The Effect of Benzyl Isothiocyanate on the Expression of Genes Encoding NADH Oxidase and Fibronectin-Binding Protein in Oral Streptococcal Biofilms

Affiliations

04 November 2022

-

doi: 10.3389/froh.2022.863723


Abstract

Recent studies have shown that antimicrobial treatment results in up- or down regulation of several virulence-associated genes in bacterial biofilms. The genes encoding NADH oxidase (nox) and fibronectin-binding protein (fbp) are known to play important roles in biofilm growth of some oral bacterial species. The objective was to study the effect of benzyl isothiocyanate (BITC), an antimicrobial agent from Miswak plant, on the expression of nox and fbp genes in some oral streptococci. The biofilms were treated with BITC and mRNA expression of nox and fbp genes was measured by comparative ΔΔCt method. The highest amount of biofilm mass was produced by A. defectiva, followed by S. gordonii, S. mutans, G. elegans and G. adiacens. Upon treatment with BITC, S. gordonii biofilms showed highest folds change in mRNA expression for both fbp and nox genes followed by S. mutans, A. defectiva, and G. adiacens. G. elegans mRNA levels for nox were extremely low. In conclusion, BITC treatment of the biofilms caused an upregulation of biofilm-associated genes fbp and nox genes in most of the tested species suggesting the significance of these genes in biofilm lifestyle of these oral bacteria and needs further investigation to understand if it contributes to antimicrobial resistance.

Keywords: Miswak; antibacterial agents; biofilm; gene expression; gram-positive bacteria; oral health; streptococci.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Figures


Similar articles

Transcriptomic Analysis, Motility and Biofilm Formation Characteristics of Salmonella typhimurium Exposed to Benzyl Isothiocyanate Treatment.

Niu TX, Wang XN, Wu HY, Bi JR, Hao HS, Hou HM, Zhang GL.Int J Mol Sci. 2020 Feb 4;21(3):1025. doi: 10.3390/ijms21031025.PMID: 32033098 Free PMC article.

Amino Sugars Modify Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans.

Chen L, Chakraborty B, Zou J, Burne RA, Zeng L.Appl Environ Microbiol. 2019 May 2;85(10):e00370-19. doi: 10.1128/AEM.00370-19. Print 2019 May 15.PMID: 30877119 Free PMC article.

Role of a nosX homolog in Streptococcus gordonii in aerobic growth and biofilm formation.

Loo CY, Mitrakul K, Jaafar S, Gyurko C, Hughes CV, Ganeshkumar N.J Bacteriol. 2004 Dec;186(24):8193-206. doi: 10.1128/JB.186.24.8193-8206.2004.PMID: 15576767 Free PMC article.

Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm.

Jiang W, Wang Y, Luo J, Li X, Zhou X, Li W, Zhang L.Appl Environ Microbiol. 2018 Nov 30;84(24):e01423-18. doi: 10.1128/AEM.01423-18. Print 2018 Dec 15.PMID: 30341079 Free PMC article.

Transcription factor Rex in regulation of pathophysiology in oral pathogens.

Bitoun JP, Wen ZT.Mol Oral Microbiol. 2016 Apr;31(2):115-24. doi: 10.1111/omi.12114. Epub 2015 Aug 6.PMID: 26172563 Free PMC article. Review.


