A Lange 391, Claudia Langenberg 173 392, Lenore J Launer 225, Loic Le Marchand 393, Hyejin Lee 394, Nanette R Lee 296, Terho Lehtimäki 176 177, Huaixing Li 133, Liming Li 395 396, Wolfgang Lieb 397, Xu Lin 133 398, Lars Lind 109, Allan Linneberg 147 399, Ching-Ti Liu 81, Jianjun Liu 87, Markus Loeffler 123 124, Barry London 400, Steven A Lubitz 70 322 323, Stephen J Lye 401, David A Mackey 350 352, Reedik Mägi 29, Patrik K E Magnusson 402, Gregory M Marcus 403, Pedro Marques Vidal 404 405, Nicholas G Martin 104, Winfried März 77 406 407, Fumihiko Matsuda 151, Robert W McGarrah 408 409, Matt McGue 35, Amy Jayne McKnight 61, Sarah E Medland 410, Dan Mellström 197 411, Andres Metspalu 29, Braxton D Mitchell 221 222 412, Paul Mitchell 413, Dennis O Mook-Kanamori 231 414, Andrew D Morris 415, Lorelei A Mucci 126, Patricia B Munroe 4 252, Mike A Nalls 163 164 165, Saman Nazarian 416, Amanda E Nelson 45 417, Matt J Neville 217 371, Christopher Newton-Cheh 189 323, Christopher S Nielsen 418 419, Markus M Nöthen 420, Claes Ohlsson 197 421, Albertine J Oldehinkel 215, Lorena Orozco 422, Katja Pahkala 206 207 423, Päivi Pajukanta 40 424, Colin N A Palmer 425, Esteban J Parra 160, Cristian Pattaro 96, Oluf Pedersen 41, Craig E Pennell 218 219, Brenda W J H Penninx 190, Louis Perusse 72 426, Annette Peters 101 138 427, Patricia A Peyser 47, David J Porteous 60, Danielle Posthuma 139, Chris Power 428, Peter P Pramstaller 96, Michael A Province 75, Qibin Qi 359, Jia Qu 364, Daniel J Rader 52 429, Olli T Raitakari 206 207 430, Sarju Ralhan 431, Loukianos S Rallidis 432, Dabeeru C Rao 433, Susan Redline 6 58, Dermot F Reilly 434, Alexander P Reiner 110 435, Sang Youl Rhee 436, Paul M Ridker 6 74, Michiel Rienstra 250, Samuli Ripatti 3 48 437, Marylyn D Ritchie 52, Dan M Roden 438, Frits R Rosendaal 231, Jerome I Rotter 108, Igor Rudan 153, Femke Rutters 439, Charumathi Sabanayagam 63 306, Danish Saleheen 214 440, Veikko Salomaa 112, Nilesh J Samani 53 54, Dharambir K Sanghera 441 442 443 444, Naveed Sattar 445, Börge Schmidt 187, Helena Schmidt 446, Reinhold Schmidt 120, Matthias B Schulze 137 138 447, Heribert Schunkert 448, Laura J Scott 22, Rodney J Scott 449, Peter Sever 387, Eric J Shiroma 225, M Benjamin Shoemaker 450, Xiao-Ou Shu 59, Eleanor M Simonsick 328, Mario Sims 98, Jai Rup Singh 451, Andrew B Singleton 163, Moritz F Sinner 372 452, J Gustav Smith 453 