Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans

Affiliations


Abstract

Background: Members of fastidious Granulicatella and Aggregatibacter genera belong to normal oral flora bacteria that can cause serious infections, such as infective endocarditis. Aggregatibacter actinomycetemcomitans has long been implicated in aggressive periodontitis, whereas DNA-based methods only recently showed an association between Granulicatella spp. and dental diseases. As bacterial coaggregation is a key phenomenon in the development of oral and nonoral multispecies bacterial communities it would be of interest knowing coaggregation pattern of Granulicatella species with A. actinomycetemcomitans in comparison with the multipotent coaggregator Fusobacterium nucleatum. The aim was to investigate coaggregation and biofilm formation of Granulicatella elegans and Granulicatella adiacens with A. actinomycetemcomitans and F. nucleatum strains.

Results: F. nucleatum exhibited significantly (p < 0.05) higher autoaggregation than all other test species, followed by A. actinomycetemcomitans SA269 and G. elegans. A. actinomycetemcomitans CU1060 and G. adiacens did not autoaggregate. G. elegans with F. nucleatum exhibited significantly (p < 0.05) higher coaggregation than most others, but failed to grow as biofilm together or separately. With F. nucleatum as partner, A. actinomycetemcomitans strains SA269, a rough-colony wild-type strain, and CU1060, a spontaneous smooth-colony laboratory variant, and G. adiacens were the next in coaggregation efficiency. These dual species combinations also were able to grow as biofilms. While both G. elegans and G. adiacens coaggregated with A. actinomycetemcomitans strain SA269, but not with CU1060, they grew as biofilms with both A. actinomycetemcomitans strains.

Conclusions: G. elegans failed to form biofilm with F. nucleatum despite the strongest coaggregation with it. The ability of Granulicatella spp. to coaggregate and/or form biofilms with F. nucleatum and A. actinomycetemcomitans strains suggests that Granulicatella spp. have the potential to integrate into dental plaque biofilms.


Figures


Similar articles

Aggregatibacter actinomycetemcomitans serotype f O-polysaccharide mediates coaggregation with Fusobacterium nucleatum.

Rupani D, Izano EA, Schreiner HC, Fine DH, Kaplan JB.Oral Microbiol Immunol. 2008 Apr;23(2):127-30. doi: 10.1111/j.1399-302X.2007.00399.x.PMID: 18279180

Quantitation of biofilm and planktonic life forms of coexisting periodontal species.

Karched M, Bhardwaj RG, Inbamani A, Asikainen S.Anaerobe. 2015 Oct;35(Pt A):13-20. doi: 10.1016/j.anaerobe.2015.04.013. Epub 2015 Apr 26.PMID: 25926392

Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva.

Periasamy S, Kolenbrander PE.Infect Immun. 2009 Sep;77(9):3542-51. doi: 10.1128/IAI.00345-09. Epub 2009 Jun 29.PMID: 19564387 Free PMC article.

Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum.

Liu PF, Huang IF, Shu CW, Huang CM.Curr Mol Med. 2013 Sep;13(8):1358-67. doi: 10.2174/15665240113139990063.PMID: 23865430 Review.

Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source.

Kolenbrander PE.Int J Oral Sci. 2011 Apr;3(2):49-54. doi: 10.4248/IJOS11025.PMID: 21485308 Free PMC article. Review.


Cited by

Aggregatibacter actinomycetemcomitans serotype f O-polysaccharide mediates coaggregation with Fusobacterium nucleatum.

Rupani D, Izano EA, Schreiner HC, Fine DH, Kaplan JB.Oral Microbiol Immunol. 2008 Apr;23(2):127-30. doi: 10.1111/j.1399-302X.2007.00399.x.PMID: 18279180

Quantitation of biofilm and planktonic life forms of coexisting periodontal species.

Karched M, Bhardwaj RG, Inbamani A, Asikainen S.Anaerobe. 2015 Oct;35(Pt A):13-20. doi: 10.1016/j.anaerobe.2015.04.013. Epub 2015 Apr 26.PMID: 25926392

Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva.

