The Effect of Cross-linking Efficiency of Drug-Loaded Novel Freeze Gelated Chitosan Templates for Periodontal Tissue Regeneration

Affiliations


Abstract

Innovative strategies for periodontal regeneration have been the focus of research clusters across the globe for decades. In order to overcome the drawbacks of currently available options, investigators have suggested a novel concept of functionally graded membrane (FGM) templates with different structural and morphological gradients. Chitosan (CH) has been used in the past for similar purpose. However, the composite formulation of composite and tetracycline when cross-linked with glutaraldehyde have received little attention. Therefore, the purpose of the study was to investigate the drug loading and release characteristics of novel freeze gelated chitosan templates at different percentages of glutaraldehyde. These were cross-linked with 0.1 and 1% glutaraldehyde and loaded with doxycycline hyclate. The electron micrographs depicted porous morphology of neat templates. After cross-linking, these templates showed compressed ultrastructures. Computerized tomography analysis showed that the templates had 88 to 92% porosity with average pore diameter decreased from 78 to 44.9 μm with increasing concentration. Fourier transform infrared spectroscopy showed alterations in the glycosidic segment of chitosan fingerprint region which after drug loading showed a dominant doxycycline spectral composite profile. Interestingly, swelling profile was not affected by cross-linking either at 0.1 and 1% glutaraldehyde and template showed a swelling ratio of 80%, which gained equilibrium after 15 min. The drug release pattern also showed a 40 μg/mL of release after 24 h. These doxycycline-loaded templates show their tendency to be used in a functionally graded membrane facing the defect site.

Keywords: chitosan; doxycycline hyclate; functionally graded; glutaraldehyde; periodontitis.


Figures


Similar articles

Freeze gelated porous membranes for periodontal tissue regeneration.

Qasim SB, Delaine-Smith RM, Fey T, Rawlinson A, Rehman IU.Acta Biomater. 2015 Sep;23:317-328. doi: 10.1016/j.actbio.2015.05.001. Epub 2015 May 9.PMID: 25968357

Biocompatibility testing of chitosan hydrogels.

Cheburu CN, Stoica B, Neamţu A, Vasile C.Rev Med Chir Soc Med Nat Iasi. 2011 Jul-Sep;115(3):864-70.PMID: 22046800

Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration.

Varoni EM, Vijayakumar S, Canciani E, Cochis A, De Nardo L, Lodi G, Rimondini L, Cerruti M.J Dent Res. 2018 Mar;97(3):303-311. doi: 10.1177/0022034517736255. Epub 2017 Oct 18.PMID: 29045803

Characterization of novel calcium hydroxide-mediated highly porous chitosan-calcium scaffolds for potential application in dentin tissue engineering.

Soares DG, Bordini EAF, Cassiano FB, Bronze-Uhle ES, Pacheco LE, Zabeo G, Hebling J, Lisboa-Filho PN, Bottino MC, de Souza Costa CA.J Biomed Mater Res B Appl Biomater. 2020 Aug;108(6):2546-2559. doi: 10.1002/jbm.b.34586. Epub 2020 Feb 15.PMID: 32061059

Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration.

Atia GAN, Shalaby HK, Zehravi M, Ghobashy MM, Attia HAN, Ahmad Z, Khan FS, Dey A, Mukerjee N, Alexiou A, Rahman MH, Klepacka J, Najda A.Polymers (Basel). 2022 Aug 5;14(15):3192. doi: 10.3390/polym14153192.PMID: 35956708 Free PMC article. Review.


Cited by

Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy.

Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, Isola G.Pharmaceutics. 2023 Apr 21;15(4):1312. doi: 10.3390/pharmaceutics15041312.PMID: 37111796 Free PMC article. Review.

Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review.

Toledano-Osorio M, Vallecillo C, Vallecillo-Rivas M, Manzano-Moreno FJ, Osorio R.Polymers (Basel). 2022 Feb 21;14(4):840. doi: 10.3390/polym14040840.PMID: 35215754 Free PMC article. Review.

