Salivary N1-Methyl-2-Pyridone-5-Carboxamide, a Biomarker for Uranium Uptake, in Kuwaiti Children Exhibiting Exceptional Weight Gain

Affiliations

06 February 2019

-

doi: 0.3389/fendo.2019.00382


Abstract

In a longitudinal study of 6,158 Kuwaiti children, we selected 94 for salivary metabolomic analysis who were neither obese (by waist circumference) nor metabolic syndrome (MetS) positive (<3 diagnostic features). Half (43) remained healthy for 2 years. The other half (51) were selected because they became obese and MetS positive 2 years later. In the half becoming obese, metabolomic analysis revealed that the level of salivary N1-Methyl-2-pyridone-5-carboxamide (2PY) had the highest positive association with obesity (p = 0.0003, AUC = 0.72) of 441 salivary biochemicals detected. 2PY is a recognized uremic toxin. Also, 2PY has been identified as a biomarker for uranium uptake. Considering that a relatively recent military conflict with documented uranium contamination of the area suggests that this weight gain could be a toxicological effect of long-time, low-level uranium ingestion. Comparison of salivary 2PY in samples from the USA and Kuwait found that only Kuwait samples were significantly related to obesity. Also, the geographic distribution of both reported soil radioactivity from 238U and measured salivary 2PY was highest in the area where military activity was highest. The prevalence pattern of adult diabetes in Kuwait suggests that a transient diabetogenic factor has been introduced into the Kuwaiti population. Although we did not measure uranium in our study, the presence of a salivary biomarker for uranium consumption suggests potential toxicity related to obesity in children.

Keywords: 2PY; N1-Methyl-2-pyridone-5-carboxamide; adolescent obesity; kuwaiti children; metabolic syndrome; nicotinate metabolism; uranium toxicity.


Figures


Similar articles

N-methyl-2-pyridone-5-carboxamide (2PY)-Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin.

Lenglet A, Liabeuf S, Bodeau S, Louvet L, Mary A, Boullier A, Lemaire-Hurtel AS, Jonet A, Sonnet P, Kamel S, Massy ZA.Toxins (Basel). 2016 Nov 15;8(11):339. doi: 10.3390/toxins8110339.PMID: 27854278 Free PMC article. Review.

Urinary Excretion of N1-Methylnicotinamide and N1-Methyl-2-Pyridone-5-Carboxamide and Mortality in Kidney Transplant Recipients.

Deen CPJ, Veen AV, Gomes-Neto AW, Geleijnse JM, Berg KJBD, Heiner-Fokkema MR, Kema IP, Bakker SJL.Nutrients. 2020 Jul 10;12(7):2059. doi: 10.3390/nu12072059.PMID: 32664445 Free PMC article.

Urinary Excretion of N1-methyl-2-pyridone-5-carboxamide and N1-methylnicotinamide in Renal Transplant Recipients and Donors.

Deen CPJ, van der Veen A, Gomes-Neto AW, Geleijnse JM, Borgonjen-van den Berg KJ, Heiner-Fokkema MR, Kema IP, Bakker SJL.J Clin Med. 2020 Feb 6;9(2):437. doi: 10.3390/jcm9020437.PMID: 32041099 Free PMC article.

N-methyl-2-pyridone-5-carboxamide: a novel uremic toxin?

Rutkowski B, Slominska E, Szolkiewicz M, Smolenski RT, Striley C, Rutkowski P, Swierczynski J.Kidney Int Suppl. 2003 May;(84):S19-21. doi: 10.1046/j.1523-1755.63.s84.36.x.PMID: 12694300 Review.

The age-related increase in N-methyl-2-pyridone-5-carboxamide (NAD catabolite) in human plasma.

Slominska EM, Rutkowski P, Smolenski RT, Szutowicz A, Rutkowski B, Swierczynski J.Mol Cell Biochem. 2004 Dec;267(1-2):25-30. doi: 10.1023/b:mcbi.0000049359.66669.29.PMID: 15663182


Cited by

Use of omics analysis for low-dose radiotoxicology and health risk assessment: the case of uranium.

Grison S, Souidi M.Environ Epigenet. 2022 Nov 2;8(1):dvac025. doi: 10.1093/eep/dvac025. eCollection 2022.PMID: 36518874 Free PMC article. Review.

Multigenerational Exposure to Uranium Changes Sperm Metabolome in Rats.

Grison S, Legendre A, Svilar L, Elie C, Kereselidze D, Gloaguen C, Lestaevel P, Martin JC, Souidi M.Int J Mol Sci. 2022 Jul 28;23(15):8349. doi: 10.3390/ijms23158349.PMID: 35955476 Free PMC article.

Salivary Biomarkers as Predictors of Obesity and Intermediate Hyperglycemia in Adolescents.