Periasamy S, Kolenbrander PE.Infect Immun. 2009 Sep;77(9):3542-51. doi: 10.1128/IAI.00345-09. Epub 2009 Jun 29.PMID: 19564387 Free PMC article.

Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum.

Liu PF, Huang IF, Shu CW, Huang CM.Curr Mol Med. 2013 Sep;13(8):1358-67. doi: 10.2174/15665240113139990063.PMID: 23865430 Review.

Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source.

Kolenbrander PE.Int J Oral Sci. 2011 Apr;3(2):49-54. doi: 10.4248/IJOS11025.PMID: 21485308 Free PMC article. Review.


KMEL References


References

  1.  
    1. Frenkel A, Hirsch W. Spontaneous development of L forms of streptococci requiring secretions of other bacteria or sulphydryl compounds for normal growth. Nature. 1961;191:728–30. doi: 10.1038/191728a0. - DOI - PubMed
  2.  
    1. Kawamura Y, Hou XG, Sultana F, Liu S, Yamamoto H, Ezaki T. Transfer of Streptococcus adjacens and Streptococcus defectivus to Abiotrophia gen. nov. as Abiotrophia adiacens comb. nov. and Abiotrophia defectiva comb. nov., respectively. Int J Syst Bacteriol. 1995;45(4):798–803. doi: 10.1099/00207713-45-4-798. - DOI - PubMed
  3.  
    1. Collins MD, Lawson PA. The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int J Syst Evol Microbiol. 2000;50 Pt 1:365–9. doi: 10.1099/00207713-50-1-365. - DOI - PubMed
  4.  
    1. Mikkelsen L, Theilade E, Poulsen K. Abiotrophia species in early dental plaque. Oral Microbiol Immunol. 2000;15(4):263–8. doi: 10.1034/j.1399-302x.2000.150409.x. - DOI - PubMed
  5.  
    1. Sato S, Kanamoto T, Inoue M. Abiotrophia elegans strains comprise 8% of the nutritionally variant streptococci isolated from the human mouth. J Clin Microbiol. 1999;37(8):2553–6. - PMC - PubMed
  6.  
    1. Belstrom D, Fiehn NE, Nielsen CH, Kirkby N, Twetman S, Klepac-Ceraj V, et al. Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol. 2014;41(2):104–12. doi: 10.1111/jcpe.12190. - DOI - PubMed
  7.  
    1. Kanasi E, Dewhirst FE, Chalmers NI, Kent R, Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010;44(5):485–97. doi: 10.1159/000320158. - DOI - PMC - PubMed
  8.  
    1. Hsiao WW, Li KL, Liu Z, Jones C, Fraser-Liggett CM, Fouad AF. Microbial transformation from normal oral microbiota to acute endodontic infections. BMC Genomics. 2012;13:345. doi: 10.1186/1471-2164-13-345. - DOI - PMC - PubMed
  9.  
    1. Siqueira JF, Jr, Rocas IN. Catonella morbi and Granulicatella adiacens: new species in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(2):259–64. doi: 10.1016/j.tripleo.2005.09.021. - DOI - PubMed
  10.  
    1. Dunne WM., Jr Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155–66. doi: 10.1128/CMR.15.2.155-166.2002. - DOI - PMC - PubMed
  11.  
    1. Kolenbrander PE, Palmer RJ, Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80. doi: 10.1038/nrmicro2381. - DOI - PubMed
  12.  
    1. Foster JS, Kolenbrander PE. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol. 2004;70(7):4340–8. doi: 10.1128/AEM.70.7.4340-4348.2004. - DOI - PMC - PubMed
  13.  
    1. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11(2):94–100. doi: 10.1016/S0966-842X(02)00034-3. - DOI - PubMed
  14.  
    1. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 2009;5(6):580–92. doi: 10.1016/j.chom.2009.05.011. - DOI - PubMed