454 455, Harold Snieder 42, Tim D Spector 181, Meir J Stampfer 58 126 321, Klaus J Stark 83, David P Strachan 456, Leen M 't Hart 228 229 230 457, Yasuharu Tabara 151, Hua Tang 458, Jean-Claude Tardif 171 459, Thangavel A Thanaraj 117, Nicholas J Timpson 113 194, Anke Tönjes 388, Angelo Tremblay 72 426, Tiinamaija Tuomi 48 175 460 461, Jaakko Tuomilehto 112 462 463, Maria-Teresa Tusié-Luna 464 465, Andre G Uitterlinden 30, Rob M van Dam 34 466 467, Pim van der Harst 249 250, Nathalie Van der Velde 30 468, Cornelia M van Duijn 28 79, Natasja M van Schoor 469, Veronique Vitart 184, Uwe Völker 240 470, Peter Vollenweider 404 405, Henry Völzke 239 240, Niels H Wacher-Rodarte 471, Mark Walker 472, Ya Xing Wang 146, Nicholas J Wareham 173, Richard M Watanabe 473 474 475, Hugh Watkins 27 103, David R Weir 91, Thomas M Werge 44 399 476, Elisabeth Widen 48, Lynne R Wilkens 393, Gonneke Willemsen 125, Walter C Willett 126 321, James F Wilson 153 184, Tien-Yin Wong 63 306, Jeong-Taek Woo 436, Alan F Wright 184, Jer-Yuarn Wu 65 477, Huichun Xu 221 222, Chittaranjan S Yajnik 478, Mitsuhiro Yokota 479, Jian-Min Yuan 480 481, Eleftheria Zeggini 216 233 482, Babette S Zemel 52 69 340 343, Wei Zheng 59, Xiaofeng Zhu 167, Joseph M Zmuda 481, Alan B Zonderman 225, John-Anker Zwart 256 483; 23andMe Research Team; VA Million Veteran Program; DiscovEHR (DiscovEHR and MyCode Community Health Initiative); eMERGE (Electronic Medical Records and Genomics Network); Lifelines Cohort Study; PRACTICAL Consortium; Understanding Society Scientific Group; Daniel I Chasman 6 74, Yoon Shin Cho 226, Iris M Heid 83, Mark I McCarthy 27 217 484, Maggie C Y Ng 86 485, Christopher J O'Donnell 6 58 486, Fernando Rivadeneira 30, Unnur Thorsteinsdottir 234 341, Yan V Sun 487 488, E Shyong Tai 34 466, Michael Boehnke 22, Panos Deloukas 4 489, Anne E Justice 10 490, Cecilia M Lindgren 3 24 27, Ruth J F Loos 41 210 211 491, Karen L Mohlke 20, Kari E North 10, Kari Stefansson 234 341, Robin G Walters 28 193, Thomas W Winkler 83, Kristin L Young 10, Po-Ru Loh 3 18 19, Jian Yang 5 492 493, Tõnu Esko 29, Themistocles L Assimes 237 238, Adam Auton 13, Goncalo R Abecasis 22, Cristen J Willer 17 271 494, Adam E Locke 495, Sonja I Berndt 16, Guillaume Lettre 171 459, Timothy M Frayling 25, Yukinori Okada 496 497 498 499 500 501, Andrew R Wood 502, Peter M Visscher 503, Joel N Hirschhorn 504 505 506