Alqaderi H, Hegazi F, Al-Mulla F, Chiu CJ, Kantarci A, Al-Ozairi E, Abu-Farha M, Bin-Hasan S, Alsumait A, Abubaker J, Devarajan S, Goodson JM, Hasturk H, Tavares M.Front Public Health. 2022 Jun 10;10:800373. doi: 10.3389/fpubh.2022.800373. eCollection 2022.PMID: 35757631 Free PMC article.

Early Metabolomic Markers of Acute Low-Dose Exposure to Uranium in Rats.

Grison S, Habchi B, Gloaguen C, Kereselidze D, Elie C, Martin JC, Souidi M.Metabolites. 2022 May 7;12(5):421. doi: 10.3390/metabo12050421.PMID: 35629925 Free PMC article.

The Associations between Blood and Urinary Concentrations of Metal Metabolites, Obesity, Hypertension, Type 2 Diabetes, and Dyslipidemia among US Adults: NHANES 1999-2016.

Swayze S, Rotondi M, Kuk JL.J Environ Public Health. 2021 Oct 25;2021:2358060. doi: 10.1155/2021/2358060. eCollection 2021.PMID: 34733334 Free PMC article.


KMEL References


References

  1.  
    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. . Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013:a systematic analysis for the Global Burden of Disease Study 2013. Lancet. (2014) 384:766–81. 10.1016/S0140-6736(14)60460-8 - DOI - PMC - PubMed
  2.  
    1. El-Reshaid K, Al-Owaish R, Diab A. Hypertension in kuwait, the past, present and future. Saudi J Kidney Dis Transpl. (1999) 10:357–64. - PubMed
  3.  
    1. IDF . Diabetes Atlas. (2011). Available online at: www.idf.org/diabetesatlas (accessed March 19, 2019).
  4.  
    1. Clarke RH, Danesi PR, Kutkov VA, Winkler BC, Wilkins BT. Radiological conditions in areas of Kuwait with residues of depleted uranium. In: Clarke RH, editor. IOAEA Safety Standards Series. International Atomic Energy Agency: Vienna; (2003). p. 1–73.
  5.  
    1. Menke A, Guallar E, Cowie CC. Metals in urine and diabetes in U.S. Adults. Diabetes. (2016) 65:164–71. 10.2337/db16-0555 - DOI - PMC - PubMed
  6.  
    1. Berradi H, Bertho JM, Dudoignon N, Mazur A, Grandcolas L, Baudelin C, et al. . Renal anemia induced by chronic ingestion of depleted uranium in rats. Toxicol Sci. (2008) 103:397–408. 10.1093/toxsci/kfn052 - DOI - PubMed
  7.  
    1. Vicente-Vicente L, Quiros Y, Perez-Barriocanal F, Lopez-Novoa JM, Lopez-Hernandez FJ, Morales AI. Nephrotoxicity of uranium, pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci. (2010) 118:324–47. 10.1093/toxsci/kfq178 - DOI - PubMed
  8.  
    1. Hursh JB, Mercer TT. Measurement of 212Pb loss rate from human lungs. J Appl Physiol. (1970) 28:268–74. 10.1152/jappl.1970.28.3.268 - DOI - PubMed
  9.  
    1. Durakovic A. The quantitative analysis of uranium isotopes in the urine of the civilian population of eastern Afghanistan after operation enduring freedom. Mil Med. (2005) 170:277–84. 10.7205/MILMED.170.4.277 - DOI - PubMed
  10.  
    1. Shawky S. Depleted uranium, an overview of its properties and health effects. East Mediterr Health J. (2002) 8:432–9. - PubMed
  11.  
    1. Slominska EM, Smolenski RT, Szolkiewicz M, Leaver N, Rutkowski B, Simmonds HA, et al. . Accumulation of plasma N-methyl-2-pyridone-5-carboxamide in patients with chronic renal failure. Mol Cell Biochem. (2002) 231:83–8. 10.1023/A:1014445329756 - DOI - PubMed
  12.  
    1. Rutkowski B, Slominska E, Szolkiewicz M, Smolenski RT, Striley C, Rutkowski P, et al. N-methyl-2-pyridone-5-carboxamide, a novel uremic toxin? Kidney Int Suppl. (2003) 63:S19–21. 10.1046/j.1523-1755.63.s84.36.x - DOI - PubMed
  13.  
    1. Carrey EA, Smolenski RT, Edbury SM, Laurence A, Marinaki AM, Duley JA, et al. . Origin and characteristics of an unusual pyridine nucleotide accumulating in erythrocytes, positive correlation with degree of renal failure. Clin Chim Acta. (2003) 335:117–29. 10.1016/S0009-8981(03)00294-8 - DOI - PubMed
  14.  
    1. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. . Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. (2012) 23:1258–70. 10.1681/ASN.2011121175 - DOI - PMC - PubMed
  15.  
    1. Grison S, Kereselidze D, Cohen D, Gloaguen C, Elie C, Lestaevel P, et al. . Applying a multiscale systems biology approach to study the effect of chronic low-dose exposure to uranium in rat kidneys. Int J Radiat Biol. (2019) 95:737–52. 10.1080/09553002.2019.1577567 - DOI - PubMed