  15.  
    1. Kolenbrander PE, Palmer RJ, Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000. 2006;42:47–79. doi: 10.1111/j.1600-0757.2006.00187.x. - DOI - PubMed
  16.  
    1. Daep CA, Lamont RJ, Demuth DR. Interaction of Porphyromonas gingivalis with oral streptococci requires a motif that resembles the eukaryotic nuclear receptor box protein-protein interaction domain. Infect Immun. 2008;76(7):3273–80. doi: 10.1128/IAI.00366-08. - DOI - PMC - PubMed
  17.  
    1. Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun. 1989;57(10):3204–9. - PMC - PubMed
  18.  
    1. Lancy P, Jr, Dirienzo JM, Appelbaum B, Rosan B, Holt SC. Corncob formation between Fusobacterium nucleatum and Streptococcus sanguis. Infect Immun. 1983;40(1):303–9. - PMC - PubMed
  19.  
    1. Murakami Y, Nagata H, Amano A, Takagaki M, Shizukuishi S, Tsunemitsu A, et al. Inhibitory effects of human salivary histatins and lysozyme on coaggregation between Porphyromonas gingivalis and Streptococcus mitis. Infect Immun. 1991;59(9):3284–6. - PMC - PubMed
  20.  
    1. Nagata H, Amano A, Ojima M, Tanaka M, Kataoka K, Shizukuishi S. Effect of binding of fibrinogen to each bacterium on coaggregation between Porphyromonas gingivalis and Streptococcus oralis. Oral Microbiol Immunol. 1994;9(6):359–63. doi: 10.1111/j.1399-302X.1994.tb00286.x. - DOI - PubMed
  21.  
    1. Li J, Ellen RP. Relative adherence of Bacteroides species and strains to Actinomyces viscosus on saliva-coated hydroxyapatite. J Dent Res. 1989;68(9):1308–12. doi: 10.1177/00220345890680090301. - DOI - PubMed
  22.  
    1. Sato T, Nakazawa F. Coaggregation between Prevotella oris and Porphyromonas gingivalis. J Microbiol Immunol Infect. 2014;47(3):182–6. doi: 10.1016/j.jmii.2012.09.005. - DOI - PubMed
  23.  
    1. Shimotahira N, Oogai Y, Kawada-Matsuo M, Yamada S, Fukutsuji K, Nagano K, et al. The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation. Infect Immun. 2013;81(4):1198–206. doi: 10.1128/IAI.00983-12. - DOI - PMC - PubMed
  24.  
    1. Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol. 2008;190(10):3646–57. doi: 10.1128/JB.00088-08. - DOI - PMC - PubMed
  25.  
    1. Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol. 2008;66(3):637–44. doi: 10.1111/j.1574-6941.2008.00585.x. - DOI - PMC - PubMed
  26.  
    1. He X, Hu W, Kaplan CW, Guo L, Shi W, Lux R. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb Ecol. 2012;63(3):532–42. doi: 10.1007/s00248-011-9989-2. - DOI - PMC - PubMed
  27.  
    1. Meuric V, Martin B, Guyodo H, Rouillon A, Tamanai-Shacoori Z, Barloy-Hubler F, et al. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28(1):40–53. doi: 10.1111/omi.12004. - DOI - PubMed
  28.  
    1. Ramsey MM, Whiteley M. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A. 2009;106(5):1578–83. doi: 10.1073/pnas.0809533106. - DOI - PMC - PubMed
  29.  
    1. Das M, Badley AD, Cockerill FR, Steckelberg JM, Wilson WR. Infective endocarditis caused by HACEK microorganisms. Annu Rev Med. 1997;48:25–33. doi: 10.1146/annurev.med.48.1.25. - DOI - PubMed
  30.  
    1. Christensen JJ, Facklam RR. Granulicatella and Abiotrophia species from human clinical specimens. J Clin Microbiol. 2001;39(10):3520–3. doi: 10.1128/JCM.39.10.3520-3523.2001. - DOI - PMC - PubMed