Affiliations


Abstract

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.

Conflict of interest statement

Y. Jiang is employed by and holds stock or stock options in 23andMe. T.S.A. is a shareholder in Zealand Pharma A/S and Novo Nordisk A/S. G.C.-P. is an employee of 23andMe. M.E.K. is employed by SYNLAB Holding Deutschland GmbH. H.L.L. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). As of January 2020, A. Mahajan is an employee of Genentech, and a holder of Roche stock. I.N. is an employee and stock owner of Gilead Sciences; this work was conducted before employment by Gilead Sciences. J. Shi is employed by and holds stock or stock options in 23andMe. C. Sidore is an employee of Regeneron. V. Steinthorsdottir is employed by deCODE Genetics/Amgen. Since completing the work contributed to this paper, D.J.T. has left the University of Cambridge and is now employed by Genomics PLC. G.T. is employed by deCODE Genetics/Amgen. S.W.v.d.L. has received Roche funding for unrelated work. H.B. has consultant arrangements with Chiesi Pharmaceuticals and Boehringer Ingelheim. M. J. Caulfield is Chief Scientist for Genomics England, a UK Government company. M. J. Cutler has served on the advisory board or consulted for Biosense Webster, Janssen Scientific Affairs and Johnson & Johnson. S.M.D. receives research support from RenalytixAI and personal consulting fees from Calico Labs, outside the scope of the current research. P.T.E. receives sponsored research support from Bayer AG and IBM Health, and he has served on advisory boards or consulted for Bayer AG, Quest Diagnostics, MyoKardia and Novartis. P. Kirchhof has received support from several drug and device companies active in atrial fibrillation, and has received honoraria from several such companies in the past, but not in the last three years. P. Kirchhof is listed as inventor on two patents held by University of Birmingham (Atrial Fibrillation Therapy WO 2015140571, Markers for Atrial Fibrillation WO 2016012783). G.D.K. has given talks, attended conferences and participated in trials sponsored by Amgen, MSD, Lilly, Vianex and Sanofi, and has also accepted travel support to conferences from Amgen, Sanofi, MSD and Elpen. S. A. Lubitz previously received sponsored research support from Bristol Myers Squibb, Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit and IBM, and has consulted for Bristol Myers Squibb, Pfizer, Bayer AG and Blackstone Life Sciences. S. A. Lubitz is a current employee of Novartis Institute of Biomedical Research. W.M. reports grants and personal fees from AMGEN, BASF, Sanofi, Siemens Diagnostics, Aegerion Pharmaceuticals, Astrazeneca, Danone Research, Numares, Pfizer and Hoffmann LaRoche; personal fees from MSD and Alexion; and grants from Abbott Diagnostics, all outside the submitted work. W.M. is employed with Synlab Holding Deutschland. M.A.N. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). S.N. is a scientific advisor to Circle software, ADAS software, CardioSolv and ImriCor and receives grant support from Biosense Webster, ADAS software and ImriCor. H. Schunkert has received honoraria for consulting from AstraZeneca, MSD, Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has further received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Daiichi, Medtronic, Novartis, Sanofi and Servier. P.S. has received research awards from Pfizer. The members of the 23andMe Research Team are employed by and hold stock or stock options in 23andMe. The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M. I. McCarthy has served on advisory panels for Pfizer, Novo Nordisk and Zoe Global, and has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly and research funding from Abbvie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda. As of June 2019, M. I. McCarthy is an employee of Genentech, and a holder of Roche stock. C.J.O. is a current employee of Novartis Institute of Biomedical Research. U.T. is employed by deCODE Genetics (Amgen). K.S. is employed by deCODE Genetics (Amgen). A. Auton is employed by and holds stock or stock options in 23andMe. G.R.A. is an employee of Regeneron Pharmaceuticals and owns stock and stock options for Regeneron Pharmaceuticals. C.J.W.'s spouse is employed by Regeneron. A.E.L. is currently employed by and holds stock in Regeneron Pharmaceuticals. J.N.H. holds equity in Camp4 Therapeutics. The remaining authors declare no competing interests.
 


Figures


Similar articles

Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults.

Chen F, He J, Zhang J, Chen GK, Thomas V, Ambrosone CB, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Cai Q, Carpten J, Casey G, Chanock SJ, Cheng I, Chu L, Deming SL, Driver WR, Goodman P, Hayes RB, Hennis AJ, Hsing AW, Hu JJ, Ingles SA, John EM, Kittles RA, Kolb S, Leske MC, Millikan RC, Monroe KR, Murphy A, Nemesure B, Neslund-Dudas C, Nyante S, Ostrander EA, Press MF, Rodriguez-Gil JL, Rybicki BA, Schumacher F, Stanford JL, Signorello LB, Strom SS, Stevens V, Van Den Berg D, Wang Z, Witte JS, Wu SY, Yamamura Y, Zheng W, Ziegler RG, Stram AH, Kolonel LN, Le Marchand L, Henderson BE, Haiman CA, Stram DO.PLoS One. 2015 Jun 30;10(6):e0131106. doi: 10.1371/journal.pone.0131106. eCollection 2015.PMID: 26125186 Free PMC article.

Transferability and fine-mapping of genome-wide associated loci for adult height across human populations.

Shriner D, Adeyemo A, Gerry NP, Herbert A, Chen G, Doumatey A, Huang H, Zhou J, Christman MF, Rotimi CN.PLoS One. 2009 Dec 22;4(12):e8398. doi: 10.1371/journal.pone.0008398.PMID: 20027299 Free PMC article.

Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping.

Maniatis N, Collins A, Morton NE.Genet Epidemiol. 2007 Apr;31(3):179-88. doi: 10.1002/gepi.20199.PMID: 17285621

HapMap and mapping genes for cardiovascular disease.

Musunuru K, Kathiresan S.Circ Cardiovasc Genet. 2008 Oct;1(1):66-71. doi: 10.1161/CIRCGENETICS.108.813675.PMID: 20031544 Free PMC article. Review.

Estimation and partition of heritability in human populations using whole-genome analysis methods.

Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM.Annu Rev Genet. 2013;47:75-95. doi: 10.1146/annurev-genet-111212-133258. Epub 2013 Aug 22.PMID: 23988118 Free PMC article. Review.