Periodontitis and Systemic Disorder-An Overview of Relation and Novel Treatment Modalities.

Jain P, Hassan N, Khatoon K, Mirza MA, Naseef PP, Kuruniyan MS, Iqbal Z.Pharmaceutics. 2021 Jul 30;13(8):1175. doi: 10.3390/pharmaceutics13081175.PMID: 34452136 Free PMC article. Review.

Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis.

Baranov N, Popa M, Atanase LI, Ichim DL.Molecules. 2021 May 6;26(9):2735. doi: 10.3390/molecules26092735.PMID: 34066568 Free PMC article. Review.


KMEL References


References

  1.  
    1. Carlo Reis EC, Borges APB, Araújo MVF, Mendes VC, Guan L, Davies JE. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 2011;32:9244–9253. doi: 10.1016/j.biomaterials.2011.08.040. - DOI - PubMed
  2.  
    1. Xu C, Lei C, Meng L, Wang C, Song Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res - Part B Appl Biomater. 2012;100B:1435–1443. doi: 10.1002/jbm.b.32662. - DOI - PubMed
  3.  
    1. Schwartzmann M. Use of collagen membranes for guided bone regeneration: a review. Implant Dent. 2000;9:63–66. doi: 10.1097/00008505-200009010-00011. - DOI - PubMed
  4.  
    1. Stavropoulos A, Karring T. Guided tissue regeneration combined with a deproteinized bovine bone mineral (Bio-Oss ®) in the treatment of intrabony periodontal defects: 6-year results from a randomized-controlled clinical trial. J Clin Periodontol. 2010;37:200–210. doi: 10.1111/j.1600-051X.2009.01520.x. - DOI - PubMed
  5.  
    1. Bashutski JD, Wang HL. Periodontal and endodontic regeneration. J Endod. 2009;35:321–328. doi: 10.1016/j.joen.2008.11.023. - DOI - PubMed
  6.  
    1. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu T-MG, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–721. doi: 10.1016/j.dental.2012.04.022. - DOI - PubMed
  7.  
    1. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, Bressiani AHA. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med. 2013;9:E116–E123. doi: 10.1002/term.1712. - DOI - PubMed
  8.  
    1. Marco B, Eliseu M, Maria TA, Divya P. Tetracycline-incorporated nanofibrous coating on titanium to prevent early implant infection and enhance cell response. Front Bioeng Biotechnol. 2016;4. 10.3389/conf.FBIOE.2016.01.00761.
  9.  
    1. Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur RI. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater. 2017;33:71–83. doi: 10.1016/j.dental.2016.10.003. - DOI - PubMed
  10.  
    1. Qasim SB, Delaine-Smith RM, Rawlinson A, Ur RI. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater. 2015;23:317–328. doi: 10.1016/j.actbio.2015.05.001. - DOI - PubMed
  11.  
    1. Azevedo AS, Sá MJC, Fook MVL, Neto PIN, Sousa OB, Azevedo SS, Teixeira MW, Costa FS, Araújo AL. Use of chitosan and β-tricalcium phosphate, alone and in combination, for bone healing in rabbits. J Mater Sci Mater Med. 2014;25:481–486. doi: 10.1007/s10856-013-5091-2. - DOI - PMC - PubMed
  12.  
    1. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62:378–386. doi: 10.1002/jbm.10312. - DOI - PubMed
  13.  
    1. Sadaf N, Anoop B, Dakshina B, Shweta B. Evaluation of efficacy of tetracycline fibers in conjunction with scaling and root planing in patients with chronic periodontitis. J Indian Soc Periodontol. 2012;16:392–397. doi: 10.4103/0972-124X.100918. - DOI - PMC - PubMed
  14.  
    1. Nadig PS, Shah MA. Tetracycline as local drug delivery in treatment of chronic periodontitis: a systematic review and meta-analysis. J Indian Soc Periodontol. 2016;20:576–583. doi: 10.4103/jisp.jisp_97_17. - DOI - PMC - PubMed