KMEL References


References

  1.  
    1. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. (2010) 8:623–33. 10.1038/nrmicro2415 - DOI - PubMed
  2.  
    1. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. (2009) 33:206–24. 10.1111/j.1574-6976.2008.00150.x - DOI - PubMed
  3.  
    1. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. (2003) 112:1466–77. 10.1172/JCI200320365 - DOI - PMC - PubMed
  4.  
    1. Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, et al. . Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol. (2013) 8:877–86. 10.2217/fmb.13.58 - DOI - PubMed
  5.  
    1. Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. J Dent Res. (2015) 94:1355–61. 10.1177/0022034515602879 - DOI - PubMed
  6.  
    1. Kolenbrander PE, Palmer RJ, Jr., Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. (2010) 8:471–80. 10.1038/nrmicro2381 - DOI - PubMed
  7.  
    1. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. (2003) 11:94–100. 10.1016/S0966-842X(02)00034-3 - DOI - PubMed
  8.  
    1. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. (2005) 13:589–95. 10.1016/j.tim.2005.09.006 - DOI - PubMed
  9.  
    1. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. (2006) 42:80–7. 10.1111/j.1600-0757.2006.00174.x - DOI - PubMed
  10.  
    1. Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. (2016) 14:589–600. 10.1038/nrmicro.2016.84 - DOI - PubMed
  11.  
    1. Redelman CV, Chakravarty S, Anderson GG. Antibiotic treatment of Pseudomonas aeruginosa biofilms stimulates expression of the magnesium transporter gene mgtE. Microbiology. (2014) 160(Pt 1):165–78. 10.1099/mic.0.070144-0 - DOI - PubMed
  12.  
    1. Kot B, Sytykiewicz H, Sprawka I, Witeska M. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Sci Rep. (2020) 10:13552. 10.1038/s41598-020-70666-y - DOI - PMC - PubMed
  13.  
    1. Vaishampayan A, de Jong A, Wight DJ, Kok J, Grohmann E. A novel antimicrobial coating represses biofilm and virulence-related genes in methicillin-resistant Staphylococcus aureus. Front Microbiol. (2018) 9:221. 10.3389/fmicb.2018.00221 - DOI - PMC - PubMed
  14.  
    1. Ge X, Shi X, Shi L, Liu J, Stone V, Kong F, et al. . Involvement of NADH oxidase in biofilm formation in Streptococcus sanguinis. PLoS ONE. (2016) 11:e0151142. 10.1371/journal.pone.0151142 - DOI - PMC - PubMed
  15.  
    1. McCourt J, O'Halloran DP, McCarthy H, O'Gara JP, Geoghegan JA. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett. (2014) 353:157–64. 10.1111/1574-6968.12424 - DOI - PubMed
  16.  
    1. Sofrata A, Santangelo EM, Azeem M, Borg-Karlson AK, Gustafsson A, Putsep K. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS ONE. (2011) 6:e23045. 10.1371/journal.pone.0023045 - DOI - PMC - PubMed
  17.  
    1. Karched M, Bhardwaj RG, Asikainen SE. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol. (2015) 15:114. 10.1186/s12866-015-0439-z - DOI - PMC - PubMed
  18.  
    1. Kajfasz JK, Rivera-Ramos I, Scott-Anne K, Gregoire S, Abranches J, Lemos JA. Transcription of oxidative stress genes is directly activated by SpxA1 and, to a lesser extent, by SpxA2 in Streptococcus mutans. J Bacteriol. (2015) 197:2160–70. 10.1128/JB.00118-15 - DOI - PMC - PubMed
  19.  
    1. Loo CY, Mitrakul K, Jaafar S, Gyurko C, Hughes CV, Ganeshkumar N. Role of a nosX homolog in Streptococcus gordonii in aerobic growth and biofilm formation. J Bacteriol. (2004) 186:8193–206. 10.1128/JB.186.24.8193-8206.2004 - DOI - PMC - PubMed
  20.  
    1. Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, et al. . Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol. (2003) 39:81–6. 10.1016/S0928-8244(03)00224-4 - DOI - PubMed
  21.  
    1. Anderson GG, Moreau-Marquis S, Stanton BA, O'Toole GA. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun. (2008) 76:1423–33. 10.1128/IAI.01373-07 - DOI - PMC - PubMed
  22.  
    1. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, et al. . Role of phytochemicals in cancer prevention. Int J Mol Sci. (2019) 20:4981. 10.3390/ijms20204981 - DOI - PMC - PubMed
  23.  
    1. Loi VV, Busche T, Preuss T, Kalinowski J, Bernhardt J, Antelmann H. The AGXX(R) antimicrobial coating causes a thiol-specific oxidative stress response and protein S-bacillithiolation in Staphylococcus aureus. Front Microbiol. (2018) 9:3037. 10.3389/fmicb.2018.03037 - DOI - PMC - PubMed
  24.  
    1. Han KWW, Po WW, Sohn UD, Kim HJ. Benzyl isothiocyanate induces apoptosis via reactive oxygen species-initiated mitochondrial dysfunction and DR4 and DR5 death receptor activation in gastric adenocarcinoma cells. Biomolecules. (2019) 9:1–15. 10.3390/biom9120839 - DOI - PMC - PubMed
  25.  
    1. Borges A, Abreu AC, Ferreira C, Saavedra MJ, Simoes LC, Simoes M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J Food Sci Technol. (2015) 52:4737–48. 10.1007/s13197-014-1533-1 - DOI - PMC - PubMed
  26.  
    1. Kaiser SJ, Mutters NT, Blessing B, Gunther F. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa. Fitoterapia. (2017) 119:57–63. 10.1016/j.fitote.2017.04.006 - DOI - PubMed
  27.  
    1. Niu TX, Wang XN, Wu HY, Bi JR, Hao HS, Hou HM, et al. . Transcriptomic analysis, motility and biofilm formation characteristics of Salmonella typhimurium exposed to benzyl isothiocyanate treatment. Int J Mol Sci. (2020) 21:1–13. 10.3390/ijms21031025 - DOI - PMC - PubMed
  28.  
    1. Wang X, Wu H, Niu T, Bi J, Hou H, Hao H, et al. . Downregulated expression of virulence factors induced by benzyl isothiocyanate in Staphylococcus aureus: a transcriptomic analysis. Int J Mol Sci. (2019) 20:1–13. 10.3390/ijms20215441 - DOI - PMC - PubMed
  29.  
    1. Derr AM, Faustoferri RC, Betzenhauser MJ, Gonzalez K, Marquis RE, Quivey RG, Jr. Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans. Appl Environ Microbiol. (2012) 78:1215–27. 10.1128/AEM.06890-11 - DOI - PMC - PubMed
  30.  
    1. Auzat I, Chapuy-Regaud S, Le Bras G, Dos Santos D, Ogunniyi AD, Le Thomas I, et al. . The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence. Mol Microbiol. (1999) 34:1018–28. 10.1046/j.1365-2958.1999.01663.x - DOI - PubMed
  31.  
    1. Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother. (2009) 53:1395–402. 10.1128/AAC.01087-08 - DOI - PMC - PubMed
  32.  
    1. Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother. (2006) 50:949–54. 10.1128/AAC.50.3.949-954.2006 - DOI - PMC - PubMed
  33.  
    1. Rasigade JP, Moulay A, Lhoste Y, Tristan A, Bes M, Vandenesch F, et al. . Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus. BMC Microbiol. (2011) 11:263. 10.1186/1471-2180-11-263 - DOI - PMC - PubMed
  34.  
    1. Bisognano C, Vaudaux PE, Lew DP, Ng EY, Hooper DC. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. (1997) 41:906–13. 10.1128/AAC.41.5.906 - DOI - PMC - PubMed