Cited by

Advancing artificial intelligence to help feed the world.

Hayes BJ, Chen C, Powell O, Dinglasan E, Villiers K, Kemper KE, Hickey LT.Nat Biotechnol. 2023 Jul 31. doi: 10.1038/s41587-023-01898-2. Online ahead of print.PMID: 37524959 No abstract available.

Maternal Age at Menarche Gene Polymorphisms Are Associated with Offspring Birth Weight.

Reshetnikova Y, Churnosova M, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Eliseeva N, Aristova I, Polonikov A, Reshetnikov E, Churnosov M.Life (Basel). 2023 Jul 7;13(7):1525. doi: 10.3390/life13071525.PMID: 37511900 Free PMC article.

Maturity-Associated Polygenic Profiles of under 12-16-Compared to under 17-23-Year-Old Male English Academy Football Players.

McAuley ABT, Varley I, Herbert AJ, Suraci B, Baker J, Johnston K, Kelly AL.Genes (Basel). 2023 Jul 12;14(7):1431. doi: 10.3390/genes14071431.PMID: 37510335 Free PMC article.

Maternal aging increases offspring adult body size via transmission of donut-shaped mitochondria.

Zhang R, Fang J, Qi T, Zhu S, Yao L, Fang G, Li Y, Zang X, Xu W, Hao W, Liu S, Yang D, Chen D, Yang J, Ma X, Wu L.Cell Res. 2023 Jul 27. doi: 10.1038/s41422-023-00854-8. Online ahead of print.PMID: 37500768

Characterizing the polygenic architecture of complex traits in populations of East Asian and European descent.

De Lillo A, Wendt FR, Pathak GA, Polimanti R.Hum Genomics. 2023 Jul 20;17(1):67. doi: 10.1186/s40246-023-00514-3.PMID: 37475089 Free PMC article.