  31.  
    1. Paul-Satyaseela M, Karched M, Bian Z, Ihalin R, Boren T, Arnqvist A, et al. Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbiol. 2006;55(Pt 7):931–42. doi: 10.1099/jmm.0.46470-0. - DOI - PubMed
  32.  
    1. Karched M, Paul-Satyaseela M, Asikainen S. A simple viability-maintaining method produces homogenic cell suspensions of autoaggregating wild-type Actinobacillus actinomycetemcomitans. J Microbiol Methods. 2007;68(1):46–51. doi: 10.1016/j.mimet.2006.06.004. - DOI - PubMed
  33.  
    1. Fine DH, Furgang D, Schreiner HC, Goncharoff P, Charlesworth J, Ghazwan G, et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology. 1999;145(Pt 6):1335–47. doi: 10.1099/13500872-145-6-1335. - DOI - PubMed
  34.  
    1. Hoffman H. Gaseous requirements for the cultivation of fusobacteria. J Bacteriol. 1951;61(2):241–2. - PMC - PubMed
  35.  
    1. Karched M, Bhardwaj RG, Inbamani A, Asikainen SE: Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe 2015, In press. - PubMed
  36.  
    1. Rupani D, Izano EA, Schreiner HC, Fine DH, Kaplan JB. Aggregatibacter actinomycetemcomitans serotype f O-polysaccharide mediates coaggregation with Fusobacterium nucleatum. Oral Microbiol Immunol. 2008;23(2):127–30. doi: 10.1111/j.1399-302X.2007.00399.x. - DOI - PubMed
  37.  
    1. Nagaoka S, Hojo K, Murata S, Mori T, Ohshima T, Maeda N. Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett. 2008;281(2):183–9. doi: 10.1111/j.1574-6968.2008.01092.x. - DOI - PubMed
  38.  
    1. Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol. 2008;8:206. doi: 10.1186/1471-2180-8-206. - DOI - PMC - PubMed
  39.  
    1. Merritt J, Niu G, Okinaga T, Qi F. Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol. 2009;75(24):7725–33. doi: 10.1128/AEM.00916-09. - DOI - PMC - PubMed
  40.  
    1. Sharma A, Inagaki S, Sigurdson W, Kuramitsu HK. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol. 2005;20(1):39–42. doi: 10.1111/j.1399-302X.2004.00175.x. - DOI - PubMed
  41.  
    1. Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun. 1998;66(10):4729–32. - PMC - PubMed
  42.  
    1. Okuda T, Kokubu E, Kawana T, Saito A, Okuda K, Ishihara K. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe. 2012;18(1):110–6. doi: 10.1016/j.anaerobe.2011.09.003. - DOI - PubMed
  43.  
    1. Periasamy S, Kolenbrander PE. Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun. 2009;77(9):3542–51. doi: 10.1128/IAI.00345-09. - DOI - PMC - PubMed
  44.  
    1. Kinder SA, Holt SC. Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. J Bacteriol. 1993;175(3):840–50. - PMC - PubMed
  45.  
    1. Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989;57(10):3194–203. - PMC - PubMed
  46.  
    1. Bachrach G, Ianculovici C, Naor R, Weiss EI. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol Lett. 2005;248(2):235–40. doi: 10.1016/j.femsle.2005.05.055. - DOI - PubMed
  47.  
    1. Bouvet A, Grimont F, Grimont PAD. Streptococcus defectivus sp. nov. and Streptococcus adjacens Human Clinical Specimens sp. nov. Nutritionally Variant Streptococci. Int J Syst Bacteriol. 1989;39:290–4. doi: 10.1099/00207713-39-3-290. - DOI
  48.  