  15.  
    1. Teng SH, Lee EJ, Wang P, Jun SH, Han CM, Kim HE. Functionally gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. J Biomed Mater Res - Part B Appl Biomater. 2009;90(B):275–282. doi: 10.1002/jbm.b.31283. - DOI - PubMed
  16.  
    1. Jin RM, Sultana N, Baba S, Hamdan S, Ismail AF. Porous PCL/chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation. J Nanomater. 2015;2015:1–8. doi: 10.1155/2015/357372. - DOI
  17.  
    1. Monteiro OA, Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol. 1999;26:119–128. doi: 10.1016/S0141-8130(99)00068-9. - DOI - PubMed
  18.  
    1. Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B. 2012;2:439–449. doi: 10.1016/j.apsb.2012.07.004. - DOI
  19.  
    1. Chen M-C, Mi F-L, Liao Z-X, Sung H-W. Chitosan: its applications in drug-eluting devices. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Chitosan Biomater. I, vol. 243, Springer Berlin Heidelberg; 2011, p. 185–230. 10.1007/12_2011_116.
  20.  
    1. Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon. 2019;5:e01684. doi: 10.1016/j.heliyon.2019.e01684. - DOI - PMC - PubMed
  21.  
    1. Mi F-LL, Kuan C-YY, Shyu S-SS, Lee S-TT, Chang S-FF. Study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr Polym. 2000;41:389–396. doi: 10.1016/S0144-8617(99)00104-6. - DOI
  22.  
    1. Jia LN, Zhang X, Xu HY, Hua F, Hu XG, Xie Q, Wang W, Jia J. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications. J Nanomater. 2016;2016:1–10. doi: 10.1155/2016/6507459. - DOI
  23.  
    1. Findlay JWA, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007;9:E260–E267. doi: 10.1208/aapsj0902029. - DOI - PMC - PubMed
  24.  
    1. Chandrasekaran AR, Jia CY, Theng CS, Muniandy T, Muralidharan S, Dhanaraj SA. In vitro studies and evaluation of metformin marketed tablets-Malaysia. J Appl Pharm Sci. 2011;1:214–217.
  25.  
    1. Maganti N, Venkat Surya PKC, Thein-Han WW, Pesacreta TC, Misra RDK. Structure-process-property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: biological, physico-chemical, and mechanical functions. Adv Eng Mater. 2011;13:B108–B122. doi: 10.1002/adem.201080094. - DOI
  26.  
    1. Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C. 2009;29:29–35. doi: 10.1016/j.msec.2008.05.008. - DOI
  27.  
    1. Thein-Han WW, Misra RDK. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–1197. doi: 10.1016/j.actbio.2008.11.025. - DOI - PubMed
  28.  
    1. Kumar TM. Spectroscopic characterization of chloramphenicol and tetracycline: an impact of biofield treatment. Pharm Anal Acta. 2015;6:1–5. doi: 10.4172/2153-2435.1000395. - DOI
  29.  
    1. Junejo Y, Safdar M. Highly effective heterogeneous doxycycline stabilized silver nanocatalyst for the degradation of ibuprofen and paracetamol drugs. Arab J Chem. 2019;12:2823–2832. doi: 10.1016/j.arabjc.2015.06.014. - DOI
  30.  
    1. Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011;7:216–224. doi: 10.1016/j.actbio.2010.08.019. - DOI - PubMed
  31.  
    1. Bin QSS, Zafar MS, Niazi FH, Alshahwan M, HA KS, Daood U. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update. J Biomater Sci Polym Ed. 2020:1–20. 10.1080/09205063.2020.1744289.
  32.  
    1. Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig. 2014;18:2151–2158. doi: 10.1007/s00784-014-1201-x. - DOI - PMC - PubMed
  33.  
    1. Cai SJ, Li CW, Weihs D, Wang GJ. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater. 2017;18:987–996. doi: 10.1080/14686996.2017.1406287. - DOI - PMC - PubMed
  34.  