KMEL References


References

  1.  
    1. Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. - PMC - PubMed
  2.  
    1. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58. - PMC - PubMed
  3.  
    1. Yengo L, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018;27:3641–3649. - PMC - PubMed
  4.  
    1. Flint J, Ideker T. The great hairball gambit. PLoS Genet. 2019;15:e1008519. - PMC - PubMed
  5.  
    1. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. - PMC - PubMed
  6.  
    1. Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012;44:369–375. - PMC - PubMed
  7.  
    1. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. - PMC - PubMed
  8.  
    1. Luo Y, et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 2021;30:1521–1534. - PMC - PubMed
  9.  
    1. Berg JJ, et al. Reduced signal for polygenic adaptation of height in UK Biobank. eLife. 2019;8:e39725. - PMC - PubMed
  10.  
    1. Sohail M, et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife. 2019;8:e39702. - PMC - PubMed
  11.  
    1. Palmer C, Pe’er I. Statistical correction of the Winner’s Curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 2017;13:e1006916. - PMC - PubMed
  12.  
    1. Zhong H, Prentice RL. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics. 2008;9:621–634. - PMC - PubMed
  13.  
    1. Galinsky KJ, et al. Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol. 2019;43:180–188. - PMC - PubMed
  14.  
    1. Guo J, et al. Quantifying genetic heterogeneity between continental populations for human height and body mass index. Sci. Rep. 2021;11:5240. - PMC - PubMed
  15.  
    1. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e72. - PMC - PubMed
  16.  
    1. Bulik-Sullivan BK, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291–295. - PMC - PubMed
  17.  
    1. Turley P, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 2018;50:229–237. - PMC - PubMed
  18.  
    1. Lui JC, et al. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum. Mol. Genet. 2012;21:5193–5201. - PMC - PubMed
  19.  
    1. Lango Allen H, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–838. - PMC - PubMed
  20.  
    1. Wood AR, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014;46:1173–1186. - PMC - PubMed
  21.  
    1. Beyter D, et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 2021;53:779–786. - PubMed
  22.  
    1. Mukamel RE, et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science. 2021;373:1499–1505. - PMC - PubMed
  23.  
    1. Hu G, Codina M, Fisher S. Multiple enhancers associated with ACAN suggest highly redundant transcriptional regulation in cartilage. Matrix Biol. 2012;31:328–337. - PMC - PubMed
  24.  
    1. Marouli E, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542:186–190. - PMC - PubMed
  25.  
    1. Wu Y, Zheng Z, Visscher PM, Yang J. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biol. 2017;18:86. - PMC - PubMed
  26.  
    1. Sun H, Ding J, Piednoël M, Schneeberger K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34:550–557. - PubMed
  27.  
    1. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236–1241. - PMC - PubMed
  28.  
    1. Lloyd-Jones LR, et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 2019;10:5086. - PMC - PubMed
  29.  
    1. Graham SE, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021;600:675–679. - PMC - PubMed
  30.  
    1. Martin AR, et al. Current clinical use of polygenic scores will risk exacerbating health disparities. Nat. Genet. 2019;51:584–591. - PMC - PubMed
  31.  
    1. Lello L, et al. Accurate genomic prediction of human height. Genetics. 2018;210:477–497. - PMC - PubMed
  32.  
    1. Privé F, et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 2022;109:12–23. - PMC - PubMed
  33.  
    1. Patxot M, et al. Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits. Nat. Commun. 2021;12:6972. - PMC - PubMed
  34.  
    1. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 2019;10:1776. - PMC - PubMed
  35.  
    1. Márquez-Luna C, et al. Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets. Nat. Commun. 2021;12:6052. - PMC - PubMed
  36.  
    1. Duncan L, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 2019;10:3328. - PMC - PubMed
  37.  
    1. Marnetto D, et al. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nat. Commun. 2020;11:1628. - PMC - PubMed
  38.  
    1. Wang Y, et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 2020;11:3865. - PMC - PubMed
  39.  
    1. Finucane HK, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015;47:1228–1235. - PMC - PubMed
  40.  
    1. Gazal S, et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 2017;49:1421–1427. - PMC - PubMed
  41.  
    1. Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016;48:481–487. - PubMed
  42.  
    1. Pers TH, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 2015;6:5890. - PMC - PubMed
  43.  
    1. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015;11:e1004219. - PMC - PubMed
  44.  
    1. Visscher PM, et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 2017;101:5–22. - PMC - PubMed
  45.  
    1. Backman JD, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599:628–634. - PMC - PubMed
  46.  
    1. Das S, et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. - PMC - PubMed
  47.  
    1. Si Y, Vanderwerff B, Zöllner S. Why are rare variants hard to impute? Coalescent models reveal theoretical limits in existing algorithms. Genetics. 2021;217:iyab011. - PMC - PubMed
  48.  
    1. Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature607, 732–740 (2022). - PMC - PubMed
  49.  
    1. Taliun D, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590:290–299. - PMC - PubMed
  50.  
    1. Wainschtein P, et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 2022;54:263–273. - PMC - PubMed
  51.  
    1. Yang J, et al. Genome-partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 2011;43:519–525. - PMC - PubMed
  52.  
    1. O’Connor LJ. The distribution of common-variant effect sizes. Nat. Genet. 2021;53:1243–1249. - PubMed
  53.  
    1. Winkler TW, et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 2014;9:1192–1212. - PMC - PubMed
  54.  
    1. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32:1423–1426. - PMC - PubMed
  55.  
    1. Feng S, Liu D, Zhan X, Wing MK, Abecasis GR. RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics. 2014;30:2828–2829. - PMC - PubMed
  56.  
    1. Musunuru K, et al. Candidate gene association resource (CARe): design, methods, and proof of concept. Circ. Cardiovasc. Genet. 2010;3:267–275. - PMC - PubMed
  57.  
    1. Wright S. The genetical structure of populations. Ann. Eugen. 1951;15:323–354. - PubMed
  58.  
    1. Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132:583–589. - PMC - PubMed
  59.  
    1. Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare variants. Genome Res. 2013;23:1514–1521. - PMC - PubMed
  60.  
    1. Qi T, et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 2018;9:2282. - PMC - PubMed
  61.  
    1. Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics. 2020;36:5424–5431. - PMC - PubMed
  62.  
    1. Vilhjálmsson BJ, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 2015;97:576–592. - PMC - PubMed
  63.  
    1. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203. - PMC - PubMed
  64.  
    1. Pasaniuc B, et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics. 2014;30:2906–2914. - PMC - PubMed
  65.  
    1. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. - PMC - PubMed
  66.  
    1. Wu Y, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 2018;9:918. - PMC - PubMed