  16.  
    1. Grison S, Fave G, Maillot M, Manens L, Delissen O, Blanchardon E, et al. . Metabolomics reveals dose effects of low-dose chronic exposure to uranium in rats, identification of candidate biomarkers in urine samples. Metabolomics. (2016) 12:154. 10.1007/s11306-016-1092-8 - DOI - PMC - PubMed
  17.  
    1. Hartman ML, Goodson JM, Barake R, Alsmadi O, Al-Mutawa S, Ariga J, et al. . Salivary glucose concentration exhibits threshold kinetics in normal-weight, overweight, and obese children. Diabetes Metab Syndr Obes. (2015) 8:9–15. 10.2147/DMSO.S72744 - DOI - PMC - PubMed
  18.  
    1. Shi P, Goodson JM, Hartman ML, Hasturk H, Yaskell T, Vargas J, et al. . Continuous metabolic syndrome scores for children using salivary biomarkers. PLoS ONE. (2015) 10:e0138979. 10.1371/journal.pone.0138979 - DOI - PMC - PubMed
  19.  
    1. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. . The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes. (2007) 8:299–306. 10.1111/j.1399-5448.2007.00271.x - DOI - PubMed
  20.  
    1. Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. (1993) 694:72–7. 10.1111/j.1749-6632.1993.tb18343.x - DOI - PubMed
  21.  
    1. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. (2009) 81:6656–67. 10.1021/ac901536h - DOI - PubMed
  22.  
    1. Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics, an introductory tutorial. Metabolomics. (2013) 9:280–99. 10.1007/s11306-012-0482-9 - DOI - PMC - PubMed
  23.  
    1. Sharaf El Din UAA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. (2017) 8:537–48. 10.1016/j.jare.2016.11.004 - DOI - PMC - PubMed
  24.  
    1. Codoner-Franch P, Tavarez-Alonso S, Murria-Estal R, Herrera-Martin G, Alonso-Iglesias E. Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis. J Clin Endocrinol Metab. (2011) 96:2821–5. 10.1210/jc.2011-0531 - DOI - PubMed
  25.  
    1. Yuan F, Zhang L, Cao Y, Gao W, Zhao C, Fang Y, et al. . Spermidine/spermine N1-acetyltransferase-mediated polyamine catabolism regulates beige adipocyte biogenesis. Metabolism. (2018) 85:298–304. 10.1016/j.metabol.2018.04.007 - DOI - PMC - PubMed
  26.  
    1. Hartman AM, Groppo F, Ohnishi M, Goodson JM, Hasturk H, Tavares M, et al. . Can salivary phosphate levels be an early biomarker to monitor the evolvement of obesity? Contrib Nephrol. (2013) 180:138–48. 10.1159/000346793 - DOI - PMC - PubMed
  27.  
    1. Zhao X, Gang X, Liu Y, Sun C, Han Q, Wang G. Using metabolomic profiles as biomarkers for insulin resistance in childhood obesity, a systematic review. J Diabetes Res. (2016) 2016:8160545. 10.1155/2016/8160545 - DOI - PMC - PubMed
  28.  
    1. Rutkowski B, Swierczynski J, Slominska E, Szolkiewicz M, Smolenski RT, Marlewski M, et al. . Disturbances of purine nucleotide metabolism in uremia. Semin Nephrol. (2004) 24:479–83. 10.1016/j.semnephrol.2004.06.022 - DOI - PubMed
  29.  
    1. Lenglet A, Liabeuf S, Bodeau S, Louvet L, Mary A, Boullier A, et al. . N-methyl-2-pyridone-5-carboxamide (2PY)-Major Metabolite of Nicotinamide, an update on an old uremic toxin. Toxins. (2016) 8:E339. 10.3390/toxins8110339 - DOI - PMC - PubMed
  30.  
    1. Zhou SS, Li D, Chen NN, Zhou Y. Vitamin paradox in obesity, deficiency or excess? World J Diabetes. (2015) 6:1158–67. 10.4239/wjd.v6.i10.1158 - DOI - PMC - PubMed
  31.  
    1. Boulange CL, Claus SP, Chou CJ, Collino S, Montoliu I, Kochhar S, et al. . Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J Proteome Res. (2013) 12:1956–68. 10.1021/pr400051s - DOI - PubMed
  32.  
    1. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB. Depleted and natural uranium, chemistry and toxicological effects. J Toxicol Environ Health B Cret Rev. (2004) 7:297–317. 10.1080/10937400490452714 - DOI - PubMed
  33.  
    1. Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH. Heavy metals, islet function and diabetes development. Islets. (2009) 1:169–76. 10.4161/isl.1.3.9262 - DOI - PubMed
  34.  
    1. Brugge D, Buchner V. Health effects of uranium, new research findings. Rev Environ Health. (2011) 26:231–49. 10.1515/REVEH.2011.032 - DOI - PubMed