    1. Ikeda T, Ikeda K, Yamamoto K, Ishizaki H, Yoshizawa Y, Yanagiguchi K, Yamada S, Hayashi Y. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res Int. 2014;2014:1–8. doi: 10.1155/2014/786892. - DOI - PMC - PubMed
  35.  
    1. Dinu MV, Přádný M, Drǎgan ES, Michálek J. Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym. 2013;94:170–178. doi: 10.1016/j.carbpol.2013.01.084. - DOI - PubMed
  36.  
    1. Jana S, Florczyk SJ, Leung M, Zhang M. High-strength pristine porous chitosan scaffolds for tissue engineering. J Mater Chem. 2012;22:6291–6299. doi: 10.1039/c2jm16676c. - DOI
  37.  
    1. Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. doi: 10.1016/S0142-9612(99)00011-3. - DOI - PubMed
  38.  
    1. Ahmed S, Sheraz M, Rehman I. Studies on tolfenamic acid–chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight. AAPS PharmSciTech. 2013;14:870–879. doi: 10.1208/s12249-013-9974-9. - DOI - PMC - PubMed
  39.  
    1. Barbosa MA, Pêgo AP, Amaral IF. 2.213 - Chitosan. In: Editor-in-Chief: Paul D, editor. Compr. Biomater., Oxford: Elsevier; 2011, p. 221–37. 10.1016/B978-0-08-055294-1.00072-6.
  40.  
    1. Yuan NY, Lin YA, Ho MH, Wang DM, Lai JY, Hsieh HJ. Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr Polym. 2009;78:349–356. doi: 10.1016/j.carbpol.2009.04.021. - DOI
  41.  
    1. Azab AK, Orkin B, Doviner V, Nissan A, Klein M, Srebnik M, et al. Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release. 2006;111:281–289. doi: 10.1016/j.jconrel.2005.12.014. - DOI - PubMed
  42.  
    1. Phaechamud T, Charoenteeraboon J. Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS PharmSciTech. 2008;9:829–835. doi: 10.1208/s12249-008-9117-x. - DOI - PMC - PubMed
  43.  
    1. Neto CGT, Dantas TNC, Fonseca JLC, Pereira MR. Permeability studies in chitosan membranes. Effects of crosslinking and poly(ethylene oxide) addition. Carbohydr Res. 2005;340:2630–2636. doi: 10.1016/j.carres.2005.09.011. - DOI - PubMed
  44.  
    1. Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2009;20:1495–1503. doi: 10.1007/s10856-009-3707-3. - DOI - PubMed
  45.  
    1. Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv J Deliv Target Ther Agents. 2005;12:41–57. doi: 10.1080/10717540590889781. - DOI - PubMed
  46.  
    1. Poon L, Wilson LD, Headley JV. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydr Polym. 2014;109:92–101. doi: 10.1016/j.carbpol.2014.02.086. - DOI - PubMed
  47.  
    1. Szekalska M, Sosnowska K, Zakrzeska A, Kasacka I, Lewandowska A, Winnicka K. The influence of chitosan cross-linking on the properties of alginate microparticles with metformin hydrochloride - in vitro and in vivo evaluation. Molecules. 2017;22. 10.3390/molecules22010182. - PMC - PubMed
  48.  
    1. Roberts G, Taylor K. Chitosan gels. III: the formation of gels by reaction of chitosan with glutaraldehyde. Die Makromol Chemie. 1989;190:951–960. doi: 10.1002/macp.1989.021900504. - DOI
  49.  
    1. Hamed R, AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 2018;44:1488–1497. doi: 10.1080/03639045.2018.1464021. - DOI - PubMed
  50.  
    1. Mirzaei BE, Ramazani A, Shafiee M, Danaei M. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. 2013;62:605–611. doi: 10.1080/00914037.2013.769165. - DOI
  51.  
    1. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, Clauss F, Fioretti F, Huck O, Benkirane-Jessel N, Hua G. Application of chitosan in bone and dental engineering. Molecules. 2019;24:3009. doi: 10.3390/molecules24163009. - DOI - PMC - PubMed