    1. Roggenkamp A, Abele-Horn M, Trebesius KH, Tretter U, Autenrieth IB, Heesemann J. Abiotrophia elegans sp. nov., a possible pathogen in patients with culture-negative endocarditis. J Clin Microbiol. 1998;36(1):100–4. - PMC - PubMed
  49.  
    1. Suzuki N, Nakano Y, Kiyoura Y. Characterizing the specific coaggregation between Actinobacillus actinomycetemcomitans serotype c strains and Porphyromonas gingivalis ATCC 33277. Oral Microbiol Immunol. 2006;21(6):385–91. doi: 10.1111/j.1399-302X.2006.00309.x. - DOI - PubMed
  50.  
    1. Khemaleelakul S, Baumgartner JC, Pruksakom S. Autoaggregation and coaggregation of bacteria associated with acute endodontic infections. J Endod. 2006;32(4):312–8. doi: 10.1016/j.joen.2005.10.003. - DOI - PubMed
  51.  
    1. Shen S, Samaranayake LP, Yip HK. Coaggregation profiles of the microflora from root surface caries lesions. Arch Oral Biol. 2005;50(1):23–32. doi: 10.1016/j.archoralbio.2004.07.002. - DOI - PubMed
  52.  
    1. Inouye T, Ohta H, Kokeguchi S, Fukui K, Kato K. Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett. 1990;57(1-2):13–7. doi: 10.1111/j.1574-6968.1990.tb04167.x. - DOI - PubMed
  53.  
    1. Kachlany SC, Planet PJ, Bhattacharjee MK, Kollia E, DeSalle R, Fine DH, et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol. 2000;182(21):6169–76. doi: 10.1128/JB.182.21.6169-6176.2000. - DOI - PMC - PubMed
  54.  
    1. Nagayama M, Sato M, Yamaguchi R, Tokuda C, Takeuchi H. Evaluation of co-aggregation among Streptococcus mitis, Fusobacterium nucleatum and Porphyromonas gingivalis. Lett Appl Microbiol. 2001;33(2):122–5. doi: 10.1046/j.1472-765x.2001.00964.x. - DOI - PubMed
  55.  
    1. Periasamy S, Chalmers NI, Du-Thumm L, Kolenbrander PE. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl Environ Microbiol. 2009;75(10):3250–7. doi: 10.1128/AEM.02901-08. - DOI - PMC - PubMed
  56.  
    1. Lin X, Lamont RJ, Wu J, Xie H. Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J Bacteriol. 2008;190(12):4367–71. doi: 10.1128/JB.01898-07. - DOI - PMC - PubMed
  57.  
    1. Bachtiar EW, Bachtiar BM, Jarosz LM, Amir LR, Sunarto H, Ganin H, et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front Cell Infect Microbiol. 2014;4:94. doi: 10.3389/fcimb.2014.00094. - DOI - PMC - PubMed
  58.  
    1. Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative Proteomics Reveal Distinct Protein Regulations Caused by Aggregatibacter actinomycetemcomitans within Subgingival Biofilms. PLoS One. 2015;10(3) doi: 10.1371/journal.pone.0119222. - DOI - PMC - PubMed
  59.  
    1. Xavier KB, Bassler BL. Interference with AI-2-mediated bacterial cell-cell communication. Nature. 2005;437(7059):750–3. doi: 10.1038/nature03960. - DOI - PMC - PubMed
  60.  
    1. Rosen G, Nisimov I, Helcer M, Sela MN. Actinobacillus actinomycetemcomitans serotype b lipopolysaccharide mediates coaggregation with Fusobacterium nucleatum. Infect Immun. 2003;71(6):3652–6. doi: 10.1128/IAI.71.6.3652-3656.2003. - DOI - PMC - PubMed
  61.  
    1. Kuriyama T, Karasawa T, Nakagawa K, Nakamura S, Yamamoto E. Antimicrobial susceptibility of major pathogens of orofacial odontogenic infections to 11 beta-lactam antibiotics. Oral Microbiol Immunol. 2002;17(5):285–9. doi: 10.1034/j.1399-302X.2002.170504.x. - DOI - PubMed